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We present the asymptotic distribution theory for a class of increment-
based estimators of the fractal dimension of a random field of the form
g{X ()}, whereg:R — R is an unknown smooth function anxi(z) is a
real-valued stationary Gaussian field BA, d = 1 or 2, whose covariance
function obeys a power law at the origin. The relevant theoretical framework
here is “fixed domain” (or “infill”) asymptotics. Surprisingly, the limit theory
in this non-Gaussian case is somewhat richer than in the Gaussian case (the
latter is recovered whep is affine), in part because estimators of the type
considered may have an asymptotic variance which is random in the limit.
Broadly, wheng is smooth and nonaffine, three types of limit distributions
can arise, types (i), (ii) and (iii), saffach type can be represented as a random
integral. More specifically, type (i) can be represented as the integral of a
certain random function with respect to Lebesgue measure; type (ii) can be
represented as the integral of a second random function with respect to an
independent Gaussian random measaing; type (iii) can be represented as a
Wiener—It6 integral of order 2. Which type occurs depends on a combination
of the following factors: the roughness &f(r), whetherd =1 ord =2
and the order of the increment which is used. Another notable feature of
our results is that, even though the estimators we consider are based on a
variogram, no moment conditions are required on the observedgfi&l¢ )}
for the limit theory to hold. The results of a numerical study are also
presented.

1. Introduction.

1.1. Background. The problem of quantifying the roughness of a (continuous
but rough) curve or surface, whose height is observed at discrete locations on a
rectangular grid, arises in many areas of science and technology. A widely used
approach is to model the curve or surface as a random field whose covariance
function follows some form of power law behavior at the origin, and then to
estimate a scale-invariant measure such as the fractal dimension to quantify
roughness. A good entry point to recent statistical literature on this topic is the
discussion paper by Davies and Hall (1999).
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Frequently in this approach it has been assumed that the curve or surface is
Gaussian. However, in a number of applications the Gaussian assumption may be
open to doubt, and therefore the problem of estimating the fractal dimension in
non-Gaussian settings is of interest. In this paper we study estimators of fractal
dimension for a class of stationary non-Gaussian random fields, and we provide
a detailed account of the asymptotic distribution theory for these estimators, as
well as studying their numerical properties using simulation. As a preliminary, we
provide a brief review of recent work in which the Gaussian assumption is made.

1.2. The stationary Gaussian model. For simplicity we focus mainly on the
one-dimensional casel (= 1) in this Introduction. Let{X(¢):7r € R} denote
a stationary Gaussian process with a covariance fungtiomhich obeys the
following power law at the origin:

(1.1) y (@) =y () — clt|* + 0(|t|*TF) aslt| — 0,

wherea € (0, 2], known as the fractal index, governs the roughness of the sample
functions and is typically the parameter of greatest interest in roughness studies;
the positive quantityc is a (local) scale parameter known as the topothesy;
and g > 0 governs the size of the remainder term in (1.1). There is a simple
relationship, under model (1.1), betweenand the fractal dimensioD of
the graph of the sample function, given By = 2 — «/2; see, for example,
Adler (1981). [This result generalizesfv=d + 1—«/2 whenX (¢) is a stationary
Gaussian random field oR¢ with covariance function of the form (2.3).] Thus,
the larger the value af, the smoother the sample function.

Suppose we observe a sample

(1.2) 8, ={X(@i/n):i=01... n—1)

of observations ofX (¢) at equally spaced locations in the regigh 1]. In

this formulation of the problem the asymptotic regimenas> oo is known as
“fixed domain asymptotics” and is often appropriate when interest is focused on
roughness at fine scales. See Stein (1999) for further discussion of this type of
asymptotic regime.

A variety of estimators ofr, based on datd&,, have been studied in recent
years under model (1.1), witlk assumed to be stationary and Gaussian. For
example, Hall and Wood (1993) considered box-counting estimators; Jakeman and
Jordan (1990) and Constantine and Hall (1994) discussed estimators based on the
variogram; Feuerverger, Hall and Wood (1994) considered estimators based on
counting upcrossings; and Chan, Hall and Poskitt (1995) considered estimators
based on the periodogram. Kent and Wood (1997) considered two modifications
to variogram-based estimators: the use of higher-order increments and the use of
generalized least squares. The use of higher-order increments in a closely related
context was investigated independently by Istas and Lang (1997).
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In this paper the focus is on variogram-based estimators of fractal dimension,
and we now discuss these in more detail. The theoretical variogram is given
by v(h) = E{X (t + h) — X (¢)}? and under (1.1)(h) ~ 2c|h|* as|k| — 0. Given
data of the form (1.2), we can estimat@:/n) by

(1.3) D= S [X{G +w)/n) — X /m)]%,

1

and we can estimate using log—log regression based on the approximation
relationship

(1.4 log ¥, ~ const+« logu.
The simplest estimator of this type is the ordinary least squares estimator given by

> logd,(logu —m=t ¥ logk)
> (logu —m=137 ; logk)?

wherem stays fixed ag — oo.

It turns out that when & « < 3/2 the estimator (1.5) has variance of ordet,
but when 32 < « < 2 the variance of (1.5) is of ordef®—*. See Constantine and
Hall (1994); related results were also obtained by Jakeman and Jordan (1990).
More recently, it was noted by Kent and Wood (1997) and Istas and Lang (1997)
that if one bases the variogram in (1.3) on second-order differences, that is,

(1.6) D= S [X{G +w)/n) + X(G —w)/n) —2X G /m)],

1

(1.5) &=

then the variance of the resulting estimator (1.5) is of ord@rfor all « € (0, 2).

Thus, there is motivation for considering variograms based on increments
(i.e., differences) of higher order. In our terminology (1.3) is based on an increment
of order 0, and (1.6) is based on an increment of order 1, and in either case (1.3)
may be written in the form

aM:Z[Za;fX(i”)}Z,

: X n
! J

where thea]’4 notation for increments is described in detail in Kent and Wood
(1997) and Chan and Wood (2000) and is summarized in the Appendix.

More recently, the corresponding estimation problem for the two-dimensional
case was considered in the discussion paper by Davies and Hall (1999). The
analysis of data obtained by two-dimensional sampling is trickier than the one-
dimensional case, in part because of the possibility that anisotropy is present.
A helpful discussion of this issue is given by Davies and Hall (1999). A second
approach to the analysis of two-dimensional surface data is considered by Chan
and Wood (2000).
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1.3. Non-Gaussian data. In this paper we assume that, instead of observing
the stationary Gaussian proceXgr), we observe a stationary non-Gaussian
procesg{X (r)}, whereg is a smooth but unknown nonaffine function axids a
stationary Gaussian process satisfying (1.1) as before. Two-dimensional sampling
of random fields (corresponding = 2) is also considered. We address the
following question: what are the asymptotic properties of the variogram-based
estimators when we obserg¢X (¢)} rather thanX (z)? From a theoretical point
of view, the quantity being estimated, namely the fractal dimension of the sample
function, will be the same as that of the underlying Gaussian random field
providedg is nondegenerate and reasonably smooth; see Hall and Roy (1994) for
the relevant results. However, it turns out that the asymptotic distribution theory
for nonaffineg is somewhat richer than in the Gaussian case (though the Gaussian
case is recovered, of course, wheis an affine transformation).

Chan and Wood (2000) obtained (correct) preliminary results concerning
rates of convergence in the case whegtx) = x2. However, no concrete
results concerning the asymptotic distribution theory were given, and in fact the
conjectures in Remarks 5.5 and 5.6 of that paper do not adequately describe
the results given below. Also, it turns out that the cgge) = x2 is not fully
representative of general smooth nondegenerabecause some components of
the limit distribution disappear or are constant in the former case.

