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A certain type of integer grid, called here athelon grid, is an object
found both in coherent systems whose components have a finite or countable
number of levels and in algebraic geometry ¥ (a1, .. ., ay) is an integer
vector representing the state of a system, then the corresponding algebraic
object is a monomiajcg1 .. -xgd in the indeterminatesy, ..., x4. The idea
is to relate a coherent system to monomial ideals, so that the so-called Scarf
complex of the monomial ideal yields &rclusion—exclusion identity for the
probability of failure, which uses many fewer terms than the classical identity.
Moreover in the “general position” case we obtain via the Scarf complex the
tube bounds given by Naiman and Wyrnljequal. Pure Appl. Math. (2001)

2 1-16]. Examples are given for the bty case but the full utility is for
general multistate coherent systems and a comprehensive example is given.

1. Introduction. The study of network reliability has received increasing
attention in the recent decades because of its applications to computer networks
and communication systems. Shier [21] points out that one of the most interesting
aspects of this subject is the “variety of discrete, combinatorial, and algebraic
mathematics that can be found lurking just underneath this practical veneer.
... The new approaches developed in the context of network reliability can have
ramifications beyond that particular venue.”

Naiman and Wynn [16] established a connection between reliability structures
and some special topological objects, called abstract tubes. This study led
to a second paper [10], where the interactions with computational algebra
and Grobner bases were investigated. This was motivated by the work of
Diaconis and Sturmfels [4] that initiated the use of algebraic techniques in
probability and statistics. A section on reliability was also included in the
monograph ([17], Section 4.4) devoted to establishing or deepening the links
existing between algebra and statistics. The work of Dohmen (see, among
others, [5-7]) concentrates more on the combinatorial approach but fruitful and
interesting synergies with the abstract tube theory and the algebraic approach are
foreseen.

In the present paper the authors investigate a strong link between reliability
theory and certain algebraic structures which we believe will eventually unify
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much of the work just mentioned. The two particular objects covered in this paper
are the Scarf complex and the finely graded Hilbert series. These can contribute to
finding more efficient computations and identities, similar to those in [16] and [10].

The power of the suggested approach lies in the fact it can be generally applied
to any kind of coherent multistate system without any further restrictions. Former
approaches proposed in the literature are limited to special cases such as binary
systems or source-to-terminal reliability for planar networks. Moreover, because of
the link with the tube theory the method immediately gives bounds which are only
available, outside the standard Bonferroni case, for certain such cases. Section 5.2
contains a brief discussion of the existing literature and provides examples to
illustrate the ew methodology.

2. Anoverview. The main point of contact between the disciplines of algebra
and reliability theory is an echelon griof points with nonneg#ve and integer
coordinates. Such a grid (or lattice) can identify a coherent reliability system but
also plays a specific role as an algebraic object. An example is given in Figure 1.

A reliability system ofd components is a system whose failure or nonfailure
state is determined by the state of each of its components. We deal here with
the case where each component can assume a discrete and possibly countable
number of state$0, 1, 2, 3, ...} corresponding to increasing levels of efficiency.

We refer to such systems as multistate systems. Section 5.5 deals with the case
of a continuous distribution on the component performance and more formal
definitions about reliability systems are given and discussed in Section 5. A state
of the given system is described by a nonnegative integer vector of léndthe

3,0

X,

FiG. 1. Monomiasin M = (x3,x2x2, x3) (black dots) and monomials not in M (hollow dots).
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state space® (D = N7 in this general setting) can therefore be decomposed into
the set of configurations that corresponds to failure of the system and the set of
configurations that corresponds to nonfailure. We indicate these two set§with
and ¥, respectively. ObviouslyD = F U ¥ (i.e., ¥ is the complement off

in D).

Coherent systems are systems for which improving the state of a single
component cannot lead the system from a nonfailure (or operating) state to a
failure state. Equivalently, degrading a component state cannot bring the system
from failure to nonfailure. Thus, in the integer representation a coherent system
is such that if a state point belongs to the failure sef, then any other point
with component state levels worse (less) tihamust belong ta# . Similarly the
nonfailure set, being the complement®f must have a similar property: éf is
a nonfailure point, then any point with coordinates greater than or equésto
coordinates must still be a nonfailure point. This is equivalent to saying that the
integer representation of the failure set must have an echelon structure; that is, the
grid representing® (or equivalently#) must have no “holes.”

For example Figure 1 represents a two-component coherent system where the
hollow dots correspond to failure states and the filled dots correspond to operating
(nonfailure) configurations.

The link with algebra is the construction of the monomi&l= x;*x52 - - - x5
with the pointe = (a1, a2, ..., ag) given by its exponent vector. For example, the
filled dots in Figure 1 represent the monomials belonging to a certain monomial
ideal M. For the introductory material in algebra we have mainly used [3, 12, 14]
as references. The echelon property, equivalent to coherence, translates into the
algebraic language as the “order ideal” property: if the monomtabelongs
to a monomial ideal, then so do all the monomiafssuch thatc® divides x?,
that is, such thatt < B:«a; < B;,i = 1,...,d. The corner points of the seft
(those labeled with their coordinates in Figure 1) are the minimal generators of
this monomial ideal but it is interesting to point out that these points play also a
specific role as reliability theory objects. They are caitedimal nonfailure points
in Section 5. In this paper we shall only study coherent systems.

The main observation, which we will develop in the following sections, is that
there are some points on the boundary between the failure set and the nonfailure
set that are fundamental to the identification of the pointg iand in# . We will
see that these special points form a simplicial complex, calle&dad complex,
which then plays a key role in both the algebraic geometry and reliability theory.

