The Annals of Statistics

2004, Vol. 32, No. 4, 1650-1661

DOI 10.1214/009053604000000481

© Institute of Mathematical Statistics, 2004

OPTIMALITY OF NEIGHBOR-BALANCED DESIGNS
FOR TOTAL EFFECTS

By R. A. BAILEY AND P. DRUILHET
Queen Mary, University of London and CREST-ENSAI

The purpose of this paper is to studptimality of circular neighbor-
balanced block designs when neighbor effects are present in the model.
In the literature many optimality results are established for direct effects
and neighbor effects separately, but few for total effects, that is, the sum
of direct effect of treatment and relevant neighbor effects. We show that
circular neighbor-balanced designs are universally optimal for total effects
among designs with no self neighbor. Then we give efficiency factors of
these designs, and show some situations where a design with self neighbors
is preferable to a neighbor-balanced design.

1. Introduction. In many experiments, especially in agriculture, the response
on one plot may be affected by treatments on neighboring plots as well as by the
treatment applied to that plot. Similarly, in cross-over designs the response on one
subject in a given period may be affected by the residual effects of treatments
applied to that subject in the previous periods. In both situations optimality results
of designs with neighbor balance properties are available in the literature. See Shah
and Sinha (1989) for a review of optimality results of neighbor-balanced cross-over
designs with first-order residual effects, Hedayat and Afsarinejad (1978), Cheng
and Wu (1980), Kunert (1984b), Kushner (1997) for cross-over designs, Kunert
(19844a) and Druilhet (1999) for circular designs.

However, optimality results are almost always established for treatment and
neighbor (or residual) effects separately. Usually, one of the aims of the experiment
is to find a single treatment which can be recommended for use on larger spatial
areas or over longer time periods than those used for individual treatments in the
experiment: for example, a single variety of wheat to be grown in whole fields,
a single drug to alleviate the symptoms of chronic asthma, or a single type of feed
to be given to cows throughout a whole lactation. When the chosen treatment is in
use, its only neighbor will be itself; thus the effect of mostimportance is the sum of
the direct effect of the treatment and the neighbor effect(s) of the same treatment.

For cross-over trials, this is the sum of the direct effect and the residual effect of
the same treatment. In the context of animal feeding trials, Patterson (1950, 1951)
called this thdotal effect of the treatment; Kempton (1991) tipermanent effect.
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Matthews (1988) also used the tetotal effect in cross-over trials, no matter what

the area of application. In experiments on growing plants, the treatments might
be varieties or species. In this case the sum of the direct effect of a treatment
and its own neighbor effect is sometimes called shecies effect [McGilchrist
(1965)], thevariety effect [Besag and Kempton (1986)], theonoculture effect
[McGilchrist and Trenbath (1971) and Kempton (1982)] or puee stand effect
[Kempton (1985, 1991, 1997)]. However, the treatments may equally well be
pesticides or quantities of fertilizer, in which case the French “I'effet plein champ”
seems more appropriate. However, this terminology is clearly not suitable for drug
trials. We propose that the sum of the direct effect of a treatment and any relevant
neighbor effects of that treatment should be called the “total effect” irrespective of
the area of application.

In some contexts it has been proposed that the effects of direct and neighbor
effects are not additive when a treatment has itself as a neighbor [Speckel,
Vincourt, Azais and Koitinsky (1987) for competition between sunflowers].

In others [e.g., Kempton (1991)], there are correlations between neighboring
responses. We do not assume such extra complications here.

Our designs are in blocks, usually incomplete. Ignoring neighbor effects,
a block design is inefficient if any treatment occurs more than once in a block, so
we usually insist that our designs are binary. Thus no treatment is ever a neighbor
of itself. In particular, it is impossible to achieve orthogonality between direct
effects and neighbor effects. Some designs optimal separately for the estimation of
direct treatment and neighbor effects are known in which no treatment is preceded
by itself. Examples of such designs are given by Hedayat and Afsarinejad (1978)
for cross-over designs without preperiod, and by Magda (1980) for circular cross-
over designs. Azais, Bailey and Monod (1993) give a catalog of circular neighbor-
balanced designs with— 1 blocks of sizer or ¢ blocks of sizer — 1, wherer is
the number of treatments. These latter designs have practical importance in field
experiments. Indeed, neighbor balance implies that the number of replications is
divisible byr — 1 and experimenters rarely have the resources(for2) or more
replications. In the present paper we aim to show that these designs are universally
optimal [in Kiefer's (1975) sense] for total effects under models which incorporate
one-sided or two-sided neighbor effects among the class of all designs with no
treatment preceded by itself.