Our main theoretical results are stated in Section 2. One general point which
emerges is that the estimation of fractal dimension in this non-Gaussian setting is,
in a sense, more difficult than in the Gaussian case; see, in particular, point 2 in
Section 2.3. However, on the numerical side a fairly extensive simulation study
reported in Section 3 suggests that, in practice, the deterioration in the non-
Gaussian setting is fairly mild, provided thats not drastically nonaffine in the
relevant domain. The main theorems are proved in Section 5. These proofs make
use of several lemmas which are proved in Section 4.

2. Main results. The principal results in the paper are presented in Theo-
rems A and B. Theorem A covers those cases in whiegh4p — 2o > d and
Theorem B covers those cases in which-4p — 20 < d, wherep > 0 is the
order of the increment used (see the Appendix} 1, 2 is the dimension of the
parameter set of the underlying random field ane (0, 2) is the fractal index.

Throughout this paper we make frequent use of the notation for increments and
multi-indices given in the Appendix.

2.1. Preliminaries. Let{X(¢): < R?} denote a real-valued stationary Gaussian
processd = 1) or field (@ = 2) with covariance function given by
y () =covX(s), X(s +1)}.

Let g:R — R be an unknown function. It is assumed that we obsegif\é(r)}
rather thanX ().



1226 G. CHAN AND A. T. A WOOD

Define the index set
(2.1) I, ={0=<j <no}.

Whend = 1, j andng are integers and we talke=ng; and wheni = 2, j andng
are multi-indices inZ? (see the Appendix) andg = no(n) is a sequence such
thatn is the product of the elements o, that is,n = no[1lng[2]. Thus,n is the
number of elements il,. The dataset we actually sample is given by

8, ={gi=g{X(i/no)}:—mJ <i <no+mJ},

where division of multi-indicesj, k € Z¢ is defined byj/k = (j[1]/k[1], ...,
jld1/k[d]), assumingk[/] == O for eachi. In the definition ofs,,, J is a multi-
index which depends on the increment that we use, an@n integer, is the
number of dilations of the increment that we consider [see the Appendix and also
Kent and Wood (1997)]. It is assumed throughout thattays fixed as — oo;
justification for keepingn fixed is given by Constantine and Hall (1994). Note that
the sampling regime indicated above corresponds to “fixed domain” asymptotics
asn — oQ.

Consider the following conditions gn andg.

(Al),(f” For somex € (0,2) andg > 0, and for each nonnetige multi-indexr
with |r| =g,

o4
y @) = —o U M@/l + O(|lt)|“TP~4)

(2.2)
as|t|] — 0,

where ||7|| = (:T1)1/2 is the usual Euclidean norm dR?, and, for a
nonnegative multi-index = (r[1], ..., r[d]), y @) = a7y @) /9" =
alrly 0y/ae, M. 91719 wherelr| = Y r[1]. In (2.2) M(-) is assumed
to be a positive constant wheih=1; whend =2 M (-) is a function on
the unit circle inR?, all of whose partial derivatives derivatives of order
g + 1 are assumed continuous.

(42) The seventh derivative af, ¢(”, is continuous ofR.

(43) The set{x:g(x) = 0} has Lebesgue measure 0, whef® is the
derivative ofg.

(A4 (d =2only.) Asn — oo ng[1]/no[2] stays bounded away from 0 and.

It is easily shown that, ifAl)gd) holds, ther(Al)ﬁd) holds foreach kr <g.

Moreover,(Al)Ejd) implies that

(2.3) y (1) =y ) — lt|* M/l + O(lle]|**P),

where (2.3) reduces to (1.1) whenr= 1.
It is possible to weaken assumptigm?2) to some extent, but only at a
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considerable cost in technical detail in the proofs. Assumpti4B) is a mild
nondegeneracy condition which seems essential if our theorems are to hold.
Condition (44) is needed whed = 2 to ensure that the sampling set does not
become too “thin.”

Puttingg; = g{X (i/ng)}, we define

2 . . 2
(24) Zu=n_1Z{Za?gi+j} , Mu:nd/dE{Za7X(l+])}

ied, U j F no

and
(2.5) G, :/ X d,  r=12
te[0,1]4

whered =1 or 2. The notation for incremengs= {a;} used in (2.4) is explained
in the Appendix. LetL,, u =1, ..., m, be real numbers which satisfy

m m
> L,=0, > Lylogu=1.
u=1 u=1

Various choices for thé&, are discussed by Kent and Wood (1997). All are based
on the log-linearity given by the power law relationship; see (2.3) and (1.4). The
simplest case is ordinary least squares [see (1.5)] for which

(logu —m=1¥"™ | logv)

L, = , u=1...,m.
! m_(logu —m=1¥"_, logv)?

Define
m B m
(2.6) &=> LylogZ, and o,=)Y L,logu,
u=1 u=1
and
(2.7) F=(F1+ F2)/Gu,
where
m
F1= Z Luﬂai(fo,lu + 70,24 + ro,su)}
(2.8) u=1
[ PO xa)ar
re[0,1}4
and
m
2= {Z Lu/*a,i(TO,lu + t0,24 + ro,4u)}
-1
(2.9) u

x —/te[O 1]d[g(2){x(’)}]2df-
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In the aboveug,, =lim, o 1, € (0,00) andzg j, =liM, 007/ (j=1,...,4;
u=1,...,m), whereu, is defined in (2.4) andy,, 12,, 3, andzy, are defined
in (5.13), (5.18) and (5.21). Note thap , andrg_j, may be determined explicitly
using (1.1) wher =1 or (2.3) whend = 2, but we omit the details because these
formulas are not required in what follows.

The quantitys which appears in Theorem A is defined as follows. When 1,

(2.10) o=Vl dot,

wherer, =CYu=*L,,u=1,....,m,t = (t1,....ty)T, C > 0 is the constant in

formula (2.7) in Kent and Wood (1997) aniy is the covariance matrix defined

via (3.3) and (3.6) in Kent and Wood (1997) (the precise definitions ahd ®q

need not concern us here). Whége= 2, o is still of the form (2.10), but with the

quantitiesC and®q now given by (3.13) and (3.16) in Chan and Wood (2000).
The integratoB(-) which appears in Theorem A is a Gaussian random measure

such that, for any measurable subséts. . ., A of [0, 1]¢,

(2.11) (B(A1), ..., B(Ap)" ~ Nx(0, ),

whereW = (), ;i = A(Aj N A;) andi denotes Lebesgue measureRsh
In Theorem BZg is the zero-mean random Gaussian measure defined on
[—m, 7]¢ with the following properties: ifD1, Do C [—, w14, then

coV{ Zs(D1), Zs(D2)} = S(D1N Do),

wheres is the spectral measure of a covariance functio ®of the formp (k) =
Ikl *A(k/|k|l), where k € Z¢ and A(-) > 0 is a continuous function on
the unit sphere inR?. In fact, p(k) is defined as the limit aa — oo of
the covariance ca¥;, Yi+x), whereY; = " 1 u?Y;, /(X" u*)Y/2 and ¥y, is
defined in (5.1). Whed = 1, we may taked to be a constant, and whein= 2,
A is determined by in (2.3).

2.2. The theorems. We are now ready to state our main results, Theorems
A and B. Discussion of these results follows in Section 2.3.