Sections 3 and 4 give an introduction to the algebraic setting and Section 5
establishes and formalizes the connection with reliability.

3. Monomial ideals.

3.1. Some basics. Let K be a field and lets = K[x] = K[x1, ..., x4] be the
polynomial ring ind indeterminates. A monomial if[x] is a productx® =
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x3txg?- .- x5 for a vectore = (a1, ..., ag) € N of nonnegative integers.

A monomial idealM is an ideal ofS generated by some monomial$, for «
belonging to a subset € N¢ (possibly infinite). The ideaM consists therefore
of all the polynomials of the form}_, . 4 Ao x®, with i, € S. In this case we write
M = (x%|x € A).

The following lemma allows us to characterize all the monomials that lie in a
given monomial ideal.

LEMMA 1. Let M = (x*|a € A) be a monomial ideal. Then a monomial x?#
liesin M if and only if x? is divisible by x* for some« € A.

Observe that the set
a+N ={a+y|yeN)

consists of the exponents of all monomials divisiblerBy This observation allows
us to draw pictures of the monomials in a given monomial ideal and visualize this
set as a union of positive and integer coordinate points. For example, the filled dots
in Figure 1 represent all the monomials in the id&gd= (x3, x2x2, x3).

A polynomial f is in a monomial ideaM = (x* | « € A) if and only if each
term of f is divisible by one of the given generator$. From this it follows that
a monomial ideal is uniquely determined by its monomials; that is, two monomial
ideals are the same if and only if they contain the same monomials. For details and
proofs see [3, 14].

The main result in this section is given by the following theorem (Dickson’s
lemma), which states that each monomial ideal is uniquely and finitely generated.

THEOREM 1. A monomial ideal M = (x*|a € A) C K[x1,...,x4] can be
written in the form M = (x“t, ..., x%), where o; € A. In particular, M has a
finite basis.

The polynomial ringS = K[x] can be seen asli&-vector space and therefore it
can be decomposed into the direct sfim P, e Sos Wheres,, is theK-span of
the monomiak®. SinceS,, - Sg € Su+4, We say thats is anN‘-gradedK-algebra.
More generally, ar§-module M is said to beZ¢-graded ifM = Dpeze Mp is a
direct sum ofK-vector spaces withi, - Mg € M, g. For definitions and properties
of modules of polynomial rings see [8].

A monomial idealM and the corresponding factor risg M are botHzZ¢-graded
S-modulesM = Pucpy So ANAS/M = Doy ps Sa-

The hollow dots in Figure 1 within the nonshaded area fofifrlaasis forS/ M.
We show in the next section that the Hilbert seli&S /M x) is the sum of all the
monomials that are not containedm.

Given aZ“-graded moduleV, the Z?-graded shiftM[«] for o € Z¢ is the
Z4-graded module defined M [a]p = My . In particular, the freS-module of
rank 1 generated in degreeis S[—«]. There is an isomorphism betwesp—«]
and the principal idealk®) C S.
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3.2. Hilbert series and free resolutions. Given aZ?-graded module, we
consider its dimension as a vector spaceldrand we call it dink(M,). If
dimg (M,) is finite for all« € Z¢ the (finely gradedMilbert series is defined as
the formal power series

H(M;x):=HM;:x1,....x9)= Y _ dimg(Mg)x".

aezd
For example, we have that
o d 1
H(S; x) gzjdx ];[1 T

(namely the sum of all monomials ), and fora € Z¢,

HS[-alx)= ) x’
xPe(x®)
=x*(A+xr+xi ) A xg+x5+--0)
1) 1 1

=_x0l

1—x1.“1—xd

xoc

-
For a monomial ideal we have that

H(S/M;x)= ) x°,
aeNI\M
namely the sum of all monomiat®t in M.
A homological complex of S-modules is a sequence

...‘P(i;lFl._l(‘]b_"E...

of S-module homomorphisms such tht 1 o ¢; = 0. A complex isexact at the
ith step if it has no homology there, that is, if Kerfigl 1) = Image&¢;). The
complex is exact if it is exact at théh step for alli € Z.

A freeresolution of anS-moduleM is a complex

O<—F0<¢—1F1<—---<—F,_1<¢—[F,<—O

of free modules which is exact everywhere except the Oth step, and such that
M = Cokel(¢1) = Fo/ Imageer).

Every S-module has a free resolution, with length less than or equal oM
is Z4-graded, then it has &?-graded free resolution. If, in additio® is finitely
generated, there is &?-graded resolutio < F in which all the ranks of the
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F; are finite and simultaneously minimized. Suchlaims called aminimal free
resolution of M and is unique up to noncanonical homomorphism.

Given a short exact sequence<®@ M" < M < M’ < 0, the rank nullity
theorem of linear algebra implies that dittM,) = dimg (M) + dimg (M],) for
all «, and hence? (M; x) = H(M"; x) + H(M'; x). More generally, if

O« M« Fg<« F1 <« ---
is a finite sequence such as a free resolution, then

2) H(M;x)=)Y (-1)'H(F;;x).

1

In particular, ifM is finitely generated, the existence of a finite-rank free resolution
for M implies that the Hilbert series ¥ is a rational function ofc, because
it is an alternating sum of Hilbert series 8f—«] for variousx. Moreover the
denominator can always be taken to[jg1 — x;).

We show, with an example, the connection between minimal resolution and
Hilbert series and why we are particularly interested in it.

