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HYBRID SHRINKAGE ESTIMATORS USING PENALTY BASES
FOR THE ORDINAL ONE-WAY LAYOUT

BY RUDOLF BERAN1

University of California, Davis

This paper constructs improved estimators of the means in the Gaussian
saturated one-way layout with an ordinal factor. The least squares estimator
for the mean vector in this saturated model is usually inadmissible. The
hybrid shrinkage estimators of this paper exploit thepossibility of slow
variation in the dependence of the means on the ordered factor levels but do
not assume it and respond well to faster variation if present. To motivate the
development, candidate penalized least squares (PLS) estimators for the mean
vector of a one-way layout are represented as shrinkage estimators relative
to the penalty basis for the regression space. This canonical representation
suggests further classes of candidate estimators for the unknown means:
monotone shrinkage (MS) estimators or soft-thresholding (ST) estimators
or, most generally, hybrid shrinkage (HS) estimators that combine the
preceding two strategies. Adaptation selects the estimator within a candidate
class that minimizes estimated risk. Under the Gaussian saturated one-way
layout model, such adaptive estimators minimize risk asymptotically over
the class of candidate estimators as the number of factor levels tends to
infinity. Thereby, adaptive HS estimators asymptotically dominate adaptive
MS and adaptive ST estimators as well as the least squares estimator.
Local annihilators of polynomials, among them difference operators, generate
penalty bases suitable for a range of numerical examples. In case studies,
adaptive HS estimators recover high frequency details in the mean vector
more reliably than PLS or MS estimators and low frequency details more
reliably than ST estimators.

1. Introduction. Consider the one-way layout of ANOVA. A single factor
that influences the observed responses hasp distinct levels{si : 1 ≤ i ≤ p}.
These factor levels can be either nominal (i.e., pure labels that bear no ordering
information) or ordinal (i.e., real numbers whose order and spacing carries
information). In the case of an ordinal factor, we will suppose that the factor levels
have been ordered from smallest to largest. At levelsi , we observe measurements
{yij : 1 ≤ j ≤ ni}. The saturated Gaussian model for the one-way layout asserts
that the observations{yij } satisfy

yij = µi + eij , 1 ≤ i ≤ p, 1 ≤ j ≤ ni.(1.1)
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Here the errorse = {eij } are independent, identically distributed, each having
an N(0, σ 2) distribution and the means{µi} are unknown real numbers subject
to no restrictions. That the means depend on the respective factor levels can be
expressed formally by

µi = m(si), 1≤ i ≤ p.(1.2)

In equation (1.2), the functionm is real-valued, unknown, and is subject tono
restrictions.

At first glance, the saturated one-way layout model expressed by equations
(1.1) and (1.2) resembles a model for curve estimation. However, there is a
fundamental distinction. In curve estimation, the domain ofm is a continuum,
usually a closed subset of the real line. In the one-way layout, the domain of the
functionm is a discrete set of factor levels. Even in ordinal one-way layouts, no
credible extension ofm to a larger domain may exist. Tukey [(1977), Chapter 7]
fitted several examples of ordinal one-way layouts that are not curve estimation
problems because of intrinsic limitations on the domain of the functionm.

Hereafter, unless otherwise stated, we consider only ordinal one-way layouts.
The following examples will serve as test cases for our methods:

EXAMPLE 1. The top subplot in Figure 1 displays monthly Australian red
wine sales (in kiloliters) from January 1980 to October 1991. The data was
reported by Brockwell and Davis (1996) and was analyzed there with techniques
based on ARMA models. ARMA models are only one class of hypothetical
probability models that might be entertained as a way of mimicking the wine sales
data. Because the data is not actually random, it is prudent to carry out alternative
analyses. As Tukey (1980) pointed out, “In practice, methodologies have no
assumptions and deliver no certainties.” We will analyze the wine-sales data with
mean estimators derived for the ordinal one-way layout model. Motivating this
approach is the traditional decomposition of an econometric times series into
a deterministic term (trend plus seasonal variation), plus a random noise term. The
factor levels are the 142 successive months in the period considered and are clearly
ordinal. Ipso facto, mean monthly wine-sales are defined only on the discrete time
grid of months. Our analysis in Section 2.5 finds a highly intelligible seasonal
pattern in the wine sales.

EXAMPLE 2. The artificial ordinal one-way layouts analyzed in Figures
3 and 4 are designed to bracket the situation found in the case study of Example 1.
In each of Figures 3 and 4, the data in the top subplot is obtained by adding
pseudo-random errors to the means displayed in the second subplot. The means
in Figure 3 vary slowly while those in Figure 4 vary rapidly. To the human eye,
the pattern of variation in the means is not visible in the data. In Section 2.6,
comparing competing estimators of means on these two artificial ordinal one-way
layouts adds to our understanding of their performance.
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FIG. 1. Competing D4-basis fits to the Australian monthly red wine-sales data.
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FIG. 2. Diagnostics for D4-basis fits to the Australian monthly red wine-sales data: residuals
for the HS(D4)fit, the empirical basis economy plot and the shrinkage vectors used by competing
D4-basis estimators.
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FIG. 3. Competing D4-basis fits to the Smooth artificial data and the empirical basis economy plot.
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FIG. 4. Competing D4-basis fits to the Very Wiggly artificial data and the empirical basis economy
plot. Interpolating lines are added to guide the eye through the sequence of means or estimated
means. They have no further significance.
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Form then×1 observation vectory = {{yij : 1 ≤ j ≤ ni},1 ≤ i ≤ p}, wheren is
the total number of observations. LetX be then × p incidence matrix that links
observations to the relevant factor level. Theith column ofX containsni ones, the
other elements being zeroes. Letµ = (µ1,µ2, . . . ,µp)′, whereµi satisfies (1.2)
with m unrestricted. The saturated model (1.1) is equivalent to the assertion

y ∼ N(η,σ 2In) whereη = Xµ.(1.3)

The primary task in this paper is to devise regularized estimators ofη, or,
equivalently, ofµ = (X′X)−1X′η, that (asymptotically inp) dominate the least
squares estimator̂ηLS = X(X′X)−1X′y under the saturated ordinal model. We
note that the desirability of analyzing the risk of estimators ofη under the saturated
model is a basic way in which estimation in the one-way layout differs from curve
estimation.

Suppose that we assess any estimatorη̂ through its normalized quadratic loss
and corresponding risk

L(η̂,µ) = p−1|η̂ − η|2, R(η̂, η, σ 2) = EL(η̂, η),(1.4)

the expectation being calculated under the saturated model. Equivalently, we could
discuss estimation ofµ under the loss functionp−1(µ̂−µ)′X′X(µ̂−µ). The risk
of η̂LS is evidentlyσ 2. It is well known that this value is the smallest risk attainable
by unbiased estimators ofη in the saturated model whether the factor is nominal
or ordinal. Nevertheless, for both types of factor,η̂LS is an inadmissible estimator
of η whenever the numberp of factor levels exceeds two [Stein (1956)].