THEOREM A. Suppose that y and g satisfy conditions (Al)f), (A2)
and (43), and, if d = 2, suppose also that the sampling regime satisfies (A4).
Let @ and «;, be defined as in (2.6), using the index set (2.1) in (2.4). Suppose
that a = {a;} is an increment of order p > O such that 4 4+ 4p — 2« > d,
whered =1or d =2. Then

(2.12) & —a,=n"*"F+4n
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whereo > Qisaconstantand Z ~ N (0, 1) isindependent of G1, G2 and F, where
the latter are defined by (2.5)and (2.7)—(2.9).
When 0 < 20 < d, then=*/¢ termin (2.12)is dominant and, in this case,

n*? G —oe,,)g F.

When d < 2o < min(4, 4+ 4p — d), then=Y? termin (2.12)is dominant and, in
this case,

Y206 _ 0 2 a1 @ D £
n (¢ —ay) —> oGy /[O,l]d[g {X(t)}] dB(t) Z,

where B(¢) is the Gaussian random measure described in (2.11).Wnen 20 =d,
both terms contribute, and we have

n"2@ —a) B F+0Gy! o1y [¢P{X(1)}]?dB().

In the above the Gaussian measure {B(r)} is independent of the underlying
Gaussian field {X (¢) : ¢ € [0, 1]%}.

When 4+ 4p — 20 < d, the limit distribution ofa¢ may be expressed as a
Wiener—Itd integral of order 2. See Dobrushin and Major (1979) and Major (1981)
for further details on Wiener—Ito integrals.

THEOREM B. SQuppose that y and g satisfy conditions (Al)f), (A2)
and (43), and (when d = 2) the sampling regime satisfies (A4). Let @ and «;,, be
defined asin (2.6) where, as before, a= {a;} isan increment of order p =0, and
supposethat either d =1and3/2<a <20ord =2and 1 < o < 2 (corresponding
to the condition 4 + 4p — 2a < d). Then

n(z_a)/d(& —ay)

26t I(x1#xp)e" (132

x1,x2€[—m, )4 [e[o,l]d

x [eV(X )] dr dZs(x1) d Zs(x2)
D

I(x1 7 x2) Fo(x1+ x2) dZg5(x1) d Zs(x2),

x1€[—n,m 4 —/xze[—n,n]d

where the indicator function I (x1 # x2) excludes the diagonal and
Fo(x =G_1/ e e Wix ()12 dr
(=G| e P X )]

is the Fourier transform of the random probability measure on [0, 1] whose
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density with respect to Lebesgue measure is given by [gP{X (1)}12/G1. In the
above, the Gaussian measure Zg is independent of the underlying Gaussian
field {X (¢):¢ € [0, 1]¢}.

2.3. Discussion. A number of comments concerning Theorems A and B

now follow.

1.

Wheng is affine in Theorem AF =0, v/G2/G1 = 1 and therefore the limit
distribution of nY/2(& — ;) is N(0,02). This agrees with the central limit
theorems given in Kent and Wood (1995, 1997) and Chan and Wood (2000).

. Note that, in (2.12)/G2/G1 > 1 by the Cauchy-Schwarz inequality, with

equality if g is affine. Moreover, wherx < d/2 the rate of convergence af

to a,, is of slower order than—/2, Therefore, we may conclude that, from the
point of view of the estimatat in (2.6), the non-Gaussian cager(ot affine) is

less favorable than the Gaussian casaffine) in the framework considered in

this paper. This finding is confirmed by the numerical MSE results in Section 3,
though these results also suggest that the deterioration is not too severe provided
thatg is not drastically nonaffine over the relevant domain.

. At the borderline between Theorems A and B [i.e., when the increment used

has order 0 and = (4 — d)/2], the limit distribution is of the type given
in Theorem A, but the convergence ratenof/? is modified by a logarithmic
factor in n; compare the Constantine—Hall (1994) result whea 3/2. We
omit the proof.

. The bias ofe in the context of Theorem A depends not only on the right-

hand side of (2.12), but also @} — «. It follows from (2.1) and (2.3) and the
definitions in (2.6) that, —« = O(n~#/9). It can be seen that, in Theorem A,
this term makes a negligible contribution to the bias if and onlg i «,

and it makes a negligible contribution to the mean squared error if and only
if 8> min(x,d/2). In Theorem Bw,, — « makes a negligible contribution to
the MSE if 8 > 2 — «. See Constantine and Hall (1994), Kent and Wood (1997)
and Chan and Wood (2000) for further discussion of this bias term.

. It is interesting to note that Theorems A and B do not require any moment

conditions ong{X (¢)}. This is a consequence of the Gaussianityaf) and
the smoothness @f. See also the proof of Step 1 in Section 5.

. It is straightforward to extend the results given the= 1,2 to d > 2. In

short, if p is the order of the increment used, then we are in the situation of
Theorem A if 4+ 4p — 20 > d, and we are in the situation of Theorem B
ifd+4+4p — 20 <d.

. It may be helpful to give some intuition as to wk(r) is independent of

the Gaussian measur® in Theorem A and the Gaussian measufe in
Theorem B. For simplicity consider the case- 1 and letX () have covariance
functiony (¢) satisfying (1.1). Then as — 0 (corresponding to a fixed-domain
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asymptotic regime), we have (W, (1) = h~*/3{X(t + h) — X (1)} converges

in distribution to N (0, 2c), and (i) W,(¢) is asymptotically independent

of X(¢). Essentially, the increments & in Theorem A andZg in Theorem

B are linear combinations of terms of the for#y, (), while each integrand
depends only orX (¢). Thus, the integrator and integrand are independent in
the limit. In Step 6 of Section 5 we establish this asymptotic independence
rigorously.

8. Note that the “diagonallx; = x5} is explicitly excluded from the region of
integration in Theorem B. This is in line with the definition of the Wiener—
Ité integral given by many authors, including Dobrushin and Major (1979),
formula (1.9), Major (1981), Theorem 8.2, Nualart (1995), formula (1.13) and
Arcones (1994), formula (3.9), but note that in all of the above references the
exclusion of the diagonal is not made explicit in the notation. See Taqqu (1979),
page 77, for helpful discussion of this point.

3. Numerical results. In the simulation studies described below the covari-
ance function of the underlying stationary Gaussian field was chosen to be of the
formy (t) = exp(—c||t]|*), wherex € (0, 2) andc > 0, and||¢|| is the usual Euclid-
ean norm orR?. We chose: = 1 whend = 1 andc = 10 whend = 2 throughout
our numerical work. The data were simulated using the circulant embedding ap-
proach; see, for example, Wood and Chan (1994) and Chan and Wood (1999) for
details and further references. In all cases considered, it was possible to use the
algorithm in its “exact” form.

Four types of point transformations were considered:

1. Uniform: g(x) = ®(x);

2. Exponentialg(x) = —log{l — ®(x)};

3. Chi-squared with one degree of freedqrti) = x2;
4. Log-normalig(x; t) = exp(tx).

In the above® denotes the standard normal distribution function. Two
cases of the log-normal distribution were considered, corresponding=tal
andt = 4. Note thatr = 4 corresponds to an extremely nonaffine transformation
in the relevant domain and is included as an extreme case. Each of the above
transformations preserves the fractal dimension of the underlying Gaussian
random field [see Hall and Roy (1994)].