ExAMPLE 1. Considera monomial ideal in two variablé$:= (x"lybl, x92 x
yb2, . x%yPryin § = K[x, y]. As mentioned above the finely graded Hilbert se-
ries of the factor ringS/M gives the sum of all the monomials not M (and for
the monomial idealM it gives the sum of all the monomials ). A way to
obtain the Hilbert series fa$/M is to proceed by inclusion—exclusion, subtract-
ing from the sum of all the monomials if the list of all the monomials in the
quadrantgx¢ y?i) for all i € {1, ...,r}, then adding back the monomials in the
two-way “intersections{icm(x® y?i | x@i ybi)) = (x4 ybiy 0 (x% ybi), then remov-
ing the three-way intersectior{s® y?) N (x% y?i)y N (x%yP*), and so on. In this
way, afterr steps we have counted all the monomials the right number of times.
However, for a large number of generators this procedure is far from efficient since
many terms cancel out. It is easy to see that in this two-dimensional case it is
enough to add back only the principal ideals obtained from couples of adjacent
generators.

In the literature the highlynonminimal free resolution of/M given by the
inclusion—exclusion process is called the Taylor resolution, which we describe
in more general terms in Section 4.1. The most compact representation yields
instead the minimal resolution. Unfortunately a construction of the minimal
free resolution has not been found for all arbitrary monomial ideals. In the
literature there are only two general comstions for resolvingrbitrary monomial
ideals: the Taylor resolution and Lyubeznik’'s subcomplex. We show in Section 4,
based on [2, 13, 14], a construction of a minimal free resolution for a specific
class of monomial ideals, callegeneric monomial ideals. Also a nonminimal
free resolution ofS/M based on deformation of the exponents is obtained for
nongeneric monomial ideals. Even though this resolution is not minimal it is
generally much smaller than Taylor's. We show in Section 5 that in reliability
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theory the generic monomial ideal has a very natural interpretation but even for
binary systems (which typically lead to the nongeneric case) the deformation
procedure still gives excellent results.

Notice that the deformation procedure is gratifyingly similar to the perturbation
presented in [16] and [10], and the nonminimal resolution obtained via the
Scarf complex after deformation leads to the abstract tube formula described in
[16] and [10].

4. Monomial resolutions. In this section we first describe the construction
of a (highly nonminimal) resolution for an arbitrary monomial ideal, called Taylor
resolution. Then a method is described to obtain the minimal resolution for generic
monomial ideals, and finally the deformation procedure to deal with arbitrary
monomial ideals. For more details, see [2, 13, 14].

4.1. Taylor resolution. For a monomial ideaM = (m1, ..., m,) and a subset
I C{1,...,r} we setm; = lcm(m;|i € I). Leta; € N¢ be the exponent vector
of m; and letS(—a;) be the freeS-module with one generator in multidegreg.
Let F; be theK-vector space whose basis elementsorrespond to the index sets
I C{1,...,r}oflengths. Define thedifferential o, : F; — Fs_1 by

mj

ds(er) = _signi, )

“eq\i,
iel !

mp\

where sigfii, 1) is (—1)/ 11 if  is the jth element in the ordering df It is possible
to show (see [8]) that

a T
O FollFle .« F 12 F <0

is a free resolution of /M of lengthr, and it is calledlaylor resolution of S/M.
The resolution can be also seen asZ{egraded modul& = Dicn
that has 2 terms and it is therefore very far from minimalifs n.

It is natural to write the Hilbert series for a Taylor resolution of the factor
ring S/M as follows:

.....

H(S/M;x,y)
=H(S;x,y)—HM;x,y)
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where(my) is the principal ideal generated by the monomial Similarly for the
monomial idealV,

H(M; x,y)
_ o o r+1 o
PR DRI SRR G DR
x% e (my) x% € (my) x% e (my)
I1c{y,..., r} I1C{1,..., r} I1={1,..., r}
1= =2

Notice the analogy between the structure of the above formula and the classical
inclusion—exclusion formula used in reliability. Simply replace any tetrby the
indicator function of therthants Q,, = {8 | B > «o/}.

We show in the next sections that the Scarf complex allows a more efficient
formulation of the above expression and yields exactly the tube formula proposed
in [16] and in [10]. For clarity we return to the example of Figure 1.

EXAMPLE 2. We construct now the Taylor resolution and the Hilbert series
of S/M whereM = (x3, x2y?, y3) is the monomial ideal given in Section 3 and
represented in Figure 1.

The required resolution is given by

a9 ad 0:
0« FotFl < F,<F3<0.

The dimension of each vector spaEg (s = 0, 1, 2, 3) in the sequence is given
by (’;’) (i.e., the number of subsetsc {1, ..., d} of lengths).
The differential®; can be expressed via monomial matrices where each column
corresponds to an index sefand contains the vectdg (e;). Therefore we obtain
the following:

01: [x3 x2y2 yS ];
I=(1} 1=} I={3}

xS y2 y3 0
37 x2y2 —X 0 y :
yS 0 —x3 _xz
1={1,2} 1={1,3} 1={2,3}
mp=x3y2  my=x3y3  my=i2y3
x3y2 |: y j|
d3: x°y -1
X<y X
1={1,2,3)

m[:xaya
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For example, fod = {1, 2} itis

V2
mio mai2

O2(e120) = —e1— —ex2=| —x |,
mi m2 0

which corresponds to the first column of the matrix represeriéng
Now from (1) and (2) it follows that
1—x3 - x2y2 81 x3y2 1 884 ,2\8 (3,3
1-xA-y)
=1+x+y+x2+xy+y2+x%y +xy?

which is exactly the sum of monomials notM, as expected.
Notice that before cancellation of the tewly3 the numerator of the Hilbert
series for the Taylor resolution containd=2 8 terms.