The James–Stein (1961) shrinkage estimator ofη improves significantly on the
quadratic risk ofη̂LS and is a good answer when the factor is nominal. For an
ordinal factor, estimators forη that have still lower risk in the one-way layout
are often possible. The better estimators ofη developed in this paper rely on
a regularization strategy that enables the data to influence estimator construction.
Our hybrid shrinkage estimators exploit the possibility of slow variation in the
dependence of the means on the ordered factor levels, but donot assume it, and
respond well to faster variation if present.

The broad approach is the following: (a) use prior conjecture about the unknown
means in the Gaussian saturated one-way layout to motivate classes of candidate
estimators for these means; (b) estimate the risk of each candidate estimator
under the saturated model; (c) define an adaptive estimator to be the candidate
procedure with smallest estimated risk; (d) experiment with the adaptive estimator
on both observed and artificial data; (e) study the asymptotic risk of such adaptive
estimators under the saturated model.

The inadmissibility of least squares fits to the means of a Gaussian saturated
one-way layout has inspired considerable work on competing estimators. Candi-
date model selection, ridge regression or penalized least squares (PLS) estima-
tors are all particular symmetric linear estimators. Important studies of symmetric
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linear estimators include Stein (1981), Li and Hwang (1984), Buja, Hastie and
Tibshirani (1989) and Kneip (1994). Tukey (1977) proposed and experimented
with certain smoothing algorithms for fitting ordinal one-way layouts. Beran and
Dümbgen (1998) used a finite-dimensional version of Pinsker’s (1980) asymp-
totic minimax bound to assess adaptive symmetric linear estimators that perform
monotone shrinkage relative to a fixed orthonormal basis.

Adaptive hybrid shrinkage (HS) estimators for the vectorη, the main contribu-
tion of this paper, combine monotone shrinkage (MS)—a generalization of PLS—
with the soft-thresholding (ST) idea in Donoho and Johnstone (1995). The adap-
tive HS estimators are devised to dominate asymptotically both adaptive MS and
adaptive ST estimators ofη. Theorem 4.1 gives the supporting risk analysis under
the saturated model as the numberp of factor levels tends to infinity. Interpreta-
tion of asymptotic minimax Theorem 3.1 isolates basis economy as a key factor
in superior performance of MS estimators and approximate basis economy as a
key factor in superior performance of HS estimators. Applied to the penalty bases
used in this paper, this interpretation suggests that HS estimators behave like MS
estimators when the means of an ordinal one-way layout vary slowly and share
the superior ability of ST estimators to track means that vary more rapidly. Re-
lated to HS estimators in strategy but not in tactics are the hybrid wavelet fits of
Efromovich (1999). These combine a certain linear shrinkage strategy with hard-
thresholding of wavelet coefficients.

Sections 2.5 and 2.6 continue the analysis of Examples 1 and 2. Comparisons
through estimated risks are supplemented by basis economy plots and shrinkage
vector plots that reveal working details of the competing estimators. The diagnostic
plots in these examples support the claim made above that basis economy is
important for superior performance of MS estimators and that approximate basis
economy is important for superior performance of HS estimators. In particular,
the numerical experiments confirm the superior ability of adaptive HS estimators
constructed ond th difference penalty bases to recover both low and high frequency
features in the means of an ordinal one-way layout.

Curve estimation can be split conceptually into two problems: (a) estimation of
means on the ordinal one-way layout of observed factor levels; and (b) estimation
of the mean function between adjacent factor levels through some form of
interpolation. The choice of function class in curve estimation strongly affects
the implicit interpolation scheme. For nonparametric curve estimation, adaptive
curve estimators that achieve the Pinsker asymptotic minimax bound over specified
function classes were developed by Efromovich and Pinsker (1984) and by
Golubev (1987). On the other hand, data does not come with an attached
probability model. A data analyst interested in curve estimation, but not certain
of an appropriate function class, might reasonably use the techniques of this paper
to estimate the means at the observed factor levels; and might then experiment with
curve estimates obtained from these by various interpolation schemes.
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This paper distinguishes strictly among data, statistical procedure, probability
model and pseudo-random numbers. Modern computing environments for applied
and experimental statistics have returned the distinctions to prominence. An adap-
tive procedure implicitly fits the probability model that motivates it. However,
using such a procedure on data differs from believing that a probability model
governs the data. Data is not certifiably random. Mathematical study of a sta-
tistical procedure under a probability model tests the procedure only on virtual
data governed by that model. Such mathematical explorations become pertinent
to statistical theory if the probability model can approximate salient relative fre-
quencies in actual data of interest. Our understanding of statistical procedures is
ultimately empirical, aided considerably by suitable diagnostic plots, knowledge
of the substantive field, and intuitive interpretations of relevant mathematical re-
sults [cf. Brillinger and Tukey (1985), Section 17, Beran (2001), Section 3, and
Friedman (2001)]. In such respects, statistics does not differ from other sciences
that address the world around us.

2. HS estimators. This section begins by defining PLS estimators for the
mean vector of the saturated ordinal one-way layout and then MS or ST estimators
that use the same penalty basis. This background enables the definition of HS
estimators that combine the MS and ST shrinkage strategies. Adaptive HS
estimators are designed to perform well whether the components of the mean
vector vary slowly or more rapidly. Our treatment covers both balanced and
unbalanced one-way layouts. Section 4 develops asymptotic theory under the
saturated model that supports the adaptation methodology used.

2.1. Canonical representation of PLS estimators. As described in the Intro-
duction, the saturated model for the ordinal one-way layout withp factor levels as-
serts that the observation vectory has anN(η,σ 2In) distribution, whereη = Xµ.
HereX is the incidence matrix that links observations to the relevant factor lev-
els andn is the total sample size. The task is to estimate the mean vectorη. Let
D be any matrix withp columns, letν be an element of the extended nonnega-
tive reals[0,∞], and let| · | denote quadratic norm. The candidate PLS estimator
of η is

η̂PLS(D, ν) = Xµ̂PLS(D, ν),(2.1)

where

µ̂PLS(D, ν) = arg min
µ∈Rp

[|y − Xµ|2 + ν|Dµ|2].(2.2)

It is understood that̂µPLS(D,∞) = limν→∞ µ̂PLS(D, ν). The foregoing displays
yield the explicit formula

η̂PLS(D, ν) = X(X′X + νD′D)−1X′y.(2.3)
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BothD andν are to be chosen so to control the quadratic risk of the PLS estimator
under the saturated model.

In the leading case of a balanced one-way layout, the matrixX′X is a multiple of
the identity matrix. Consequently,η̂PLS may be computed equivalently by applying
the PLS strategy to the averages{yi· : 1 ≤ i ≤ p}, rather than to the original data.
Thus, the casen = p implicitly includes the general balanced one-way layout.
Of course, estimatingσ 2 is easier whenn exceedsp (see Section 2.2).