Figure 1(a) shows a realization of a Gaussian processavith0.1, and Fig-
ure 1(b)-(f) shows various nonaffine transformations of this realization. Figure 2
shows similar nonaffine transformations of a smoother process,onithl.0. It
is clear from visual inspection of the graphs that the nonaffine transformations do
have a noticeable effectin both Figures 1 and 2, and in many cases the transformed
processes do clearly exhibit non-Gaussian features. The log-normal transformation
with T = 4 is particularly extreme, as might be expected.
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Some representative numerical resultsdet 1 are displayed in Tables 1-3 and
ford =2 in Table 4.

Table 1 summarizes the results of a simulation study of the performance of three
estimators&gﬁs, &825 and&élas, of the fractal indexr of a Gaussian process, and
several transformations of this process. The notation used for these estimators is
the same as that in Kent and Wood (1997) and Chan and Wood (2&)@@;

p =0 or 1, is the ordinary least squares estimatoiofiven by (1.5), based

on the log-log relationship (1.4), and using increment (A.3) wheg 0 and
increment (A.4) wherp = 1; and&gﬁs is a generalized least squares estimator
of «, again based on the log—log relationship, using increment (A.4). For smoother
processes (e.gey, = 1.9) the GLS estimator performs slightly better, in terms of
the mean squared error (MSE), than the other two estimators, due to its smaller
bias. For rougher processes (e.g.= 1.0 and 0.1) all three estimators have
very similar MSE with slightly higher standard deviation (SD) for the estimators
with p = 1. One noticeable fact is that all estimators generally perform worse for
the transformed processes. However, the deterioration is fairly mild in most cases,
exceptin the case of the log-normal(4) transformation, where there is a substantial
increase in the MSE.

In the second study we compare the asymptotic and empirical rate of decrease
in variance ob?gjﬁs and&gas as the sample sizeincreases. The asymptotic rates
of decrease are computed using the following results in the Gaussian case [see

Constantine and Hall (1994) and Chan and Wood (2000)]:

Cin 1, O<a<3/2,
var(&g)ﬂs) ~ 1 Con~tlogn, a=3/2,
C3n2°‘_4, 3/2<a <2,
and
var(&gas) =Cqn 1 O<a <2

where C1, ..., C4 depend one and m but not onn. Hence, the asymptotic
variance ratios for sample sizeg < np and o # 3/2 will be equal to either
(n2/ny)~t or (nz/nl)z"‘_4. For a non-Gaussian process in the one-dimensional
case { = 1), the variance formulas for boﬂg)ﬂs andée((jlﬂS are the same as in the
Gaussian case except wher@ < 1/2. In that case the asymptotic variances are
asymptotic toCsn—2* for both estimators. Table 2 reports the estimated variance

whenn = 1000 and the estimated rate of decrease in variance:
var(ay,) /var(@1000, whenn = 200Q 400Q 10,000,

for Gaussian, exponential(1) (as an example of mildly nonaffine transforma-
tion) and log-normal(4) (as an example of extremely nonaffine transformation)
processes. For the Gaussian case there is good agreement between the theoretical



TABLE 1
Comparison of the three estimators and six processes with n = 1000,m = 4, based on 100 simulations in each case

~(0) ~(1) ~(1)

%oLs %oLs “GLS -
o Process Bias SD MSE Bias SD MSE Bias SD MSE O
0.1 Gaussian —0.021 0.033 0.002 —-0.021 0.043 0.002 —-0.021 0.043 0.002 ('7',
Uniform —0.028 0.034 0.002 —0.029 0.045 0.003 —0.029 0.045 0.003 o
Exp(1) —0.027 0.039 0.002 —0.025 0.051 0.003 —0.025 0.051 0.003 ;§>
X12 —0.041 0.041 0.003 —0.036 0.054 0.004 —0.036 0.054 0.004 (:3'
Log-N(1) —0.032 0.047 0.003 —0.029 0.064 0.005 —0.029 0.063 0.005 =2
Log-N(4) —0.079 0.090 0.014 —0.081 0.152 0.030 —0.075 0.133 0.024 Z
pd
1.0 Gaussian —0.002 0.041 0.002 0.002 0.059 0.003 0.001 0.057 0.0
Uniform —0.000 0.052 0.003 0.006 0.077 0.006 0.005 0.074 0.0%
Exp(1) —0.005 0.055 0.003 —0.005 0.076 0.006 —0.004 0.074 0.006 JC>
X12 —0.008 0.059 0.004 0.000 0.079 0.006 0.001 0.074 0.0%
Log-N(1) —0.008 0.057 0.003 —0.008 0.079 0.006 —0.006 0.077 0.006 >
Log-N(4) —0.059 0.134 0.021 —0.054 0.186 0.038 —0.051 0.175 0.033 é
1.9 Gaussian —0.030 0.055 0.004 —0.002 0.056 0.003 —0.002 0.054 0.003 8
Uniform —0.025 0.060 0.004 —0.001 0.068 0.005 —0.000 0.064 0.004 p
Exp(1) —0.033 0.056 0.004 —0.003 0.068 0.005 —0.002 0.064 0.004 »n
xlz —0.041 0.055 0.005 —0.010 0.071 0.005 —0.009 0.066 0.004
Log-N(1) —0.038 0.054 0.004 —0.004 0.072 0.005 —0.003 0.067 0.005
Log-N(4) —0.068 0.063 0.009 —0.013 0.123 0.015 —-0.012 0.119 0.014

GECT
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TABLE 2
Comparison of the two OL S estimators and three processes with » = 100Q 200Q 400Q 10,000, = 10, based on 500 simulations in each case; the
empirical (asymptotic) variance ratios are given when n > 2000

Order O Order 1
Process o var 2000 4000 10,000 var 2000 4000 10,000
Gaussian 0.1 0%40 048 (0.50) 0.24 (0.25) 0.10 (0.10) .0860 0.48 (0.50) 0.25 (0.25) 0.10 (0.10)

04 Q0?15 050 (0.50) 0.23 (0.25) 0.10 (0.10) .0821 052 (0.50) 0.22 (0.25) 0.10 (0.10)
0.7 Q0222 047 (0.50) 0.23 (0.25) 0.09 (0.10) .0832 045 (0.50) 0.23 (0.25) 0.10 (0.10)
10 Q0?25 047 (0.50) 022 (0.25) 009 (0.10) .0837 049 (0.50) 025 (0.25) 0.0 (0.10)@
1.3 Q0227 053 (0.50) 0.9 (0.25) 0.0 (0.10) .0836 0.55 (0.50) 0.29 (0.25) 0.11 (0.10)O
1.6 Q0%37 069 (0.57) 033 (0.33) 019 (0.16) .0839 052 (0.50) 027 (0.25) 0.11 (0.10)%
19 Q0?41 073 (087) 062 (076) 040 (0.63) .0B46 044 (0.50) 022 (0.25) 009 (0.10)Z

Exp(1) 01 00%49 056 (0.87) 028 (0.76) 014 (0.63) 0873 056 (0.87) 028 (0.76) 0.14 (0.63)5
04 Q0223 057 (057) 0.30 (0.33) 0.2 (0.16) .0834 053 (0.57) 0.28 (0.33) 0.11 (0.16)>
0.7 Q0233 050 (0.50) 0.27 (0.25) 0.1 (0.10) .0847 050 (0.50) 0.28 (0.25) 0.12 (0.10)-;
1.0 Q0234 058 (0.50) 0.27 (0.25) 0.1 (0.10) .088 055 (0.50) 0.26 (0.25) 0.10 (0.10)
1.3 00238 053 (0.50) 0.34 (0.25) 0.1 (0.10) .0853 058 (0.50) 0.30 (0.25) 0.11 (0.10)S
16 Q0245 071 (0.57) 032 (0.33) 020 (0.16) .06l 050 (0.50) 028 (0.25) 0.0 (0.10)3
1.9 Q0242 074 (0.87) 063 (0.76) 0.41 (0.63) .088 051 (0.50) 0.25 (0.25) 0.11 (0.10)