H(S/M;x,y)=

4.2. Monomial resolution over labeled simplicial complexes and the Scarf
complex. It is possible to define a monomial resolution associated with a
simplicial complex labeled by the generators of a given monomial ideal. In this
section we show that the resolution of a generic monomial ideal associated with
a specific simplicial complex, called tHgearf complex, is minimally free. The
Scarf complex owes its name to Herbert Scarf, who introduced a similar complex
in mathematical economics (see [20]). The importance of this structure for the
resolution of a monomial ideal was only recently understood and explained in [2].

DEFINITION 1. LetV = {v1,...,v,} be a finite set. A finite) simplicial
complex A onV is a collection of subsets &f such thatl; € A whenevell; C I»
for somel, € A, and such thaty;} € A fori =1,...,r. The elements oA are
calledfaces, and thedimension dim(7) of a facel is the numbell| — 1. The
dimension of the simplicial complexA is dim(A) = max{dim(l): I € A}.

Note that the empty set is a face of dimensior1 of any nonempty simplicial
complex. Faces of dimension 0 and 1 are calledices andedges, respectively.
The maximal faces under inclusion are callackts of the simplicial complex.

For a monomial idealM in S = K[x1,...,xs] We can construct a special
simplicial complex whose vertices are labeled with the generatavs. éfddition-
ally we label each facé of the simplicial complex by the least common multiple
my =lcm(@m;|i € I) of its vertices and we restrict to the faces with unique labels.
This leads to the following definition.

DEFINITION 2. For a monomial ideaM = (m1, ..., m,) we call theScarf
complex the simplicial complex\ ; consisting of sets of minimal generators with
unique labels

Ay={I<{L....r}Im;#myforal J C{1,...,r} otherthan/}.
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It is not difficult to see that a Scarf complex $1= K[x1, ..., x4] is still a
simplicial complex and has dimension at mast 1.

Fori € Z let F;(Ay) be the set ofi-dimensional faces ofA,, and let
KFi(An) pe aK-vector space whose basis elementsorrespond to thé-faces
I € Fi(Ay). LetFp,, be the so-calledN?-graded chain complex of,; over S
obtained as

0 <« KF-1(Am) (aﬂ ..« KFiAm) ?LKFi(AM) ... a<";1 Kfn-1Am)

with differentials as in Section 4.1,

ds(er) = _signi, )

iel

m

Lo
mp;

For a special class of monomial ideals caligtheric, the complex defined by
the simplicial complexA,, is minimally free as Theorem 2 states (for the proof
see [2]).

DerFINITION 3. A monomial idealM is called generic if no variable x;
appears with the same nonzero exponents in two distinct minimal generaddts of

Note that in [13, 14] the authors prove that it is possible to define genericity
in a weaker way and still achieve the same results that we are going to present.
They therefore refer to the definition we give above as “strong genericity.” For the
purpose of this article the stronger version is not only sufficient but also easier
and more appropriate to use for application to reliability. The requirement that the
monomial ideal is generic might seem quite strong. In practice though almost all
monomial ideals are generic, in the sense that those which fail to be generic lie
on finitely many hyperplanes in the space of exponents. From the reliability point
of view the requirement is not too strong in the continuous distribution case (see
Section 5.5), while in the binary case the deformation procedure can be used to
obtain a resolution (typically nonminimal) as we shall see from examples.

THEOREM 2. For a generic monomial ideal M the complex F,,, defined
by the Scarf complex Ay, is the minimal free resolution of S/M over S. The
N¢-graded Hilbert seriesof S/M (i.e., the sum of all monomialsnotin M) is

Yrea, (D m;
1-x1)--A—xa)
and there are no cancellations in the alternating sumin the numerator.

(®)

Theorem 2 allows us to write the Hilbert series for the factor @/ (and
for the monomial ideal) in a much more parsimonious way than in the Taylor
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resolution. The best way to see the difference is to compare (3) and (4) with the
following expressions foH (M; x, y) andH(S/M; x, y):

H(S/M;x,y):Zxo‘— Z x*

aeNd x% e (myp)
IeAy
=1
(6) a r o
FY ey Y
x% e (myp) x% € {myp)
IeAy I={1,....r}
] =2
(7) H(M;x,y)= Z x* — Z X4 (=T Z x*.
x% e (my) x% e (my) x% e (my)
leAy leAy I1={1,..., r}
=1 1] =2

The Taylor resolution can be obtained from the full simplicial complex (with
cardinality Z) given by the set ofill subsets of(1, ..., r}, while in the Scarf
resolution the summation is done only on the subsets belongimgtolLet us
see now with an example how we can obtain the minimal resolution via the Scarf
complex for the monomial ideal considered in Example 2 (Figure 1). The example
shows a “by hand” construction of the Scarf complex while for most of the other
examples the authors made continual use of available functions in CoCoA. The
algorithms behind these functions are related to the construction of the Hilbert
series (see [14]) and seem reasonably efficient. Further research is needed to
establish theoretical or experimental results on formal computational complexity
or actual run time. We do not develop the computational aspects in this paper.