A revealing canonical representation ofη̂PLS(D, ν) is obtained through the
following algebraic reduction. The replication matrixR = X′X is a p × p

diagonal matrix whosekth diagonal element is the number of observations at
factor levelsk . Let M denote the the regression space of the one-way layout—
the subspace spanned by the columns of the incidence matrixX. The columns
of the matrix U0 = XR−1/2 provide an orthonormal basis for this regression
space. LetB = R−1/2D′DR−1/2 have spectral representationB = ���′, where
the eigenvector matrix satisfies�′� = ��′ = Ip and the diagonal matrix
� = diag{λi} gives the ordered eigenvalues with 0≤ λ1 ≤ λ2 ≤ · · · ≤ λp. This
eigenvalue ordering, the reverse of the customary, is used here because the
eigenvectors associated with the smallest eigenvalues largely determine the value
and performance of candidate estimatorη̂PLS(D, ν). Let U = U0�. It follows
from (2.3) that

η̂PLS(D, ν) = U(Ip + ν�)−1U ′y.(2.4)

The columns of the matrixU define the orthonormalpenalty basis for the
regression spaceM of the one-way layout.

Let z = U ′y and let f (ν) denote the column vector(1/(1 + νλ1),1/

(1+ νλ2), . . . ,1/(1+ νλp))′, with the understanding thatf (∞) = limν→∞ f (ν).
The distribution ofz is thenNp(ξ, σ 2Ip), whereξ = U ′η. The candidate PLS
estimator ofξ implied by expression (2.4) is

ξ̂PLS(D, ν) = U ′η̂PLS(D, ν) = f (ν)z,(2.5)

where the multiplication of vectors in the expression to the right is performed
componentwise as in the S language. Equivalently,

η̂PLS(D, ν) = Uξ̂PLS(D, ν) = U diag{f (ν)}U ′y.(2.6)

REMARK. The successive columns{uj : 1 ≤ j ≤ p} of the penalty basis
matrix U = U0�, whereU0 = XR−1/2, have a variational characterization:

• Let γj denote thej th column of the eigenvector matrix�.
• Find a unit vectoru1 in M that minimizes the penalty|D(X′X)−1X′u1|2.

The answer isu1 = U0γ , where γ is a p × 1 unit vector that minimizes
|DR−1/2γ |2 = γ ′Bγ . Thus,u1 = U0γ1.



2542 R. BERAN

• Find a unit vectoru2 in M that minimizes the penalty|D(X′X)−1X′u2|2 subject
to the constraint thatu2 is orthogonal tou1. The answer isu2 = Uγ , whereγ is
ap ×1 unit vector orthogonal toγ1 that minimizes|DR−1/2γ |2 = γ ′Bγ . Thus,
u2 = U0γ2.

• Continue sequential constrained minimization to obtain the penalty basis matrix

U = (U0γ1,U0γ2, . . . ,U0γp) = U0�.(2.7)

2.2. Adaptive MS estimators. The canonical representation (2.6) of PLS
estimators suggests a larger class of candidate shrinkage estimators that use the
same penalty basisU . Let

FMS = FMS(p) = {f ∈ [0,1]p :f1 ≥ f2 ≥ · · · ≥ fp}(2.8)

and let

ξ̂MS(D,f ) = f z, f ∈ FMS.(2.9)

The candidate MS estimators forη associated with penalty matrixD are defined by

η̂MS(D,f ) = Uξ̂MS(D,f ) = U diag{f }U ′y, f ∈ FMS.(2.10)

It follows from (2.6) that the candidate PLS estimators are a proper subset of the
MS family in which the shrinkage vectorf is restricted to the form{f (ν) :ν ∈
[0,∞]}.

For any vectorx, let ave(x) denote the average of its components. Define the
function

rMS(f, ξ, σ 2) = ave[f 2σ 2 + (1− f )2ξ2], f ∈ [0,1]p.(2.11)

Because|η̂MS(D,f ) − η|2 = |f z − ξ |2, it follows that the normalized quadratic
risk of the candidate MS estimator is

R
(
η̂MS(D,f ), η, σ 2) = rMS(f, ξ, σ 2), f ∈ FMS.(2.12)

In particular, the risk of the candidate PLS estimator is justrMS(f (ν), ξ, σ 2).
The risk functionrMS(f, ξ, σ 2) depends on the unknown parametersξ2 andσ 2.

Having obtained a variance estimatorσ̂ 2, we may estimateξ2 by z2 − σ̂ 2 and,
hence, the risk function by

r̂MS(D,f ) = ave[f 2σ̂ 2 + (1− f )2(z2 − σ̂ 2)]
(2.13)

= ave[(f − ĝ)2z2] + σ̂ 2 ave(ĝ),

where f ∈ FMS and ĝ = (z2 − σ̂ 2)/z2. Expression (2.13) is Stein’s (1981)
unbiased risk estimator combined with an estimator ofσ 2. Alternatively, the risk
estimator̂rMS(D,f ) follows from the argument for Mallows’ (1973)Cp criterion.
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For fixed penalty matrixD, theshrinkage-adaptive MS(D) estimator is defined
to beη̂MS(D, f̂MS), where

f̂MS = arg min
f ∈FMS

r̂MS(D,f ) = arg min
f ∈FMS

ave[(f − ĝ)2z].(2.14)

To accomplish the minimization, letK = {k ∈ Rp :k1 ≥ k2 ≥ · · · ≥ kp} and let

k̂ = arg min
k∈K

ave[(k − ĝ)2z].(2.15)

Computation of̂k is a weighted isotonic least squares problem that can be solved in
a finite number of steps with the pool-adjacent-violators algorithm [cf. Robertson,
Wright and Dykstra (1988)]. Each component off̂MS is then the positive part of
the corresponding component ofk̂, as shown in Beran and Dümbgen (1998).

REMARK. The shrinkage adaptive PLS(D) estimator is obtained by re-
stricting the minimization in (2.14) to monotone shrinkage vectors of the form
f = f (ν). This weighted nonlinear least squares computation is harder than con-
structing the more ambitious shrinkage adaptive MS(D) estimator.

Useful in risk estimation is the high component variance estimatorσ̂ 2
H, which

uses the strategy of pooling sums of squares from analysis of variance. Choose�U
so that the concatenated matrix(U |�U ) is orthogonal. Set̄z = �U ′y in analogy to
the earlierz = U ′y. Then

σ̂ 2
H = (n− q)−1

[ p∑
i=q+1

z2
i +|z̄|2

]
= (n− q)−1

[ p∑
i=q+1

z2
i +|y − η̂LS|2

]
,(2.16)

whereq ≤ min{p,n − 1}. The bias ofσ̂ 2
H is (n − q)−1 ∑p

i=q+1 ξ2
i . Consistency

of σ̂ 2
H is assured when this bias tends to zero asn − q tends to infinity.

When q = p < n, the estimatorσ̂ 2
H reduces to the least squares estimator

σ̂ 2
LS = (n − p)−1|y − η̂LS|2, which is unbiased. Whenp = n, the estimator̂σ 2 is

a pure pooling estimator whose bias is small if(p−q)−1 ∑p
i=q+1 ξ2

i is nearly zero.
We will seek to arrange this through choice of the penalty matrixD.