Log-normal(4) 0.1 (@®?12 0.75 (0.87) 0091 (0.76) 057 (0.63) .0833 0.69 (0.87) 0.80 (0.76) 0.53 (0.63)
04 Qo011 1.0 (057) 076 (0.33) 091 (0.16) .0B21 092 (0.57) 0.62 (0.33) 0.74 (0.16)
0.7 Qo018 073 (0.50) 0.54 (0.25) 0.36 (0.10) .0B36 077 (0.50) 0.49 (0.25) 0.31 (0.10)
1.0 Q0'17 063 (0.50) 0.35 (0.25) 0.18 (0.10) .037 056 (0.50) 0.32 (0.25) 0.14 (0.10)
1.3 0o'11 052 (0.50) 0.38 (0.25) 0.5 (0.10) .0829 050 (0.50) 0.27 (0.25) 0.11 (0.10)
1.6 Q0?83 070 (0.57) 0.36 (0.33) 0.22 (0.16) .0b24 049 (0.50) 0.25 (0.25) 0.09 (0.10)
1.9 Q0246 077 (0.87) 0.69 (0.76) 0.50 (0.63) .0b18 048 (0.50) 0.26 (0.25) 0.11 (0.10)
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and the numerical results. For the non-Gaussian cases, there is good agreement
for medium to largex (smoother process). For the exponential(1) process, the nu-
merical variance ratios are closer to those for the Gaussian process forosmall
(rough process). The rate of decrease in variance does not depend noticeably on
the choice ofn.

In Table 3 we study the effect of the number of poimtsised in the regression
for &((DOES, &8&8 and&élﬂs. Table 3 suggests that the number of points used in the
regression does not affect the MSE significantly for all three estimators. For these
simulated data a choice of = 4 would be suitable.

Next we take a closer look at the distribution &)glﬂs for both Gaussian and
non-Gaussian processes. Figure 3 shows normal quantile—quantile plots based
on 100 estimates for Gaussian, chi-square(1) and log-normal(4) processes. The
added straight lines go through the first and third quartiles of these estimates and
the corresponding value of the standard normal distribution. With the exception of

TABLE 3
Comparison of the three estimators for the Xf process in terms of
MSE with n = 2000,m = 2, 4, 6, 8, 10, based on 100 simulations
in each case

01 &g 00056 00031 0.0032 0.0031  0.0031

a5)s 00103  0.0035 00033 0.0030  0.0031

aS3)s 00103 00035 00033 0.0030 0.0031

0.3 &(()OES 0.0054 0.0037 0.0041 0.0045 0.0048

&S)s 00111 00041 0.0040 0.0043  0.0045
aS)s 00111 00041 00038 0.0039  0.0040

10 &8s 00017 00018 00019 00020  0.0022
a5)s 00053  0.0038 0.0039 00035  0.0033

&S)s 00053 00035 0.0028 0.0023 0.0021

1.7 &5)g 00021 00025 00029 0.0032 0.0035

é5)s 00054 00033 00029 00032  0.0036
aS)s 00054 00030 00027 00024  0.0022

19 &8s 00028 00031 00033 0.0035 0.0037
&S)s 00048 00032 0.0032 0.0034  0.0037
éS)s 00048 00027 00024 00022  0.0023
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Fic. 3. Normal quantile-quantile plots for &gﬁswith n=2000,0 =0.1,1.0,1.9,m = 10.

the top right-hand corner [log-normal(4) with= 0.1], all cases suggest that these
empirical distributions are reasonably close to normal. This graphical finding is
supported by the Kolmogorov—Smirnov goodness-of-fit test.

Our tentative conclusions fet =1 are as follows:

1. All three estimators perform fairly well under modest departures from normal-
ity (of the type introduced by the nonaffine transformatiQn

2. Our numerical results suggest there is no advantage in using the GLS estimator
in the non-Gaussian case (which is not surprising, as it was designed for the
Gaussian case).

3. The number of points used in the regression is not critical and can be taken as
small as 4 for the simulation data considered.

For d = 2, the performance of the OLS estimator, based on the “square”
increment defined in (A.8), is studied fag = (50, 50), (100, 100 and(500, 500,
andm = 2(1)10. We denote this estimator y,,. In particular, we compare the
asymptotic and empirical rates of decrease in variancé,pfas the sampling
region increases. Theoretical results from Chan and Wood (2000) imply that for



TABLE 4
Comparison between empirical and asymptotic variance ratios among Gaussian and non-Gaussian random fields with ng = (50, 50), (100, 100),

(500 500), m = 4, based on 100simulations in each case

.
p var 100/50 500/50 500,100 var 100/50 500,50 500,100 o
Gaussian field Uniform field Z{’

0.1 Q0214 015 (0.25) 001 (0.01) 004 (0.04)  .0813 015 (0.87) 001 (0.63) 004 (0.72)Z
0.4 Q0215 023 (0.25) 001 (0.01) 004 (0.04)  .0815 021 (057) 001 (0.16) 005 (0.28) 3
0.7 00230 024 (0.25) 001 (0.01) 003 (0.04)  .0829 022 (038 001 (0.04) 005 (0113
1.0 Q0241 020 (0.25) 001 (0.01) 004 (0.04)  .0852 024 (0.25) 001 (0.01) 004 (0.04)=
1.3 Q049 021  (0.25) 001 (001) 003 (0.04) 0869 028 (0.25) 001 (001) 003 (0.04F
1.6 Q0’55 022 (0.25) 001 (0.01) 005 (004  .0b11 034 (025 001 (0.01) 003 (0.04)=
1.9 Q0'12 026 (0.25) 001 (0.01) 002 (0.04) 0838 048 (025 001 (001) 003 (0099
X2 field L og-normal(4) field S

wn

0.1 Q0215 023 (0.87) 001 (0.63) 003 (0.72) 208 023 (0.87) 001 (063 003 (0.78)
0.4 00220 021 (057) 001 (0.16) 0.05 (0.28) 195 032 (057) 001 (0.16) 0.03 (0.2§)
0.7 00249 029 (0.38) 001 (0.04) 005 (0.11) 359 006 (0.38) 001 (0.04) 001 (0.13)
1.0 Q0297 023 (0.25) 001 (0.01) 0.04 (0.04) 660 023 (0.25) 001 (0.01) 004 (0.G8)
1.3 0013 025 (0.25) 001 (0.01) 0.04 (0.04) 136 120 (0.25) 0.03 (0.01) 003 (0.44)
1.6 00l16 021 (0.25) 001 (0.01) 005 (0.04) 100 054 (0.25) 0.04 (0.01) 002 (0.04)
1.9 0ol26 033 (0.25) 001 (0.01) 0.02 (0.04) 2.87 011 (0.25) 0.04 (0.04) 041  (0.04)

6€CT
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the Gaussian case,

var(&(nl’nl))/var(&(nz,nz)) = (nz/nl)z, O<a<?2

Theorem A implies that for non-Gaussian fields,

(n2/n1)? l<a <2,
(nz/nl)z"‘, O<a<l1.