ExAMPLE 3. The Scarf complex for the monomial idedl = (x3, x2y?, y3)
can be obtained in the following way:

1 ={1}—> my =x3

I ={2} > m; = x%y?;

I=1{3)>m =y

1={1,2} > my =x3y2;

I ={1,3} > my =x3y3;

1=1{2,3} > my =x2y3;

I1={1,2,3 —my :x3y3.
Thus the Scarf complek, is given by

Ay ={{1}.{2}.{3}.{1.2}. {2, 3}}.
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The index subsets that do not appearAly are those corresponding to the
monomialx3y3, and notice that this is exactly the term that cancels in Example 2.
The resolution is given by

y2 0
ey
(3x2y23y% 3 |0 -5;2 2
0« S S Sc <0,

and the Hilbert series (which can be read off directly from the labels of the Scarf
complex) equals

1—x8 - x2y2 )8 1 x8y2 4 423
1-x1-y) '
Thus the number of terms in the numerator of the Hilbert series is six. The gain in

comparison with the Taylor resolution, which returned eight terms, is not large for
this small example but it becomes huge in high-dimensional problems.

H(S/M;x)=

4.3. Deformation of exponents. As pointed out in Section 4.2, when the
generators of the monomial ideal are in generic position the Scarf complex leads to
the minimal resolution. For arbitrary monomial ideals the construction described
in this section can be used to produce a (typically nonminimal) resolution via
deformation of the exponent vectors of the generators. There is no guarantee
that the resolution so obtained is minimal, but the authors’ experience is that
there is still a very great gain in resolution over the original Taylor complex.
The use of the deformation procedure combined with the use of the CoCoA
macros mentioned in Section 4.2 seems very powerful and certainly superior
to complete enumeration followed by cancellation. The example presented in
Section 5.4 shows a typical result where, even after deformation, a considerable
reduction in the number of terms in the inclusion—exclusion formula is achieved
(from 511 to 31). Another advantage of the approach presented here is that, even
in the cases where minimality is not guaranteed, the method, unlike other methods
described in the literature, still provides improved reliability bounds, as described
in Section 5.2.

For an arbitrary monomial ideal = (m1, ..., m;), let {a; = (¢i1, ..., ®iq)
|1 <i <r} be the exponent vectors of the minimal generatorsvof Choose
vectorse; = (gi1, ..., €iq) € R? for 1 <i < r such that, for ali ands # ¢, the
numbersa;; + ¢;; anda;; + ¢;; are distinct andu;y + &5 < a;; + &;; implies
ais < aj;. Each vectog; defines a monomiat® = x{™ - - - x/* with real exponents.

We define the generic monomial ideid]. in a polynomial ring with real exponents
as follows:

& & &
M, = (mix®t,mox®2, ..., m,x").

We call M, a generic deformation a¥/. Let Ay, be the Scarf complex af/,.
We now label the vertex ofAj, corresponding tom;x* with the original
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monomial m;. Let ¥, be the complex ofS-modules defined by this labeling
of Ay, . Then the following result can be obtained (see the proof in [2]).

THEOREM 3. Thecomplex F, isafreeresolution of S/M over S.

There is a simple way to defor#. This is the deformation given in [2] and is
equivalent to the perturbation proposed in [10]. The method consists in picking an
integerv > r and deforming¥ usinge;; =i/v.

5. Algebraand reliability.

5.1. Coherent systems. We consider here systems as defined in [17] and [1]
but with some slight differences in notation.

DEFINITION 4. A systemis a setS of d components. We code their increasing
efficacy levels with the integef®, 1, 2, .. .}.

An outcome is a nonnegative integer vector of lengitdescribing the state of
each component. We cal) the set of all possible outcomes.

A failure outcome is an outcome which leads to failure of the systém

Thefailure set ¥ is the set of all failure outcomes. Tmenfailure set is the

complementofF in D:F =D\ F.

In most cases it is natural to assume that replacing a component by a component
at a higher efficacy level will not lead to a deterioration of the system. Systems
for which such an assumption is valid are caltstherent systems. We consider
only this type of system. For example, if the outco(hg2, 1, 3, 0) is an operating
(nonfailure) outcome then al€d, 2, 2, 4, 0) must be an operating configuration.

In terms of the usual partial order relatienin Z¢, for a coherent system we write
thatifa € ¥, theng e ¥ for all g suchthatx < 8 (i.e.,a; < Bi,i=1,...,d). In

the same way, in a failure configuration, replacing an operating component with
a failed one cannot improve the system. ThereforgQjfL, 0, 0, 0) is a failure
outcome then(0, 0, 0, 0, 0) must also be. This observation leads to the following
definition.

DEFINITION 5. The minimal failure points are maximal points in the partial
order relationship defined by:

Fr={aecF|PBecF a=<p).

The use of the word “minimal” in the definition is justified by the fact that in
the binary network literature the minimal failure points (sometimes catietmal
cuts) are the minimal set of components whose failure ensures the failure of the
system. The collection of all the minimal failure points is callediaimal failure
set and is indicated with the symbat™.
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Similarly the minimal points (according tg) in the nonfailure set are called
minimal nonfailure points (pathsin network theory):

Fr={acF|hBecF:p=al.

As mentioned in the Introduction it is easy to see how the failure set for a
coherent system can be represented by an integer grid. Furthermore this grid has
an echelon structure since the system is coherent. A similar observation, but with
reverse inequalities, can be made for the nonfailure set.

The parallel between a monomial ideal and a nonfailure set, and between
minimal nonfailure points and minimal generators, is now fully established.