2.3. Adaptive ST estimators. For t ≥ 0 and 1≤ i ≤ p, let hi(t, z) = [1 −
t/|zi |]+. Let

FST = FST(p) = {f ∈ [0,1]p :fi = hi(t, z) for t ≥ 0 and 1≤ i ≤ p}.(2.17)

Unlike the monotone classFMS defined in (2.8), the classFST of shrinkage vectors
is data dependent. Let

ξ̂ST(D,f ) = {f z :f ∈ FST},(2.18)
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multiplication being performed componentwise as in S. The algebraic identity
ĥi (t, z)zi = sgn(zi)[|zi | − t]+ connectsξ̂ST(D,f ) with the definition of soft-
thresholding in Donoho and Johnstone (1995). The candidate ST estimators forη

associated with penalty matrixD are

η̂ST(D,f ) = Uξ̂ST(D,f ) = U diag{f }U ′y, f ∈ FST.(2.19)

Let Ĝ denote the empiricalcumulative distribution function of the
{|zi| : 1 ≤ i ≤ p}, let G = E(Ĝ) and define

rST(f, ξ, σ 2) = σ 2[1− 2G(t)] +
∫ ∞

0
(u2 ∧ t2) dG(u), f ∈ FST,(2.20)

where∧ denotes the minimum operator. It follows from Stein (1981) that the
normalized quadratic risk of the candidate ST estimator is

R
(
η̂ST(D,f ), η, σ 2) = rST(f, ξ, σ 2), f ∈ FST.(2.21)

Having devised a variance estimatorσ̂ 2, we may estimate this risk by

r̂ST(D,f ) = σ̂ 2[1− 2Ĝ(t)] +
∫ ∞

0
(u ∧ t)2 dĜ(u), f ∈ FST.(2.22)

Let tp = (2 log(p))1/2. For fixed penalty matrixD, the shrinkage-adaptive
ST(D) estimator is defined to bêηST(D, f̂ST), where

f̂ST = h(t̂, z) wheret̂ = arg min
t∈[0,tp]

r̂ST(D, t),(2.23)

as in Donoho and Johnstone (1995). Becauset̂ must be one of the values{|zi | : 1≤
i ≤ p}, it can be computed readily.

2.4. Adaptive HS estimators. Let p1 = 
αp�, where
·� denotes integer part
and thesplit fraction α ∈ [0,1]. For any vectork ∈ Rp, define the subvectors
k(1) = {ki : 1 ≤ i ≤ p1} andk(2) = {ki :p1 + 1 ≤ i ≤ p} of respective dimensions
p1 andp2 = p − p1. Candidate HS estimators apply separate shrinkage strategies
to the subvectorsz(1) andz(2) of z. We focus on the MS× ST hybrid because it
proves particularly effective in the examples to be considered. The definitions of
the MS× MS, ST× ST and of ST× MS hybrids are analogous.

Efromovich (1999) considered HS of wavelet coefficients in which MS is
replaced by a certain linear shrinkage methodology and ST is replaced by hard-
thresholding. In both that paper and here, the aim is to compromise beneficially
between a shrinkage approach that assumes regression coefficients are ordered in
importance and a shrinkage approach that relies on sparsity of important regression
coefficients. Considerable technical differences exist. We apply adaptive MS rather
than Efromovich–Pinsker shrinkage to the low-frequency regression coefficients.
On the remaining coefficients, we use ST rather than hard-thresholding and
select the soft-threshold to minimize estimated risk. The regularity conditions for
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Stein’s (1981) risk estimator are satisfied by soft-thresholding but not by hard-
thresholding.

Let

FHS = {
f :f(1) ∈ FMS(p1), f(2) ∈ FST(p2)

}
(2.24)

and let

ξ̂HS(D,α,f ) = f z, f ∈ FHS.(2.25)

The candidate MS× ST HS estimators forη associated with penalty matrixD are
defined by

η̂HS(D,α,f ) = Uξ̂HS(D,α,f ) = U diag{f }U ′y, f ∈ FHS.(2.26)

From the preceding sections, it follows that the normalized quadratic risk of this
candidate HS estimator is

R
(
η̂HS(D,α,f ), η, σ 2)

(2.27)
= p−1[p1rMS

(
f(1), ξ(1), σ

2) + p2rST
(
f(2), ξ(2), σ

2)], f ∈ FHS.

Write r̂MS(D,f(1)) for the risk estimator (2.13) computed on the subvectorz(1).
Similarly, write r̂ST(D,f(2)) for the risk estimator (2.22) computed on the
subvectorz(2). The risk of the candidate HS estimator is then estimated by

r̂HS(D,α,f ) = p−1[p1r̂MS
(
D,f(1)

) + p2r̂ST
(
D,f(2)

)]
, f ∈ FHS.(2.28)

For fixed penalty matrixD and split fractionα, theshrinkage-adaptive HS(D)

estimator is defined to bêηHS(D,α, f̂HS), where

f̂HS = arg min
f ∈FHS

r̂HS(D,α,f ).(2.29)

The minimization is accomplished by minimizing separately each of the two
summands on the right-hand side of (2.28) in the manner discussed previously.

2.5. A case study. Figure 1 presents competing fits to monthly Australian
red wine sales (in kiloliters) from January 1980 to October 1991. The data are
taken from Brockwell and Davis (1996) and the ordinal factor is month. Here
n = p = 142. The penalty matrix is the fourth difference operator D4, which is
defined explicitly in Section 3.2. The high component variance estimateσ̂ 2

H is
determined by (2.16) withq = 
0.85p�. The partition in the definition of HS(D4)
usesα = 0.3. Adaptation to minimize estimated risk selected the values ofα and
of the penalty matrix from a class of possibilities described in Section 3.3. The
estimated risks of the competing estimators are shown in Table 1.

The LS fit (not shown) coincides with the raw data. On the basis of estimated
risk, PLS(D4) is only a modest improvement over LS, MS(D4) is preferable, while
ST(D4) and HS(D4) are substantially preferable, the hybrid estimator being best.
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TABLE 1

LS PLS(D4) MS(D4) ST(D4) HS(D4)

0.0115 0.0093 0.0071 0.0047 0.0039

Theorem 4.1 shows that, under model(1.1), the estimated risks of these adaptive
estimators approximate their risks under the saturated model asp tends to infinity.

On looking closely at Figure 1, we discern a regular seasonal pattern in the
HS(D4) and ST(D4) fits. Each year, estimated mean monthly red wine sales rise
steadily from an annual low in January to a peak around July or August (winter
in Australia) and then drop into a trough with a secondary peak around November
or December (in time for the Christmas holiday season). The adaptive fits with
smallest estimated risk have recovered a highly intelligible seasonal pattern in sales
that may be linked to seasonal patterns in market demand and in winery operations
after harvest and fermentation.