Table 4 reports the estimated variance whgn= (50, 50) and the estimated
variance ratios when, > n» for nq, np = 50, 100 500, for the following types

of fields: Gaussian, uniforrr)gl2 and log-normal(4). For the Gaussian case there is
good agreement between the theoretical and numerical results. For non-Gaussian
fields there is close agreement for medium to latg&or smalle the empirical

ratios are closer to those in the Gaussian case. As in the one-dimensional
case, the number of points used in the regression is not critical. In summary,
the OLS estimator withp = 1 performs reasonably well under mild departures
from Gaussianity.

Var(&(nlvnl))/Var(&(nz,nz)) =

4. Some lemmas. We now present some results which are required in
Section 5. Lemmas 4.1 and 4.2 are used to prove Lemma 4.3 which (along with
the elementary Lemma 4.4) plays a key role in bounding remainder terms which
arise in Steps 2-5 in Section 5. Lemma 4.5 is used in Step 6 of Section 5.

LEMMA 4.1. Let (AT, B)T, i € z9, where A; = (Aj1,..., Aix)T, be a
stationary Gaussian vector field and assume that (A], B;)” has a standard
multivariate Gaussian distribution (i.e., with mean the zero vector and identity
covariance matrix). Define

oaali —j)= max |CcovAir Ajil, opp(i — j) =|COV(B;, B))|,

oap(i — J) = max | COM(Aix, B))|
= max |cov(B;,Air)|=opali — j).
k=1,...,K| (Bi, Aji)| =opali —j)

Let @ denote a nonnegative multi-index a = (a[1], ...,a[K]) € ZK, and write
H,(A) = Hle Hyi(Aix), where H,,, m > 0, is the Hermite polynomial of
degreem. Then
|E[Hy(A;)Hy (Bi)Hy(Aj)Hy (B))]|
ap © oy - \2(ag—r)
< (ao'm')z Z GAA(Z .]) O.AB(Z .]) a0 ’
- rl(ag —r)!(ag —r)!(m —ag+r)!

r=max(ag—m,0)

whereag = |a| = YK ; alk].
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PROOF From the diagram formula for moments (see Remark 4.1) we have,
under the assumptions of the lemma,

E[Ha(Ai)Hm(Bi)Ha(Aj)Hm(Bj)]
(4.1)
_ (a[1]!---a[K]m!)?

q!

Zall,tl(i - ]) o 'qu,tq (l - ])a

whereq = m + ag, thel’s are associated with the componentsmf, B)T, the
t's are associated with the componentsmf, B;)T and the summation is over all
indicesly, 11, ...,14, 1, € {1, ..., K41} such that there are preciseljk] [-indices
and:-indices equalté =1, ..., K, andm [-indices and-indices equal t& + 1.
In the aboveo, (i — j) =COW(A;,Ajy) for 1 <r, s <K, o, g+1( — j) =
COV(A;r, Bj)forl<r < K,ox41,5(i—j) =COMB;, Ajy) andog 11 k+1(i —j) =
cov(B;, Bj).

Consider a typical producty, «, (i — j)- <0l ky (0 — J)- If this consists
of r pairings of components ofi; with components of4 ;, then there must
beag — r pairings of components of; with B;, ag — r pairings of components
of A; with B; and m — ag + r pairings of B; with B;, where necessarily
max(ag — m, 0) <r < ag. Therefore,

|1y (G = J) -+ 01, k, (0 — D
<oaali— ) oagli — N "opali — ) opp(i — j)m w0t
<oanli — ) oagli — j)2e"),

since O<opp(i — j) <landosp(i — j) =opa(i — j). Butthe number of terms
in the sum in (4.1) with preciselypairings of components of; with components
of A; is bounded above by

ao! 2( (m + a)! )
MK ) \rlao—r)(ao—r)i(m —ao+r)!)

Therefore, since = m + ag, we have the bound

‘Zo.ll’kl(i —]')“-qu’kq(i )
(4.2)

<

2 . . . . _
<ao! ) Z oan(i — j) oap(i — j)2@g!

[Tz ! rl(ag —r)l(ag — r)!(m —ag +r)!’

and the lemma follows after application of the bound (4.2) to the right-hand side
of (4.1). O

r=maxag—m,0)
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REMARK 4.1. For details of the diagram formula for moments of products
of Hermite polynomials in Gaussian variables, see, for example, Taqqu (1977),
Major (1981) and Arcones (1994). Note that the expectation on the left-hand side
of (4.1) reduces to the expression on the right-hand side of (4.1) because the
components OGAI.T, B:)T are independent Gaussian variables for éablote also
that the factor 2¢ which appears in Major's (1981) version of the formula does
not appear in (4.1) because we have employed the convention that, fok,each
Iy andty in oy, 4, (i — j) are such thaf is always associated with @findex andy
is always associated with aindex.

LEMMA 4.2. Let f:R — R denote a function with compact support
whose gth derivative £ is continuous on R. Write H,,(x) for the mth
Hermite polynomial and ¢ (x) for the standard normal density, and let ¢,, =
[ F(X)Hp (x)¢(x)dx denote the mth coefficient in the expansion of f in

Hermite polynomials. Then 30 oc2,, /m! < oo.

PROOF By assumptionf? is continuous orR and has compact support.
Therefore @) has an expansion in Hermite polynomials of the foriy_o c,(,?) X
H,,(x)/m!, which is L2-convergent in the sense thaX® ,(c\’)2/m! < co. But
repeated integration by parts using the idenfity, ¢ (x)H,, (x) dx = —¢(y) x
Hy,_1(y)form=1,2,... shows that,ﬁ?) = Cm+¢, Which proves the lemma.[]

Lemmas 4.1 and 4.2 are used to prove the following result.

LEMMA 4.3. Let (AE”)T,BZ.(”))T, iez? n=12,..., bea sequence of
stationary Gaussian vector fields, where A" = (A%, ..., A")T is a zero-mean
Gaussian vector whose dimension does not depend on », and Bl.(”) ~ N(,1).
Suppose that (i) for each n Bl.(”) is independent of Al(”) (but not necessarily
independent of AS.”) when i # j) and (i) the smallest eigenvalue of cov(AE”))
is bounded away from0 asn — oo. Let ”(Al@) be a polynomial of degree ¢ in
the components of AE”) such that E[n(AE”))] =0 for all n. Suppose that

oA — )=
k,I=1,...,

and

okpli =)= sup oA, B))] = Cn=/ B0 )i — e,

where p is a nonnegative integer and C > 0 and « € (0,2) are constants
independent of n. Let 2 : R — R be expressible as a sum of theform i = hy + ho,
where h1 is a polynomial and %2 is a function of compact support whose gth
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derivativeis square integrable over R. Thenfor d =1, 2,

o™, if p=0and (2—«) > d,
1 . _ _ _
Var<n D IEA (A™)h B("))) _ O(”(a_lgsld”), !fP—Oand (2-a)
ict, O(n ) if p=0and (2—a) <d,
o1, if p>1.

PROOF Assumption (ii), combined with the assumption that the elements
of cov(A}”)) are bounded above bg, implies that we may without loss of
generality assume thatl(”) is a standard multivariate normal vector for each
Then, using multi-index notatiorgain, we may write the ponnomiai(Al(”)) asa
sum of the form)_, caHa(AE")), wherea ranges over a finite set of multi-indices
in ZX andc, € R. Therefore, the result will follow for a general polynomiabf

degreg; if we can prove that it holds for each prodmt,;(A(”)) =1 H k](A )
of degree at mos;.