PROPOSITION1. Given a system S of ¢ components with nonfailure set F
and minimal nonfailure set #*:

1. The minimal nonfailure points in £*, seen as the exponent vectors of
monomials in K[x1, ..., x;], are the (exponents of the) minimal generators of
amonomial ideal M.

2. The pointsin ¥ represent the (exponents of the) monomials belonging to the
monomial ideal M generated by the minimal failure points.

3. The pointsin & represent the (exponents of the) monomials belonging to the
factor ring S/ M.

Thus we allow ourselves to use interchangeably the expressions “nonfailure
set £” and “monomial ideal generated bg*” or “minimal failure points”
and “minimal generators,” even though, strictly speaking, we are dealing with
monomials in one case and their exponents in the other one.

The main interest in reliability theory is to give a measure of the performance
of a systemS by evaluating the probability of the failure (or nonfailure) of the
system.

DEFINITION 6. For a systens the reliability function®(S) is the probability
of the nonfailure setF; the unreliability U(S) is the probability of the failure
set ¥. Clearly, we only need to concentrate on one of the two performance
measures, Since(S) =1 — R(S).

In the literature it is possible to find many techniques to obtain the reliability of
a system, but the most common problem encountered is the computational effort
required to evaluate this probability for large size problems.

One of the methods proposed in the literature to calculate the reliability function
in the case of a finite state space is due to Moore and Shannon [15] and is based
on state space enumeration. Thus the reliability function for a networkith
nonfailure setF can be written as

R(S) = > Iz (w)Priw),

wedD
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where D is the full set of network states ang: (w) takes the value 1 whei

belongs toF, 0 otherwise. The approach is impractical because the spauas
cardinality equal ton?, if d is the number of components andthe number of
levels that each component can assume.

The reliability function can be formulatl in terms of the minimal nonfailure
points. For a minimal nonfailure poiate £ * we indicate withQ, the event “the
system is in one of the statgs with 8 > «.” This can also be described as the
event that the system state is a point in ¢ththant that has the poink as corner
point,

Qo ={BIB = a}.

Notice that the orthant®, correspond exactly to the set of monomials belonging
to the principal idealgx*). Thus the nonfailure set can be written as a union of the
orthantsQ, based on the minimal nonfailure poinrts F*,

F= Q.
acF*
The reliability function can therefore be obtained as the probability of a union of

orthants. Since this union is not disjoint the classical approach to this problem is
to use the inclusion—exclusion formula,

J?(S):Prob( U Qa>

aeF*

= > Prol(Q,)— Y ProQ, N Qu)+--

aEeF* a0/ €F*
+ (=D Prob(Qy N Qg N -4,

wherer = | ¥ *| is the cardinality of the minimal nonfailure set.

5.2. The method. To obtain the improved version of the inclusion—exclusion
formula for a systens with minimal nonfailure setf * = {a, ..., «,} we only
need the Scarf complex,, associated with the monomial ide#l generated by
the monomials®1, ..., x% . The minimal resolution and the Hilbert series provide
the background for our calculations. The Scarf complex shows directly which least
common multiples are needed to be included in the identity. We decompose the
complex in terms of the dimensions of its faces and we write

A ={Ag,A1,...,Ag_1} with d <n,

whereA; is the set of faces ok of dimensions + 1 (thusAg is the set of vertices,
A1 is the set of edges, etc.).
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From (7) we obtain the improved version of the inclusion—exclusion formula,

R(S)=Prop | J Qa>

aeF*
(8) = ) Prob(Qq)— ) ProbQu,)+
myreAg mpeN;
+=D Y Pro( Q).
mrelg_1

wherem; = lcm(m;|i € I) is as defined in Section 4.2 ang is the exponent
vector of the monomiak; .

This formula is equivalent to the improved inclusion—exclusion formula
obtained in [16] (tube identity) for orthant arrangements. The authors prove there
that truncating the formula at even and odd level leads to upper and lower bounds
for the reliability,

r+1

Z( 17 Y ProlQy,) <:R(S)<Z( 17 Y ProdQq,).

mreA; mreA;

9)
O<r<d-1,reven
In [16] it is proved that such bounds are always at least as tight as the bounds
from truncating the usual inclusion—exclusion lemma. It is of some interest that
these inequalities have not, to the authors’ knowledge, been established in the
algebraic literature.

5.3. Thebinarycase. The methods of this paper were introduced to be applied
to any general multistate coherent system and in the next section we give an
example. We discuss first, however, the standard binary case on which there is
much literature.

This literature divides into three broad classes: cases derived from networks,
special nonnetwork cases (such fasut-of+) and arbitrary binary examples.

For network and some special nonnetwork cases there are identities and bounds
competitive with those presented in this paper. The best published results contain
identities with the maximum amount of cancellation in the classical inclusion—
exclusion identities. An example is the work by Satyanarayana and Prabhakar
(see [18, 19]). For bounds the recent results of Dohmen [5-7] also using tube
identities are based on a somewhat different construction and are specialized to
certain classes of networks.

As mentioned, the immediate problem with using the Scarf resolution for
binary systems is that the genericity condition only holds in trivial cases and
the deformation procedure has to be used. The algebraic theory tells us that this
does not guarantee a minimal resolution and, as pointed out in [10], different
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deformations give rise to different Scarf complexes. Thus, some deformations
can be better than others, in the sense that they lead to a smaller Scarf complex
and therefore to a more concise reliability identity. The authors are currently
investigating the possibility of identifying the “optimal” deformation, that is,

the deformation that leads to the minimal resolution. As the general theoretical
minimal resolution problem appears to be unsolved in algebra an early theoretical
solution is not expected, but fast computational methods look promising.