However, if there are a large number of blocks, then the gain from having self
neighbors can outweigh the loss from nonbinarity. We use continuous block design
theory to examine such designs and hence derive efficiency factors for binary
neighbor-balanced designs.

2. Thedesigns and the models. All the designs are assumed to be in linear
blocks, with neighbor effects only in the direction of the blocks (say left-neighbor
and right-neighbor effects). Because the effect of having no treatment differs from
the neighbor effect of any treatment, we consider only designsheittier plots,
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that is, designs with one plot added at each end of each block. The border plots
receive treatments but are not used for measuring the response variables [see
Langton (1990) for the importance of such designs]. The plots which are not on
the borders are calldédner plots. Thelength of a block is the number of its inner
plots. We assume that all the designsareular, that is, the treatment on a border
plot is the same as the treatment on the inner plot at the other end of the block.

We denote by ;) the set of all circular designs with treatments and
b blocks of lengthk. We assume thdt < ¢ and that there is an integérequal
to bk{r(r — 1)}~ 1.

DEFINITION 1. Acircular binary block design is a circular design which has
each treatment at most once in the inner plots of each block.

DEFINITION 2. A circular neighbor-balanced design (CNBD) is a circular
binary block design ir2(; , x) which is a balanced block design in the usual sense
[Shah and Sinha (1989)] and such that for each ordered pair of distinct treatments
there exist exactly inner plots which receive the first chosen treatment and which
have the second one as right neighbor.

DEFINITION 3. A circular design neighbor-balanced at distances 1 and 2
(CNBD2) is a circular neighbor-balanced design such that for each ordered pair
of distinct treatments, there exist exactlynner plots that have the first chosen
treatment as left neighbor and the second one as right neighbor.

Here are two examples of circular designs neighbor-balanced at distance
1 and 2. The rows correspond to the blocks and the plots at each end of the blocks
are the border plots.

5/1 2 3 4 5|1 412 3 4|2
412 5 3 1 4|2 3|1 4 3|1
13 5§ 2 4 13|’ 214 1 2|4
5|4 3 2 1 5|4 113 2 1|3

For a designd, we denote byd(i, j) the treatment assigned to plgt of
block i: in particular,d(i,0) andd (i, k + 1) are the two treatments applied to
the border plots of block. The circularity condition implies thai(i, 0) = d (i, k)
andd(i, k +1) =d(i, 1). We also denote by; ; the response on plgtof block:.
All the observations are assumed to be uncorrelated with common variance. We
deal with two distinct models for the expectation,

(ML) E; ;) =i+t j)+ rai, -1 forl<i<band1l<j <k,
(M2) EY; ;)=pBi+1aG,j) + rai,j-1) + pdd, j+1)
forl<i<bandl<j <k.
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The unknown parameters have the following meaningsis the effect of
block i, 74,y is the effect of treatmend (i, j), A4, j—1) IS the left-neighbor
effect of treatment/(i, j — 1), paq,j+1) is the right-neighbor effect of treatment
d(i, j +1). In the standard vector notation, we have

(M1) E(Y)=BB+ Tyt + Lgh,
(M2) E(Y)=BB+ Tyt + Lar+ Ryp,

where B, T;, L; and R; are the incidence matrices of block, treatment, left-
neighbor and right-neighbor effects. Note that mod#ll) corresponds to only
one-sided neighbor effect. It is particularly adapted to temporal problems with
carry-over effects. Model#2) corresponds to specific additive influence from
each left and right neighbor.

DEFINITION 4. The vectorg of total effects for models with one-sided
neighbor effects is defined ily=t + A.

DEFINITION 5. The vectory of total effects for models with two-sided
neighbor effects is defined by =7 + A + p.