Let the Hermite polynomial expansion &f (which is convergent in the
L? sense) be given by(x) = _obm Hp(x)/m!. Using Lemma 4.1, we obtain

var<n—l > H, (AlF”))h(B}")))

ied,

=var[n71 > H,(A") Zb Hy(B")
[ )

ied, m:O
b 2
<23 ()| T [t )
m=0 ’ i,j€dn
_2 m
=2 )
m=0 m!

% Z 044

ag (n)(, — j)ra(")(z )Z(ao—r)
r=maxtag—m,0) (@0 — Ml(ao —r)l(m — ao + r)!i|

e e} ag
= (ag!)? Z b,%|: Z {rl(ap — r)!(ag — r)!(m — ag+ r)!} 2

m=0 r=max(ag—m,0)

% n—2 Z O'(n)(l _])ro,(")(l j)Z(ao—r)i|.

i,j€dn
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Using the elementary result [see Chan and Wood (2000), page 364] that

omn b, if p>d,
n2 Y @+li—jDP =1 0(n~L).  if p=d,
ij€dn O (n="r/4), if p<d,

where we can takd.(n) = logn, and omitting some straightforward details,

we find that the assumed bounds iijﬂ anda/(;g imply that

n2 Y ol — ) oyl — jHHe

i.jedn

o1, if p=0,2—a)>d,

] o tlogn), if p=0,2—a)=d,

| o@-2/4), if p=0,2—-a) <d,
omn™Y, if p>1,

whered = 1, 2. Note that the above statement is valid for each integer1l and
each integer satisfying max0, ag — m) < r < ap. Also, using Lemma 4.2, it is
straightforward to check that

00 ao
Zb31|: Z {l’!(ao—l”)!(ao—r)!(m_ao+r)!}—li| < 0.

m=0 r=maxag—m,0)

Finally, we put these results together and the proof is compléie.

The following result is elementary but is used repeatedly, and so is stated
explicitly for convenience.

LEMMA 4.4. Let {X;,:k=1...,n;n > 1} be an arbitrary triangular
array of random variables such that sup._; . ,Sup,>1 E|Xknl < C < oo.
Thenn 1374 Xikn = 0,(1) asn — oo.

PROOF Note thatE|n~1Y", X; .| < C and then use the Markov inequality.
O

The Prohorov metrigo and Ky Fan metric, here denoted are defined as
follows [see Dudley (1989)]. Lex and Y be random elements of a metric
space(S, dist), with laws P and Q, respectively, defined on the Borel sigma
field of (S, dist). Then p(P, Q) = inf{e > 0: P(A) < Q(A?®) + ¢ for all Borel
setsA}, where A® = {y € S:dist(x, y) < eforsomex € A} and «(X,Y) =
inf{e > 0: P[dist(X,Y) > ¢] < ¢}. Note that, by Theorem 11.3.5 of Dudley
(1989), we have

(4.3) p(P, Q) =k(X,Y).
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LEMMA 4.5. Let X and Y be random elements with laws P and O,
respectively, defined on the Borel sigma field of a metric space (S, dist), and let p
denote the Prohorov metric. Then p(P, Q) < {E[dist(X, Y)23]}%/5.

PrROOF Chebyshev’s inequality yields

P[dist(X, v) > {E[distX, V)2}"°] < (E[distx, v)?]}",

and so the result follows from (4.3) [

In all applications of this result given below, = R? and dist is the usual
Euclidean metric.

5. Proofs. We now prove the theorems stated in Section 2. The structure of the
proof of each theorem is very similar, and, in fact, the proofs given for Steps 1-5
cover both theorems. The only substantial difference between Theorems A and B
is in the limit distribution which arises in Step 6. Throughout the proof, we will
use the multi-index notain specified in the Appendix, on the understanding
thatd =1 or 2.

We first introduce some notation that will be used throughout this section. Write

Wij :na/(Zd){X(—i +j) - X(l—)}
J 7o 7o
and

2d i+j
(5.1) Yiu =n®/ );aé’x( o )=;a;’WU,

where X () is the underlying Gaussian field (see Section 2). Note that the last
equality is a consequence of the fact t@;a;? =0 (see the Appendix). Define

’

oww (i — j) =sugcou(Wir, W)
k1

’

owx(i —j)= S}';JﬂCOV{Wik, X(j/no)}

’

oyy(i — j) = sugcovYiy, ¥;u)
u,v
oyx(i — j) = supcov{Yiy,, X (j/no)}|-
u
Then conditior(Al)E{j) implies the existence of a constafitndependent of, j
andn such that
oww(i — j) < CA+i — j)*2,

(5.2)
owx(i —j) < Cn~9/@D @4 — jeL
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oyy(i—j) < CA+i — jp*2r2,
oyx(i —j) < Cn~/CO@A 4 |i — jpe—rL,

where p is the order of the incremerat on whichY is based. See Kent and
Wood (1997) and Chan and Wood (2000), Lemma 3.1, for justification of (5.2)
and (5.3).

(5.3)

PROOF OF THEOREM A. The proof is broken into a number of steps.
The T; andT;; referred to below are defined in the course of the proof; each of
these quantities i®, (1) and in some cases of smaller order.

STEP 1. Show that it is sufficient to prove the theorem for thgsehich
satisfy (42) and(A3) and have compact support.
STEP2. Show that
G1(@ —ay) =To+n"%DT 4 =41y 4 0, (n=3/@D 4 p=1),
where

(5.4) Gr=n"13[eM(X G /no)) )

ied,

andTy, 71 andT> are defined in (5.9) via (5.6)—(5.8).
STerP 3. Show that
To=Too+n~*/"To1+ O, (n~*/D)

omn=Y?, if p=0andd =2,
o™ b, if p>1andlord =1,
whereTpg andTp; are defined in (5.16) and (5.14), respectively, and show that

m
D _
To1 —~ ( > Lu:uojto,lu>

u=1
[ VXX + [P X O dr
te[0,19
asn — oo, wherepug,, andrp 1, are defined below (2.9).

STEP 4. Show thatTy = n=%/@) Ty + 0,(n~%/9), where T1; is defined
in (5.17), and show that as— oo,

m
D _
T11— ( > Luuojfo,zu)

u=1

x / Lo al8 T XOP X ) + [eP (X ()] dt,
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whererg 2, is defined below (2.9).

STEP5. Showthatlz = To1+ Too+ 0, (n~%/ 2D + n=Y2) \whereT»1 andTy,
are defined in (5.19) and (5.20), respectively, and show that-aso,

m

D —

Tn= ( > Luuo,iro,su) [ oo P EOIEO KO
u=1 telb,

and

m
2 — 2
TZZ_’(ZLMMOiTO,Llu) [ @,
’ t€[0,1)

u=1
andrgp 3, andrg 4, are defined below (2.9).

STEP6. Establish convergence in distribution @f/27oo, G1), whereTyg is
defined in (5.16) and;; is defined in (5.4).

PROOF OF STEP 1. Condition(eAl)Efl) implies (1.1) wherd =1 and (2.3)
whend = 2. In each case, we may use Kolmogorov’'s lemma [see, e.g., Rogers
and Williams (1994), page 59] to establish tB&{r) has a continuous version
on [0, 1]¢. Consequently, for each> 0 there exists &, depending o and the
distribution ofX, such that

(5.5) P[ sup 1X@)| > C] <e.

t€[0,1]4
For giveng, let g¢ denote a function with compact support such @i = g (¢)
forall ||| < C, and leta¢ denote the estimator afthat would have been obtained
if gc{X(¢)} rather tharg{X (r)} had been observed. It follows from (5.5) that

Pla # ac for somen] < e.