Figure 2 examines what is going on behind the fits. The residuals from the
HS(D4) fit are plausibly homoscedastic. A Q–Q plot (not shown) indicates that
their marginal distribution is roughly normal, apart from outliers. This illustrates
the tendency of our procedures to fit the data in terms of the motivating model.
Subplot(1,2) plots the transformed components{|zi|1/2 sgn(zi) : 1 ≤ i ≤ p} of the
coefficientsz = U ′y. The square root transformation reduces the vertical range of
the plot and makes more visible the behavior of small components ofz. Evidently,
the first four columns ofU are crucial in representingy and soη. Blips in this plot
at certain higher-order components suggest that the corresponding basis vectors
may also be important in estimatingη. We call subplot(1,2) an empirical basis
economy plot. The concept of basis economy is treated formally in Section 3.1.
As well, this subplot suggests the choice ofq that enters into the high-component
variant estimator̂σ 2

H.
The four shrinkage vector subplots in Figure 2 display the shrinkage vectors that

define the competing adaptive fits. Because the shrinkage vectors of the PLS(D4)
and MS(D4) estimates are necessarily monotone, both give considerable weight
to many components ofz so as not to disregard the small blips discussed above.
The ST(D4) and HS(D4) estimates are better able to select the more important
components ofz, thereby reducing estimated risk through tradeoff of estimated
variance against bias. Note that the HS(D4) estimate disregards more of the higher-
order components ofz than does ST(D4).

2.6. Experiments with artificial data. Figures 3 and 4 exhibit the competing
adaptive estimators on two sets of artificial monthly data that bracket the situation
found in Example 1. In this experiment,p = n = 200, the factor levels are
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{si = i : 1≤ i ≤ 200}, and the means at which we have one noisy observation are

Smooth: m1(si) = 2− 50((si/200− 0.25)(si/200− 0.75))2,
Very Wiggly: m2(si) = m1(si/200) − 0.25 sin(100π(si/200)).

The observations are given byyi = m(si)+ei , where the{ei} form a single pseudo-
random sample drawn from theN(0, σ 2I200) distribution withσ = 0.5. In the data
analysis, the varianceσ 2 is estimated by the high component estimatorσ̂ 2

H defined
in (2.16), withq = 0.75p.

Fitting this artificial data is a one-way layout problem rather than a curve
estimation problem because the measurements are deemed to be monthly as in
Example 1. The means in the Smooth case vary more slowly than those estimated
in Example 1, while the means in the Very Wiggly case vary more rapidly.
The goal is to learn how the competing adaptive estimators perform in both
scenarios. The first rows of Figures 3 and 4 give the scatterplots of the Smooth and
Very Wiggly data, respectively. To the human eye, these scatterplots are scarcely
distinguishable. Good estimators of the unknown mean vectors seek to do better
than the eye.

The penalty matrix used for both sets of artificial data is the fourth difference
operator D4. The partition in the definition of HS(D4) usesα = 0.05. Adaptation to
minimize estimated risk selected these values ofα and of the penalty matrix from
a class of possibilities described in Section 3.3. According to the asymptotics in
Section 4, the risk, loss and estimated risk all converge to a common limit. In the
present experiment with artificial data, the losses are readily computed. For the
Smooth data, the estimated risks and actual losses of the competing estimators are
shown in Table 2.

We note that the estimated risks for the shrinkage adaptive estimators are
negative. The actual losses are small and convergence to asymptotic limits has not
happened. Nevertheless, the estimated risks reflect the ordering of the true losses.
In Figure 3 the visual quality of the competing fits follows the same ordering. The
interpolated ST(D4) estimate is unsatisfactorily jagged, though certainly better
than the LS estimate. The MS(D4) and HS(D4) estimates are close to the truth,
though the latter exhibits a small ripple not present in the actual mean vector. The
basis economy plot in the last subplot of Figure 3 suggests that the D4 penalty basis
is economical in this example. This is verified by examining the corresponding plot
of ξ (not shown) computed from the true mean function.

TABLE 2

LS MS(D4) ST(D4) HS(D4)

Estimated risk 0.2846−0.0434 −0.0296 −0.0449
Loss 0.2325 0.0072 0.0358 0.0077
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TABLE 3

LS MS(D4) ST(D4) HS(D4)

Estimated risk 0.2842−0.0063 −0.0239 −0.0350
Loss 0.2325 0.0313 0.0447 0.0285

For the Very Wiggly data, the estimated risks and actual losses of the competing
estimators are shown in Table 3.

In Figure 4, interpolating lines have been added to guide the eye through the
sequence of means or estimated means. They have no further significance because
we are not doing curve estimation. The HS(D4) estimate is best visually, as
well as in loss. The HS(D4) and ST(D4) estimates both indicate the amplitude
of the high frequency component in the unknown mean more successfully than
the MS(D4) estimate. However, the actual loss of the ST(D4) estimate exceeds that
of the MS(D4) estimate. Both casual scrutiny and the ordering of the estimated
losses make ST(D4) look better than it is. Evidently the asymptotics have not
fully taken hold. The basis economy plot in subplot(3,2) of Figure 4 reveals the
possible importance of componentz102. In the Very Wiggly case, the D4 penalty
basis is sparse in the sense that most components ofξ are small. However, it is not
economical because a high-order basis vector is needed to approximate the high
frequency sinusoidal component in the mean.

In this experiment, the HS(D4) estimate, unlike the others considered, performs
well in both the Smooth case and the Very Wiggly case. This is empirical evidence
in its favor.

3. Penalty matrix and split fraction. For monotone shrinkage, the ideal
choice of basisU would have its first column proportional to the unknown mean
vectorη so that only the first component ofξ = U ′η is nonzero. Then the choice of
shrinkage vectorf to minimize risk would have first component equal to 1 and all
other components equal to 0. Though unrealizable, this ideal choice indicates that
prior information or conjecture aboutη should be exploited in selectingU . We say
informally that the columns ofU provide aneconomical basis for the regression
space if all but the first few components ofξ are very nearly zero. Construction of
the basisU via a penalty matrixD—the method used in this paper—is a practical
way of using vague prior information or conjecture about the functionm to find
a plausibly economical basis for expressing the mean vectorη.

3.1. The role of basis economy. Mathematical analysis of an idealized
economy concept reveals the importance of basis economy in reducing risk
through monotone shrinkage. For everyb ∈ (0,1], let EM(b) = {a ∈ Rp :
ai = 1 if 1 ≤ i ≤ bp,1 ≤ a
bp�+1 ≤ · · · ≤ ap ≤ ∞}. For everya ∈ EM(b), every
r > 0 and everyσ 2 > 0, define the ellipsoid

E(r, a, σ 2) = {ξ ∈ Rp : ave(aξ2) ≤ σ 2r}.(3.1)
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If ξ ∈ E(r, a, σ 2) and ai = ∞, it is to be understood thatξi = 0 anda−1
i = 0.