3. Some technical tools. We introduce some notation and results used
throughout the next sections.

We denote byi, I and J;, respectively, the vector of ones of length
the (k, k) identity matrix and thek, k) matrix of ones. For any matrid, we
denote byA™ the Moore—Penrose inverse af The projection matrix onto the
column span of matrid is denoted by p,. Thus py,) = A(A’A)*A’. We also
define pfy, by priy, = I — priy. Put O = pryy,, = Ik — k~1J. For a square
matrix A, we denote by {fA) the trace ofA. For two symmetric matrice® andn,
M < N means thalv — M is a nonnegative definite matrix. A matrixaempletely
symmetric if it can be written a7 4 bJ for two scalars: andb.

Consider the standard partitioned linear model:

(M) Y=Aa+BB+e WithE(e)=0 and Vate)=o?l.

The first lemma is classical [Kunert (1983)], the second, whose proof is in the
Appendix, gives an upper bound of the information matrix: it generalizes a result
by Pukelsheim [(1993), page 97] anidegs a simple condition for equality.

LEMMA 1. Under model (M) the information matrix C[«] for the effect « is
Cla]l=A'priz A.

LEMMA 2. Assume that in model (M) our interest is just for some linear
combinations of «, say K'a. Then the corresponding information matrix C[K'«]
satisfies C[K'a] < (K'K)TK'Cla]K (K'K)™ with equality if and only if C[«]
commutes with pr k.
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Throughout the paper we deal with universal optimality defined by Kiefer
(1975). A universally optimal design has many good properties: see Shah and
Sinha (1989) for further details.

PropPosITIONS [Kiefer (1975)]. Assumethat a design d* hasitsinformation
matrix completely symmetric; then d* is universally optimal over a class O of
designsif and only if tr(Cy+) = maxzep tr(Cy).

4. Optimality of circular neighbor-balanced designs for total effects. In
this section, we show that a CNBD (resp. a CNBDZ2) is universally optimal among
all the designs with no treatment preceded by itself under the one-sided (resp. two-
sided) neighbor effect model.

LEMMA 4. Let d* be a circular neighbor-balanced design in €2 5 x) with
3 < k < t; then the information matrix C;+[¢] for total effects under model (M 1)
is Cge[¢] = bk —2)(2(t — 1)) Q.

LEMMA 5. Let d* be a circular design neighbor-balanced at distances
land 2 in Q¢ p k), With 4 < k <. Then the information matrix C4«[v] for total
effects under model (M2) is Cy«[v]=b (k —3) (3(t — 1)1 0.

THEOREM 6. Under model (M1) and for 3 < k < ¢, a circular neighbor-
balanced design in €2 1) IS universally optimal for the total effects among all
the designs with no treatment neighbor of itself.

THEOREM 7. Under model (M2) and for 4 < k < ¢, a circular design
neighbor-balanced at distance 1 and 2 in Q2 , «) is universally optimal for the
total effects among all the designs with no treatment neighbor of itself at distance
lor2.

PROOF OFLEMMA 4 AND THEOREM 6. Puta’ = (z/|A). Then¢ = K'«,
with K =1->® I,.

By Lemma 1 we haveC;[a] = (leLd)’pré)(TMLd) for any design. Here
K'K = 2I,, so, by Lemma 2 we have

Cal¢] < 3K'CqlalK
(1) = 4{TaPriy) Ta + T3 Pr(py La + L Pry Ta + Ly PTGy La)
= {47, prs) Ta + TjLa + LyTa — 2T;T,).

The last equality comes from the fact that because of the circularity we have
T,Ty=L)L;andB'T; = B'Ly. SO Py Ta = Prgy Las and so

TPy La=TjLa— TjpVpyLa=TjLs — TjTy + T;priz, Ta.
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Note that(7;L4);; is the number of times that treatmentis a neighbor
of itself at distance 1. Thus, for any designin Q ;) with no treatment
neighbor of itself, tC4[¢]) depends only on (7, pr(LB) T,;). For a CNBDd* in
Q,p,k), We haveT . Ly« = LTy = £(J — I). HenceCy+[a] commutes with
Prigy = 2-1J, ® I,. Then Lemma 2 gives equality in (1). Becauge pr(LB) Ty =
b(k — 1)t —1)~1Q,, (1) establishes Lemma 4 for a CNBD. Moreover, a CNBD
is a balanced block design, so it maximizesrfgrprﬁB) T,;) among all possible
designs of the same size [see Shah and Sinha (1989)] and so, by Proposition 3
and Lemma 4, Theorem 6 is established!