Notice that in the binary case if we assume independence among the component
failures and we indicate by; the probability of nordilure of component, the
probability of an orthan,,, associated with the index sein the Scarf complex
is easily obtained as

(10) Prob(Qu,) = [] pi-
ari=1

To summarize, the strategy for the binary case which derives from this
paper is as follows: (i) describe the failure set; (ii) perturb the minimal failure
points to general position; (iii) derive the Scarf complex; (iv) consider the
labels (monomials) associated with the Scarf complex; (v) obtain the orthant
probabilities; (vi) derivehe final idenities or bounds.

EXAMPLE 4 (Binary network). We illustrate our method by considering an
eight-component binary system defined by the following nine minimal nonfailure
points:

F*={(1,0,0,0,0,1,0,0),(1,0,0,1,0,0,1,0),(0,1,0,1,0,1,0,0),
(1,0,0,1,1,0,0,1),(0,1,0,0,0,0,1,0),(0,0,1,1,1,1,0,0),
(0,1,0,0,1,0,0,1),(0,0,1,0,1,0,1,0),(0,0,1,0,0,0,0,1)}.

This example is taken from [6, 7]. The corresponding monomial ideal in

K[x1,...,xg] is generated by the monomials corresponding to the minimal
nonfailure points:

M = (x1x6, X1X4X7, X2X4X6, X1X4X5X8, X2X7, X3X4X5X6, X2X5X8, X3X5X7, X3Xg).

After perturbation (withe; = i /10) and ranking, we obtain the following generic
monomial ideal:

M= <x?x§x§x2xéx§x?xg, xzxgxgxfxgxgxgxg, x%x?x%x}xéxgx?xg,

x?x%x%x?x?xé’x?xg, xfxgxycg%xgx;xg, xfx%x%xixéx?x%xs,
2.6.26.2 7 7. 5 6 66
X1 XoXgX5XgX7Xg, X1X2X3X4X5X6X7, XS)C8>.
The corresponding Scarf compley; contains 103 elements, which are the index
subsets of the following six facets:

({12479, {13689, {12579, {12589, {13579, {13589},
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where 12, ..., 9 are the labels of the minimal generators\of

The reliability function is obtained following (8) and (10) and it is based on the
probabilities of the orthants identified by the Scarf complex. For example, the in-
dex setl = {127} corresponds to the least common multiple of the first, second and
seventh minimal generators; = x1xox4x5xgx7x8 = ICM(X1X6, X1X4X7, X2X5X8).
In the independence case, using (10), the probability of the corresponding orthant
is expressed in terms of the probability of nonfailure of the single components,
pi,izl,...,8,

a] = (17 1’ 07 1’ 17 1’ 17 1)’ ProuQC{[) - p1p2p4p5p6p7p87

wherea; is the exponent of the monomiail; .

Notice that, interestingly, the Scarf complex here coincides exactly with the
tube simplicial complex obtained by Dohmen [6, 7] in the case of a binary planar
network whose reliability function is defined as source-to-terminal reliability.
However, the Scarf complex method can be applied to much more generally
defined coherent systems, as for example the binary nonnetwork case or the
multistate case.

ExAMPLE 5 (Binary nonnetworks). The receliterature comdins several
efficient algorithms to calculate the reliability of special classes of coherent
systems. For example, the method presented in [19] gives an efficient algorithm
that can be used to evaluate the source-to-terminal reliability of binary networks.
The work by Dohmen, mentioned in the previous example, provides reliability
bounds and the exact formula for a wider class of networks. However, there are
other binary structures that are not networkst-Aut-of+ system is well studied
but it is only one of the many possible examples of a nonnetwork system. In our
setting ak-out-ofn system can be represented, as any other coherent system, by a
monomial ideal. For instance, the ideal

M = (x1x2, X1X3, X1X4, X2X3, X2X4, X3X4)

is the monomial ideal corresponding to the nonfailure set of a 2-out-of-4 system. In
general, different situations can arise where the minimal nonfailure points do not
correspond to the paths of any binary networks. For example, it can be seen that the
minimal nonfailure setF* = {(1,1, 0,0, 0), (0,1, 1,0, 0), (0,0, 1,1, 0), (1,0, 0,
1,1),(0,1,0,0,1)} cannot derive from any network. As in the previous example,
labeling the minimal nonfailure pointd, ..., 5), after deformation and ranking

the resulting Scarf complex is obtained:

A = {{1235, {123}, {135}, {125}, {235}, {345},
{13}, {12}, {15}, (34}, {23}, {25}, {35}, {45}, {1}. {2}. {3}. {4}. {5}}-



SCARF COMPLEX FOR COHERENT SYSTEMS 1307

5.4. The multistate case. As explained, the full power of the method is
exhibited for multistate systems where the literature on identities is sparser than
for the binary case and bounds even more so. The same steps (i)—(iv) are used as
in the binary case. For multistate systems the degree of nongenericity tends to be
relatively lower because the multiple levels tend to separate out the points better.
In the next section we show that with some care the generic setting can also be
extended to cover the continuous case.

In Section 5 we introduced the notion of a system without imposing any limit
on the number of state levels that each component can assume. The o@hants
as defined above were infinite portions of the state space. However, in the situation
where each component has only a finite number of states the state Hpice
finite and the nonfailure sef is given by the intersection of the monomials in the
monomial ideal generated by the $et with the state spac®. The formula in (8)
is still valid if we take care to intersect each orthant with the®eFull details are
given in [11], where the finite case is described in a more formal setting.