We consider basesU such that, in the resulting canonical model,ξ ∈ E(r, a, σ 2)

for somer > 0, somea ∈ EM(b) and someb ∈ (0,1].
A finite-dimensional specialization of Pinsker’s (1980) theorem, given by Beran

and Dümbgen (1998), implies the next theorem on asymptotic minimaxity of
adaptive MS estimators ofη. The proof follows from the discussion in Section 4 of
Beran (2000). Letξ2

0 = σ 2[(γ /a)1/2 −1]+, whereγ is the unique positive number
such that ave(ξ2

0 ) = σ 2r . Define

νp(r, a, σ 2) = σ 2 ave[ξ2
0/(σ 2 + ξ2

0 )].(3.2)

THEOREM3.1. Fix the penalty basis U by choice of D or otherwise. For every
b ∈ (0,1], every a ∈ EM(b), every r > 0 and every σ 2 > 0,

lim
p→∞

[
inf
η̂

sup
ξ∈E(r,a,σ2)

R(η̂, η, σ 2)/νp(r, a, σ 2)

]
= 1.(3.3)

The shrinkage-adaptive estimator η̂MS(D, f̂MS) achieves asymptotic minimax
bound (3.3) in that

lim
p→∞

[
sup

ξ∈E(r,a,σ2)

R
(
η̂MS(D, f̂MS), η, σ 2)/νp(r, a, σ 2)

]
= 1.(3.4)

What does this theorem tell us? First, note that the asymptotic minimax
risk νp(r, a, σ 2) in (3.3) is monotone decreasing in the vectora. Thus, if
ξ = U ′η ∈ E(r, a, σ 2) for relatively smallb and relatively large vectora—in other
words, if the basis is economical for expressingη—then the asymptotic minimax
risk is relatively small compared to the riskσ 2 of the LS estimator. Second,
(3.4) indicates that the adaptive MS estimator achieves the asymptotic minimax
risk for every degree of basis economy. Even a poor choice of basis for adaptive
MS estimation does not lead to disaster relative to LS estimation.

A special case of Theorem 3.1 makes both points obvious, albeit in a simplified
setting. LetB(b) = {a ∈ EM(b) :ai = ∞ if 
bp� + 1 ≤ i ≤ p}. In Theorem 3.1,
replacinga ∈ EM(b) with the stronger restrictiona ∈ B(b) andνp(r, a, σ 2) with
the evaluationσ 2rb/(r +b) gives a valid statement. In this simplified setting, basis
economy corresponds to a small value ofb. The ratio of the asymptotic minimax
risk to the risk of the LS estimator is small wheneverb is small; and the adaptive
MS estimator is still asymptotically minimax.

3.2. Local annihilators. Difference operators are well-established as penalty
matrices for PLS when the ordinal factor levelss = (s1, s2, . . . , sp), with
s1 < s2 < · · · < sp, are equally spaced [cf. Press, Teukolsky, Vetterling and
Flannery (1992), Section 18.5]. To define thed th difference matrixDd , first define
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the (p − 1) × p matrix �(p) = {δi,j }, in which δi,i = 1, δi,i+1 = −1 for everyi

and all other entries are zero. Then

D1 = �(p), Dd = �(p − d + 1)Dd−1 for 2 ≤ d < p.(3.5)

Evidently, the(p − d) × p matrix Dd annihilates powers ofs up to powerd − 1
in the sense that

Ddsk = 0 for 0≤ k ≤ d − 1.(3.6)

Here sk denotes the column vector(sk
1, . . . , sk

p)′. Moreover, in rowi of Dd , the
elements not in columnsi, i + 1, . . . , i + d are zero.

Suppose for simplicity thatX = Ip. Let U be the penalty basis generated by
penalty matrixDd . By the variational characterization ofU given in Section 2.1,
the space spanned by the firstd columns ofU consists of vectorsv that satisfy
Ddv = 0. Whenm behaves locally like a polynomial of degreed −1 and the value
of d is modest, then this penalty basis is economical forη. Such considerations
support the use of difference operators as candidate penalty matrices when the
factor levels are equally spaced.

Whenm is expected to behave locally like a polynomial of degreed − 1, but
the factor levels ins are not equally spaced, we replaceDd as follows. For every
integer 1≤ d < p, the local polynomial annihilator Ad is a (p − d) × p matrix
characterized through three conditions. First, for every possiblei, all elements in
theith row ofAd other than{ai,j : i ≤ j ≤ i + d} are zero. Second,Ad satisfies the
orthogonality conditions

Adsk = 0 for 0≤ k ≤ d − 1.(3.7)

Third, each row vector inAd has unit length. These requirements are met by setting
the nonzero elements in theith row of Ad equal to the basis vector of degreed

in the orthonormal polynomial basis that is defined on thed + 1 design points
(si, . . . , si+d). The S-Plus functionpoly accomplishes this computation. When
the components ofs are equally spaced,Ad is just a scalar multiple of thed th
difference matrixDd .

3.3. Adaptive choice of penalty matrix and split. As we have seen, a penalty
basis ideally exploits, through choice of the penalty matrix, informed conjecture
about the functionm in (1.1). When this is the case, penalty bases are often
reasonably economical. However, if the prior information is weak or flawed, some
of the higher-order components ofξ may not be negligible. Soft-thresholding
handles possibly isolated higher-order components ofξ that need to be considered
in the fit. The choice of dividing pointp1 between monotone shrinkage and soft-
thresholding in the MS× ST HS estimator then becomes important. We will use
the strategy of minimizing estimated risk to selectD andp1, in addition to the
shrinkage vectors.
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Given a setD of candidate penalty matrices, such as{Ad : 1 ≤ d ≤ k}, we select
an empirically best MS estimator as follows. Over shrinkage classFMS and over
penalty matrix classD , the fully adaptive MS estimator ofη is defined to be
η̂D,MS = η̂MS(D̂, f̂ ), where

(D̂, f̂ ) = arg min
D∈D,f∈FMS

r̂(D,f ).(3.8)

The fully adaptive ST estimator̂ηD,ST is defined analogously, replacingFMS
in (3.8) withFST.

For HS estimators, it is also desirable to explore competing choices of
p1 = 
αp�, where 
·� denotes integer part and candidate values ofα lie in a
specified subsetA of [0,1]. Over shrinkage classFHS, over penalty matrix classD
and over split fraction classA, the fully adaptive HS estimator ofη is defined to
be η̂D,A,HS = η̂HS(D̂, α̂, f̂ ), where

(D̂, α̂, f̂ ) = argmin
D∈D,α∈A,f∈FHS

r̂(D,α,f ).(3.9)

The asymptotics in Section 4 support choosingα andD to minimize estimated
risk provided the cardinalities ofA and ofD grow slowly asp increases. The
numerical examples in Sections 2.5 and 2.6 usedD = {Dd : 1 ≤ d ≤ 6} and
A = {0.05k : 0 ≤ k ≤ 20}. The asymptotics given do not care whether the candidate
bases are constructed as penalty bases. However, minimizing estimated risk over
a very large class of bases should not be expected to yield a good estimator ofη.
For instance, the MS estimator that minimizes the estimated risk ofU diag{f }U ′y
over all f ∈ FMS and over all permutations of the columns of a fixed basis
matrix U is dominated by the LS estimator in the saturated model. Remark A on
page 1829 of Beran and Dümbgen (1998) gives a proof. In such cases, the covering
numbers used in the asymptotics of Section 4 are too large for Theorem 4.1 to hold.