PROOF OF LEMMA 5 AND THEOREM 7. Similarly, under model 4(2),
¥ = K'a with o’ = (¢/|)|p’) and K = 13 ® I;. Because of the circularity, we
haveR)T; =T,L; andT;R; = L),T;. Then we have

(2 Cal¥] < §{9T;priz Tu + 2(TjLa + L Ty) + LyRy + RyLy — 6T;Ty}.

For any design with no treatment neighbor of itself at distance 1 o¢@; [t ])
depends only on (7, pr(lB) T;). For a CNBD24* in Q(; k), We haveR). L+ =
Ll Rq =£(J — I). Then Lemma 2 gives equality in (2). The remainder of the
proof is identical to the previous onel]

5. Efficiency of circular neighbor-balanced designs. In this section we
examine efficiency factors of circular neighbor-balanced designs. First we use the
method developed by Kushner (1997) and Kunert and Martin (2000) to construct
optimal designs. Even if these designs usually have a large number of blocks, they
are useful to derive efficiency factors.

5.1. Continuous block designs and related upper bounds. For each block:
of designd, we denote byT,,, Ly, and Ry, the incidence matrices corre-
sponding to block:. Thus,Ty = (Tj4|---1T;,)"s La = (Ljy|---|L);) andR; =
(R)41--- IR . Inequalities (1) and (2) give, respectively,

b b
3) Calpl <> Cau and Cql]1< ) Cau.
u=1 u=1
whereCy, = %{4% O« Tau + T}, Lau + L)y, Tau — 2T}, Tz, } and
Cau = 397, Ok Tuu + 2(T )y Lau + Ly Taw) + Liyy Raw + Rl Lau — 6T}, Tan ).

Because {iCy,) and t(Cy,) are invariant under permutations of treatment
labels, we may say that two sequences of treatments on a block are equivalent
if one sequence can be obtained from the other one by relabelling the treatments.
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If we denote bys the equivalence class of the sequehoa the blocku, we can
define

1 2 t t
¢(s) = 11(Ca) = §<k— %Zn?juzmi),
i=1 i=1

. y 1 9 t t t
é(s) = tr(Ca) = §<3k -2 Ay m, +22pl~),
i=1 i=1 i=1

wheren; is the number of occurrences of treatmeim the sequencg m; is the
number of times treatmeitis on the left-hand side of itself in sequericand p;

is the number of plots having treatmenn the left-hand side and the right-hand
side.

PrROPOSITION8. Consider a designd with b blocks of size k. If s* maximizes
c(s), then, under model (M1), tr(Cylp]) < be(s™). If s* maximizes c(s), then,
under model (M2), tr(Cy[¥]) < be(s™).

PrRoOOF Denote byS the number of equivalence classes andnhys) the
proportion of the blocks containing a sequence in the equivalence clds$sen
we have t(Cy[¢]) <b ¥ 5_; ma(s)c(s) <be(s*). O

5.2. Optimal continuous block designs under model (M1). Here we charac-
terize optimal sequences under mod#ll) and show how to construct universally
optimal designs without restriction on the competing classes of designs. Then we
calculate an efficiency factor for a CNBD.

NOTATION 1. We denote by x| the integer part of the real and by f the
real functionf (v) = —1+k —v/2— (2—v/k)|k/v] +v/k|k/v]?.

PrOPOSITION 9. Consider model (M1) and designs with blocks of size k
(k = 3) and  treatments. Then a sequencel* in the class s* that maximizes c(s) is
characterized by:

1. The number of different treatments present in the sequence I* is v*, where v*
maximizes f (v) subjecttov € {2, ..., t}.