We consider here a multistate system where the nonfailure set is defined by
setting a cutoff point for an increasing functiod defined on the state spage

Fe={a € DIV (a) > c}.

An example of such a setting is given by a situation where the pbodieriving
from a certain system is a function of the performance of each single component.
In addition, we consider the case where the performance (profit) of the system
is mostly affected by the performance of certain components or combination
of components. For example, consider the following prdfifor a given four-
component system:

(11) U =1 + o + 4oz + Sag + 20304,

where the performanae of theith component can take values{in 1, 2, 3}. The

coefficient 4 for the ternas means that the contribution to the profitfrom the

third component is 4 when the component is at level 1, 8 when the component is

at level 2 and so on. The “interaction” ternaxzs implies that profit is further

boosted when components 3 and 4 are simultaneously at high performance levels.
For the profit function (11) defined on the state spaxe- {0, 1, 2, 3}%, if the

cutoff point is set at at = 28 we obtain nine minimal nonfailure configurations,

Fre=1(3,2,3,1),(2,3,3,1),(2,0,2,2),(1,1,2,72),
0,2,2,2),(3,0,1,3),(2,1,1,3),(1,2,1,3),(0,3,1,3)}.
Since the profit function is increasing in all the components, any configuation
with B8 > o, with « in F55, still belongs to the nonfailure seftog = {a € D |
W(a) > 28).

To obtain the reliabilityR = Prol(#»g) and the corresponding bounds we use
the improved inclusion—exclusion formula via the Scarf complex, as described
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above. Since the genericity condition does not holdﬁ_’gg we need to proceed
via deformation and ranking:

Fr=1{(7.4.7.0),(4,7.8,1).(5.0,4,2),(2,2,5,3),
(0,5,6,4),(8,1,0,5),(6,3,1,6),(3,6,2,7),(1,8,3,8)}.

After labeling the minimal nonfailure points ifi;; from 1 to 9 the facets of the
corresponding Scarf complex can be obtained:

Az ={{123}, {489}, {459}, {234}, {378}, {348}, {367},
{49}, {59}, {23}, {24}, {38}, {89}, {78}, {48}, {36},
{67}, {45}, {34}, {13}, {37}, {12}, {9}, {8}, {7}, {6}, {5}, {4}, {3}, {2}, {1}}.

The geometrical representation of the Scarf complex is given in Figure 2. Notice
that the inclusion—exclusion formula now includes only 31 terms compared to the
29 — 1 =511 terms that would appear in the complete classical formula.

As an example of the calculation of the reliability formula (8) or the tube
bounds (9), we obtain the probability of the orthant associated with the index
set{489 in the Scarf complex\,g.

Using the notation introduced in [9], we indicate wilf} the random state
of componenti and with P;(j) the probability that componetitis in a state
level “better” thanj: P;(j) = Prob(X; > j). In addition we indicate withp; ;
the probabiliy that component is exactly in statej: p;; = Prob(X; = j),
i=1,...,4,j=0,...,3. Therefore we obtain the following expression ﬁp(j):

nj
Pi(j)=)_ pik:

k=j
wheren; is the maximum performance level of th#éh component. The index

FIG. 2. Geometric realization of the Scarf complex in the multistate example.
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set/ = {489 in the Scarf complex corresponttsthe least coomon multiple of
the three monomials in the (original, before perturbation) minimal failure/Sgts
labeled 48 and 9, respectively:

my = ICm(x%x%xgxi, x%x%x%xﬁ, x%x%xi’) = x%x%x%xi’.
Thus, in the case of mutual independeng®ag the components, the probability
of the orthant associated with the index et {489 [and the corresponding
monomialm; = x}x3x2x3, a; = (1, 3, 2, 3)] is obtained by

4
Prob(Q,,) = H Pro(X; > ay;)
i=1
3 3

= P1(1) P2(3)P3(2) Pa(3) = p23- paz- Y _ p1j - Y P3j.
j=1 j=2

5.5. The continuous distribution case. A natural generalization of the multi-
state system is to components with continuous states. With care, the continuous
case can be mapped into the discrete case in such a way that the inclusion—
exclusion lemma and associated tube bounds can be inferred back from the discrete
to the continuous case.

A simple way to define the mapping is to replace continuous values by their
rank along each dimension. In addition one needs to “quantize” the continuous
distributions.

Thus letZ = (Z4, ..., Z,) be ann-vector random variable with distribution
function

Fz(z) =Pro(Z < z).
Define critical points
(12) D, g
and the corresponding orthants
0,0 = {zlz > z?}.

Thus the nonfailure event is given by

m
F= 0.0
i=1

Now consider for a particular dimensioithe set of all values on that dimension,

zfl) zfm).

g e ey

Assume the continuous genericity (general position) condition,

(13) forall j#; = V%9  j=1..m
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The condition is not too strong in this case because for continuous variables the
critical points (12) can be easily chosen so that condition (13) is satisfied.
Fix the dimensiori and relabel the values so that

zl.(l) < zl.(z) << zl-(m).

Finally, createn + 1 states for the discrete variabte so that

X;isinstatej <« Y <z <Y,

This induces a distribution on the: 4+ 1)" grid with probabilities

n . .
Probﬂ{zf‘/) <Z; < Zi(j+1)}’
i=1

which allows the orthant probabilities to be expressed in a straightforward way in
terms of the distribution functiod,

Prob(Q,n) =1—F(z{",...,z").

The Scarf complex and associated tube bounds as obtained in the previous
sections can then be derived.
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