4. Asymptotics of adaptation. The main purpose of this section is to analyze
the asymptotic loss and risk of the adaptive ST(D) and HS(D) estimators under
the saturated Gaussian one-way layout. The results build on techniques developed
by Beran and Dümgben (1998) for adaptive MS(D) estimators. First we show
that minimizing estimated risk over shrinkage classFMS or FST for fixed penalty
matrix D succeeds in minimizing risk asymptotically over that shrinkage class
as the dimensionp of the regression space tends to infinity. Moreover, the
estimated risk of the adaptive estimator converges to its actual loss and risk. In this
fashion, estimated risks provide a credible tool for ranking competing shrinkage
estimators. Second, we provide conditions under which simultaneous adaptation
over shrinkage classFHS, over penalty matrix classD and over split fraction
classA works in the senses just described. The results require no smoothness
assumptions on the unknown mean vectorη.
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4.1. Adaptation works. For any vectorh ∈ Rp, let ‖h‖ = max1≤i≤p |hi |. The
generic subscriptF stands forFMS or FST or FHS, according to the choice of
candidate estimator class.

THEOREM 4.1. Let F be either FMS or FST. Suppose that σ̂ 2 is consistent in
that, for every c > 0 and σ 2 > 0,

lim
p→∞ sup

‖ξ‖≤c

E|σ̂ 2 − σ 2| = 0.(4.1)

(a) Let V (f ) denote either the loss L(η̂F (D,f ), η) or the estimated risk
r̂F (D,f ). Then, for every penalty matrix D, every c > 0 and every σ 2 > 0,

lim
p→∞ sup

‖ξ‖≤c

E sup
f∈F

∣∣V (f ) − R
(
η̂F (D,f ), η, σ 2)∣∣ = 0.(4.2)

(b) If f̂ = argmin
f ∈F

r̂F (D,f ), then

lim
p→∞ sup

‖ξ‖≤c

∣∣∣∣R(
η̂F (D, f̂ ), η, σ 2) − min

f ∈F
R

(
η̂F (D,f ), η, σ 2)∣∣∣∣ = 0.(4.3)

(c) For W equal to either L(η̂F (D, f̂ ), η) or R(η̂F (D, f̂ ), η, σ 2),

lim
p→∞ sup

‖ξ‖≤c

E|r̂F (D, f̂ ) − W | = 0.(4.4)

(d) Let #D denote the cardinality of D . Convergences (4.2) to (4.4) hold for
the fully adaptive MS estimator η̂D,MS defined through (3.8) if (#D)p−1/2 and
(#D)E|σ̂ 2 − σ 2| both tend to zero as p → ∞. They hold for the fully adaptive
ST estimator if (#D)p−1/2(log(p))1/4 and (#D)E|σ̂ 2 − σ 2| both tend to zero as
p → ∞.

(e) Convergences (4.2) to (4.4) hold for the fully adaptive HS estima-
tor η̂D,A,HS defined in (3.8) if max{#A,#D}p−1/2(log(p))1/4 and max{#A,

#D}E|σ̂ 2 − σ 2| both tend to zero as p → ∞.

Parts (a)–(c) refer to the case of fixedD. By part (a), the loss, risk and estimated
risk of a candidate estimator converge together, uniformly overF = FMS or FST.
This makes the estimated risk of candidate estimators indexed byF a trustworthy
surrogate for true risk or loss. By part (b), the risk of the shrinkage-adaptive
estimatorη̂F (D, f̂ ) converges to that of the best candidate estimator. Part (c)
shows that the loss, risk and plug-in estimated risk of an adaptive estimator
converge together asymptotically. Part (d) extends these findings to MS and ST
estimators that adapt over bothf andD. Part (e) does the same for HS estimators
that adapt overf , D andα.

Condition (4.1) holds for the variance estimatorσ̂ 2
LS if n − p tends to infinity

with p. Asymptotic results for other variance estimators are given in Beran (1996)
and Beran and Dümbgen (1998).
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4.2. Auxiliary result. The proof of Theorem 4.1 uses techniques from empiri-
cal process theory. Theorem 4.2 below is taken from Beran and Dümbgen (1998).
It follows from standard symmetrization arguments and Pisier’s (1983) form of
the chaining lemma [see also Pollard (1990), Sections 2 and 3]. LetS = ∑p

i=1 φi ,
whereφ1, φ2, . . . , φp are independent stochastic processes on an index setT .
All φi have continuous sample paths with respect to some metricρ on T such
that(T , ρ) is separable. Define a random pseudo-metricm̂ onT through

m̂2(s, t) =
p∑

i=1

[φi(s) − φi(t)]2.(4.5)

For any pseudo-metricν onT , define the covering numbers

N(u,T , ν) = min
{
#T0 :T0 ⊂ T , inf

t0∈T0
ν(t0, t) ≤ u ∀ t ∈ T

}
.(4.6)

THEOREM 4.2. Suppose that S(t1) ≡ 0 for some t1 ∈ T . Then there exists
a finite constant C > 0 such that

E sup
t∈T

|S(t) − ES(t)| ≤ CE
∫ D̂

0
log1/2[N(u,T , m̂)]du,(4.7)

where D̂ = supt∈T m̂(t, t1).

4.3. Proof of Theorem 4.1. The portion of Theorem 4.1 that concerns
F = FMS follows from results in Section 6 of Beran and Dümbgen (1998).
We continue by proving parts (a)–(c) forF = FST. For this discussion of soft-
thresholding, letT = [0, tp] with tp = (2 log(p))1/2.

(a) Suppose thatV (f ) = r̂ST(D,f ) for f ∈ FST. In view of (2.22) and (4.1), it
suffices to show that

lim
p→∞ sup

‖ξ‖≤c

E sup
t∈T

|Ĝ(t) − G(t)| = 0(4.8)

and

lim
p→∞ sup

‖ξ‖≤c

E sup
t∈T

∣∣∣∣∫ ∞
0

(u2 ∧ t2) d[Ĝ(u) − G(u)]
∣∣∣∣ = 0.(4.9)

In Theorem 4.2, takeφi(t) = p−1I (|zi| ≤ t). ThenS(t) = Ĝ(t), m̂2(s, t) =
p−1|Ĝ(t) − Ĝ(s)|, t1 = 0, D̂ = p−1/2, and

N(u,T , m̂) = min
{

#T0 :T0 ⊂ T , inf
t0∈T0

m̂2(t0, t) ≤ u2 ∀ t ∈ T

}
(4.10)

≤ 1+ (pu2)−1.
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Then ∫ D̂

0
log1/2[N(u,T , m̂)]du ≤

∫ p−1/2

0
log1/2[1+ (pu2)−1]du

(4.11)

= p−1/2
∫ 1

0
log1/2(1+ v−2) dv.

Because the rightmost integral is finite, (4.11) and (4.7) imply

E sup
t∈T

|Ĝ(t) − G(t)| ≤ Cp−1/2.(4.12)

Limit (4.8) follows.
Next, observe that∫ ∞

0
(u2 ∧ t2) dĜ(u) = p−1

p∑
i=1

z2
i I (|zi | ≤ t) + p−1

p∑
i=1

t2I (|zi| > t)

(4.13)
= S1(t) + S2(t), say.