2. The number of occurrences of a treatment present in the sequence is either
n_=lk/v*]orny=n_+1.

3. The number of treatments that occur n_ timesin [* isv_, where v_ =k —
v¥lk/v*].

4. The number of treatmentsthat occur n timesin* isv,, wherev, =v* —v_.

5. Every treatment present in /* has all its occurrencesside by side.

Moreover, c(s*) = f(v*) <k — +/2k with equality if (2k)¥/2 isan integer.
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TABLE 1
k 3 4 4 45 6 7 8 9 10 11 12 12 12 13 14 15 16 16
v* 3 2 3 4 3 3 4 4 4 5 5 4 5 6 5 5 5 5 6
v 3 2 2 4 1 3 1 4 3 5 4 4 3 6 2 1 5 4 2
vw 0 O 1 0 2 0 3012 0 1 O 2 O 3 4 0 1 A4
n- 1 2 1 11 2 1 2 2 2 2 3 2 2 2 2 3 3 2
ny 2 3 2 2 2 3 2 3 3 3 3 4 3 3 3 3 4 4 3

The proof is given in the Appendix.

REMARK. Whenk = 2¢(¢ + 1) for some positive integeg, then f(v) is
maximum at exactly three points:* = 2¢, v* =29 + 1, v* = 29 + 2. Put
w=k/[(1+ (2k +1)1/2)/2]. If w is an integer, therf (v) is maximum at exactly
v =w. If not, then f (v) is maximum at one or both of the two integers either side
of w. Moreover, it can be shown that, wheiis large,v* ~ [ (2k)/2].

EXAMPLE. Table 1 givesthe composition Bfdepending o (whens > v*).

For example, folk = 5 an optimal sequence contains= 3 treatments. One
treatment appears once and two treatments appear twice. So, for instance,

[*=(a,b,b,c,c).

For k = 14 an optimal sequence contains five treatments: one treatment appears
twice and four treatments appear three times. So an optimal sequence is, for
instance,

(a,a,b,b,b,c,c,c,d,d,d,e,e,e).

Note that other optimal sequences can be deduced by circular permutation or
symmetry. Fork = 4 ork = 12, there are three possibilities fbras seen in the
remark above. Fat = 16 there are two possibilities.

THEOREM 10. Consider designs with b blocks of size k, k¥ > 3, and
¢t treatments. Denote by s* an optimal equivalence class of sequences. Then a
design d* that has each sequencein s* equally often is universally optimal among
all possible designs with the same size. Moreover, tr(C +) = bf (v*) = bc(s™)
where v* isthe number of treatments present in one sequence of s*.

PROOF By construction, all the sequences ifi are obtained from one
sequence in* by relabelling the treatments. Thus, for desifnC ;= is completely
symmetric. Moreover,Té*Ld* = L;*Td*. So, by the proof of Lemma 4, the
condition for equality in Lemma 2 holds and we haveCty) = be(s™). So by
Proposition 84* maximizes the trace and &4 is universally optimal. (I



1658 R. A. BAILEY AND P. DRUILHET

TABLE 2

k 3 4 5 6 7 8 9 10 11 12 13 14 15

Eff¢*) 1 1 0.88 080 080 075 075 073 072 071 0.70 0.69 0.68

Consider now the classical criteri@,(C,) = tr(C,;”/(t — 1))Y/7, with
tr(M?) =tr(M*)~7 if ¢ <0, and®g = lim,_,0 . It is well known thatdg, P4,

d, correspond, respectively, to D-, A-, E-optimality [Shah and Sinha (1989)].
Moreover,®_1(Cy) = 1/tr(C4). For a completely symmetric matri€, &, (C)
does not depend op. Thus we can derive efficiency factors for ady, of a
CNBD d* relative to a continuous block desigi* constructed in Theorem 10 by
considering Effd*) = tr(Cy+)/tr(C4++), as Table 2 shows.

When k is large, the efficiency factor for a CNBD iR 5 can be
approximated byk — 2)(2(k — ~/2k )) 1, which tends to & whenk tends to+oo.
For k = 3 and 4, the efficiency factor of a CNBD is 1, so we have the following
result:

PrROPOSITION11. For k =3 or 4 a CNBD is universally optimal for total
effects among all possible designs with equal size.

5.3. Efficiency of CNBD2 under model (M2). In this section we derive
optimal sequences under mode#(2). Unlike the previous section, we cannot
construct optimal designs from an optimal sequence by considering all the
treatment relabellings of the initial sequence, essentially because the condition for
equality in Lemma 2 does not hold. So we just indicate the main result without
giving the proof and we derive an upper bound for the efficiency factors of a
CNBD2.