To analyzeS1(t), let φi(t) = p−1z2
i I (|zi| ≤ t). For any integerr ≥ 1, let

ar = p−1
p∑

i=1

|zi |r .(4.14)

Now, using Cauchy–Schwarz,̂m2(s, t) ≤ p−1a
1/2
8 |Ĝ(t) − Ĝ(s)|1/2 and D̂ ≤

p−1/2a
1/4
8 . By reasoning akin to that in (4.10),

N(u,T , m̂) ≤ 1+ a8(p
2u4)−1.(4.15)

Consequently, by (4.7) and a calculation like that in (4.11),

E sup
t∈T

|S1(t) − ES1(t)| ≤ Cp−1/2Ea
1/4
8

∫ 1

0
log1/2(1+ v−4) dv

(4.16)
≤ C′p−1/2Ea

1/4
8 .

To analyzeS2(t), let φi(t) = p−1t2I (|zi| > t). If s ≤ t ,

p2[φi(s) − φi(t)]2 = [(s2 − t2)I (|zi | > t) + s2I (s < |zi | ≤ t)]2
≤ 2(s2 − t2)2I (|zi| > t) + 2s4I (s < |zi| ≤ t)(4.17)

≤ 8z2
i (s − t)2I (|zi| > t) + 2z4

i I (s < |zi | ≤ t).

Similarly for t ≤ s. From this and Cauchy–Schwarz,̂m2(s, t) ≤ m̂2
1(s, t) +

m̂2
2(s, t), where

m̂2
1(s, t) = p−18(s − t)2a

1/2
4

[
1− Ĝ

(
max(s, t)

)]1/2
,

(4.18)
m̂2

2(s, t) = p−12a
1/2
8 |Ĝ(s) − Ĝ(t)|1/2.
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By the first line in (4.17),D̂ ≤ Ap−1/2a
1/2
4 ≤ Ap−1/2a

1/4
8 for some finite

constantA. Moreover,

N(u,T , m̂1) ≤ 1+ 81/2a
1/4
4 tp(p1/2u)−1,

(4.19)
N(u,T , m̂2) ≤ 1+ 4a8(p

2u4)−1

by reasoning similar to that forS1(t).
Becausem̂(s, t) ≤ m̂1(s, t) + m̂2(s, t),

N(u,T , m̂) ≤ 2 max{N(u/2,T , m̂1),N(u/2,T , m̂2)}(4.20)

and so ∫ D̂

0
log1/2[N(u,T , m̂)]du

≤ 21/2
∫ D̂

0
log1/2[N(u/2,T , m̂1)]du(4.21)

+ 21/2
∫ D̂

0
log1/2[N(u/2,T , m̂2)]du.

The expectation of the second integral on the right-hand side is bounded from
above by a constant timesp−1/2, as in (4.16). The expectation of the first integral
on the right-hand side is bounded from above by a constant timesp−1/2t

1/2
p .

Hence, by Theorem 4.2,

E sup
t∈T

|S2(t) − ES2(t)| ≤ C′′
1p−1/2 + C′′

2p−1/2t1/2
p .(4.22)

Limit (4.9) now follows from (4.16) and (4.22). This establishes (4.2) for
V (f ) = r̂ST(D,f ).

Next, suppose thatV (f ) = L(η̂ST(D,f ), η) = p−1|ξ̂ST(D,f ) − ξ |2 for
f ∈ FST. Theith component of̂ξST(D,f ) is

ξ̂ST,i (D,f ) = sgn(zi)(|zi | − t)+ = zi − (|zi| ∧ t)sgn(zi).(4.23)

Hence,

V (f ) = p−1
p∑

i=1

(zi − ξi)
2 + p−1

p∑
i=1

(|zi| ∧ t)2

(4.24)

− 2
p∑

i=1

(zi − ξi)(|zi| ∧ t)sgn(zi).

On the right-hand side of this equation, theL1 convergence, uniformly overt ≥ 0,
of the second term is given by (4.9) and is immediate for the first term. It remains
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to verify this mode of convergence for

p∑
i=1

(zi − ξi)(|zi| ∧ t)sgn(zi)

=
p∑

i=1

(zi − ξi)ziI (|zi| ≤ t) +
p∑

i=1

(zi − ξi)tI (|zi | > t)(4.25)

= T1(t) + T2(t), say.

For i = 1,2, the analysis ofTi(t) parallels that given forSi(t) after (4.13).
Limit (4.2) now follows forV (f ) = L(η̂ST(D,f ), η).

(b) and (c) In analogy tof̂ = argminf ∈F r̂F (D,f ), let f̃ = arg minf ∈F rF (f,

ξ, σ 2). Then minf ∈F R(η̂F (D,f ), η, σ 2) = rF (f̃ , ξ, σ 2). We first show that (4.2)
implies

lim
p→∞ sup

‖ξ‖≤c

E|T − rF (f̃ , ξ, σ 2)| = 0,(4.26)

whereT can beL(η̂F (D, f̂ ), η) or L(η̂F (D, f̃ ), η) or r̂F (D, f̂ ).
Indeed, (4.2) withV (f ) = r̂F (D,f ) entails

lim
p→∞ sup

‖ξ‖≤c

E|r̂F (D, f̂ ) − rF (f̃ , ξ, σ 2)| = 0,

(4.27)
lim

p→∞ sup
‖ξ‖≤c

E|r̂F (D, f̂ ) − rF (f̂ , ξ, σ 2)| = 0.

Hence, (4.26) holds forT = r̂F (D, f̂ ) and

lim
p→∞ sup

‖ξ‖≤c

E|rF (f̂ , ξ, σ 2) − rF (f̃ , ξ, σ 2)| = 0.(4.28)

On the other hand, (4.2) withV (f ) = L(η̂F (D,f ), η) gives

lim
p→∞ sup

‖ξ‖≤c

E
∣∣L(

η̂F (D, f̂ ), η
) − rF (f̂ , ξ, σ 2)

∣∣ = 0,

(4.29)
lim

p→∞ sup
‖ξ‖≤c

E
∣∣L(

η̂F (D, f̃ ), η
) − rF (f̃ , ξ, σ 2)

∣∣ = 0.

These limits, together with (4.28), establish the remaining two cases of (4.26).
The limits (4.3) and (4.4) are immediate consequences of (4.26).
(d) By Theorem 2.1 of Beran and Dümbgen (1998), limit (4.2) withF = FMS

can be strengthened to

sup
‖ξ‖≤c

E sup
f∈FMS

∣∣V (f ) − R
(
η̂F (D,f ), η, σ 2)∣∣ ≤ C1p

−1/2 + C2E|σ̂ 2 − σ 2|,(4.30)

where theCi are finite constants. The first assertion of part (d) follows.
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The arguments above forF = FST imply that

sup
‖ξ‖≤c

E sup
f∈FST

∣∣V (f ) − R
(
η̂F (D,f ), η, σ 2)∣∣

(4.31)
≤ C1p

−1/2(log(p))1/4 + C2E|σ̂ 2 − σ 2|,
where theCi are finite constants. The second assertion of part (d) follows.

(e) Part (e) similarly follows from (4.30) and (4.31).
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