NOTATION 2. We denote by the function

fv1,v2) =—1+4+k —2v1/3—8v2/9
— (2= 2v1/k — v2/ k) L(k — v1) /v2] + vo/ kL(k — v1)/v2)?.

PrRoOPOSITION 12. A sequence [* in an optimal equivalence class s* is
characterized by maximizing f (v, v2), for all possible values attainable where
v1 is the number of treatments appearing once in [*, and v, is the number of
treatments appearing at least twicein [*.

REMARK. Itcanbe shownthatif is an optimal sequence, then not only must
v1 andvy have values] andv; which maximizef, but also all the plots receiving
the same treatment are placed side-by-sidekFod an optimal sequence contains
four different treatments and thus a CNBD?2 is universally optimal among all
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TABLE 3

k 4 5 6 7 8 9 10 11 12 13 14

Eff(d*) 1 088 0.75 07 065 060 059 057 055 054 053

possible designs. Fdr> 6, an optimal sequence does not contain any treatment
just once (i.e.p] =0). As in Section 5.2, we can derive the efficiency factor of a
CNBD2 (Table 3).

APPENDIX

PROOF OFLEMMA 2. PutP =pr, = K(K'K)*K"andM =1 — P. Then
o =Pa+ Ma andM? =M. SOE(Y) = AK(K'K)Y(K'«) + AM?« + BB. By
Proposition 2.3 of Kunert (1983), with his;, B1; and By, replaced, respectively,
by AK (K'K)*, BandAM, we haveC[K'a] < (K'K)TK'A'priy) AK(K'K)*" =
(K'K)TK'ClalK (K'K)* with equalityifand only il K'K) T KA pr) AM =0,
or equivalently(K'K)TK'Cla]M = 0. If C[a] commutes withP, then C[«]
commutes withM, so (K'K)TK'Cla]M = (K'K)TK'MC[a] = 0 because
K’'M =0. Conversely, ifl K'K)*K'ClalM =0, thenPC[a]M =0= MC|[x]P,
SOPCla]=PCla](P+M)=(P + M)Cla]P =Clx]P. O

PROOF OF PROPOSITION9. Let! be a sequence in and denote by the
number of treatments presentirf v = 1, thenc(s) = 0; thus the maximum must
be sought on2,...,t}. If v > 1, then necessarily;; < n; — 1 for i such that
ni > 0.Thus,> ; m; <k — v and then

c(s)<} %—v—ginz =A (say
-2 k=

with equality if m; = n; — 1 for all i such thats; > 1, that is, if all the plots
containing the same treatment are side-by-sidevFbhen, becausg:_, n; =k,
A is maximum if and only ifn; = |k/v] or n; = |k/v] + 1 for any treatment
present in the sequence. So, necessarily, the number of treatments pkgsént
times in the sequence igk/v + 1] — k and the number of treatments present
Lk/v] + 1 timesisk — v|k/v]. Points 2—4 of the proposition are then established.
For such a sequenca,= f(v) where the functiory is defined in Section 5.2.
The function f is continuous (in spite of the integer part). For each positive
integerp, f is linear on[k/(p + 1), k/ p] with slope(2p2 + 2p — k)/(2k). The
slope increases witlp, so f is concave. If there is a positive integgrisuch that
k =2g(q + 1), then the slope is zero d&q, 29 + 2] and any real number in this
interval maximizesf. However,v is an integer, sgf (v) is maximum at exactly
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three pointsy* = 2¢, v* = 2¢ + 1 andv* = 29 + 2. Otherwise, the slope is never
zero, sof is maximized only ak/| (1 + (2k + 1)Y/2)/2] = w. If w is an integer,
then f(v) is maximum wherv = w. Otherwise, it is maximum at one or both of
the integers on either side of.

Now, if k /v is an integer, then we hav&v) = (2k — 2k /v —v)/2 = g(v) (say).
Because is concave and is linear on intervals, then for all, f(v) < g(v). The
maximum ofg is atv = (2k)Y/2. Thus, we havef (v*) < g(V2k) =k — /2k. O
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