As a consequence, if the theorem is true for all functions of compact support
which satisfy assumptiong42) and (43), then it is also true for each which
satisfies(42) and (43), whether or nofg has compact support. This argument
can be established rigorously using probability metrics (cf. the argument given in
Step 6). We omit the details.[]

For the remainder of the proof we shall assume ghaas compact support [in
addition to satisfyingdA2) and(43)].

PROOF OFSTEP2. By Taylor's theorem

Zajfgi+j =Zajf(gi+j — &) (sincezaf; :0)
J j -

J
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3
— Z a;f ( Z n_ra/(Zd)(r!)_lWl"}gi(r) + n—za/d(4!)—lWil}gi(4))
j r=1

4
- Z ra/(Zd)Mrm
r=1
where, forr =1, 2, 3,

4
M,y —g,(r) Za ,/7 My, = 4') 1Zaug( )W,‘},
J

¢ is g evaluated atX(i/ng), r = 1,2,3, and from Taylor's theorem,

g7 = &{10;X{G + j)/no} + (1 — 6))X(i/no)], where eachy; € [0,1] is

suitably chosen.

Then
2
ndz —p-1 Z (noc/(Zd) Za?gi+j>
i€dy j
4 2
—n1 Z (Zn—(r—l)a/(Zd)Mriu)
ied, \r=1
= (n_l Z M%iu) + n_a/(Zd)/'Luflu + n_a/dﬂuTZu
ied,
1 p3e/@d), -1 > S,
ied,
where
(56) Tlu = 2//‘,4_1”_1 Z My Moy,
ied,
(5.7) Tow = py'n 1Y (M5, + 2M11, M3
ied,
and

Siu = 2(M1iy Majy + Moy, M3;,) 4+ n~%/ @D (Mri-u + 2M>; M 4iy)
+ 207 Maiy + Magu +n~ %P0 Mz,

Since by Step 1 we are assuming that i€ are bounded for k r < 4, it
is a straightforward (if tedious) matter to check thats;,| < co. Therefore,
since thesS;, are identically distributed for each 4 u < m, it follows from
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Lemma 4.4 that
p 3/ @), —1 Z Si, = Op(n—305/(2d))
ied,

for eachu. Moreover,

n_lelzm_ _lZ<Za Wl]) l(l)

ied, ied,

_ 2
=013 (VR + ) (87

ied,
::lLuéil *‘ﬁLuiBu,
whereG1 is defined in (5.4) and
(5.8) TOu =n -1 Z (/’Lu lYli - 1){ (l)}2.
ied,

Son®?Z7, = G1jty + Ruptu, Where
Ry =Tou +n~ DTy 4+ n~1Ty, + 0, (n=3*/D),

Since eacl’fku is bounded in ppbability fork =1, 2, 3, it follows that

G1(& —an)=G1 Y L,109(Zy/ 1)

u=1
=G1)Y_ Lu{logG1+log(1+ R,/G1)}
u=1

m

=" LuRu{1+ 0,(R./G D)

u=1
=Y Lu[Tou + 1~ @D Ty, + 0=y, 4+ 0, {n=3*/@D 4 R2}]
u=1
=To+n YT+ 0Ty + 0, (n3/@D 4 n 71,
where
m ~
(5.9) Ti =Y LuTiu, k=0,1,2,
u=1

and we have used the fact that = 0, (n~Y/2 + n=%/4), so thatR? = 0 ,(n "1 +
n—2*/d) The order statement fat, foIIows from Steps 3-6. [



1250 G. CHAN AND A. T. A WOOD

We now introduce some notation which is needed in Steps 3-5. Recall
the definition of W;; given at the beginning of Section 5. ertlng(”)
COMX (i /no). W;j), defineg ™ = (¢, —mJ < j <mJ) andW; = (W;j, —mJ <
Jj<mlJ), and Ieth([f‘) denote the covariance matrix &f;. Note thatVéﬂ” does

not depend ori because of the stationarity &f;, but that the distribution o#;
does depend om; this dependence on has been suppressed for notational

convenience. Defing™ = (b}”), —mJ <j<mJ)byb™ :n“/(Zd)(VV(J’))‘lg(").
Note thatn =/ 3 bﬁ.”) W;; is the projection ofX (i/n) onto the span o#;;,
—mJ < j<mlJ.Leth® =lim,_, « b denote the limit ob"™ which necessarily

exists under assumptic[ml)fld).
We may write

X (i/no) = p o/ (2d) (Z b;n) Wij) +(1- —ot/db(n)TV(n)b(n)/ )1/2
J
where X; = X(i/ng), X; ~ N(O, yo) is independent ofW;, yo = y(0) is the
variance ofX (i /ng) and V‘;?) andb™ are as defined above. Then
X (i/no) = Xi +n~*/ @5y, 4 n=/ 55 4 n=2/4 53
=X; +n~/ sy,
where
sy =y bWy, s =—{p"T V™ (2p0))X;,
J
2y, — (1 peldp™T YWy V2% g gmalds,
and

doi =961; + n_a/(Zd)Szi + n_3a/(2d)83,-.

PROOF OF STEP 3. Writing g for ¢)(X(i/ng)) as before, andz"
for g™ (X;), we obtain

(gl(l)) _(gi(l)) + o0 a/(Zd)S v(l) (2)

(5.10) b o
+ G gD + (37)7) 4 n P05 R,

whereRy; is a remainder term which can be determined explicitly.

We now study the contribution of each of the four terms on the right-hand side
of (5.10). First, note thaftgl. R1; can be expressed as a finite sum of terms, each
of which can be expressed as a bounded function multiplied by a polynomial in
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Gaussian variables. Therefore, sinceag)eRli (i € 4,,) are identically distributed,
we may use Lemma 4.4 to show that

m
(5.11) > Lu,u;1<n_1 3 (n3/ @D Rl,-)) = 0, (n~%/CD)
u=1

ied,

Also, using similar arguments,

T -
1.3 2
(5.12) =378 + ()%
2
1.3 2
+ {(Za]quJ> 8(2),- - Tlu}{g,( )g,( )+ (gz( )) }’
J
where
2 2
(5.13) T, = E[(ZG?WU) (Zbl((")Wik> i|
j k

It follows, after applying Lemmas 4.3 and 4.4 to the second term on the right-hand
side of (5.12), that

éLuu; ( ‘1Z(Za Wu) salgn e + (&%) })

ied,

— To1+ 0, (n™/?D),

where
m
(5.14) To1= (Z Luu;1r1u>( 1y Pk 5@ | (2)) )
u=1 ied,
A similar argument, using Lemmas 4.3 and 4.4 again, shows that
- - <(1) <2 _
(6.15) Y (Za Wl,) s0ig" 8% = 0p(n™),
ied,

except wherp = 0 andd = 2, in which case we can conclude that the left-hand
side of (5.15) is of siz& ,(n~Y/2). Writing

(5.16) Too= ZL n Y (MY = D(E)

ied,
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and putting (5.10)—(5.16) together, we see that the first part of Step 3 is proved. To
establish the limiting distribution dfp1, we may use an identical argument to that

given in Step 6 to prove thaln(h)g Jo(h) [which is the more straightforward

part of showing thaik,, (k) L2 Ko(h)]. To avoid duplication, we omit the details.
O

PROOF OFSTEP 4. By a Taylor expansion,

1) (2 1) (2 2 1.3 2 — 2
g8 =887+ P50 (505 + (87)°) +n 55 Rai.

Using similar arguments to those in Step 3, in particular Lemma 4.3, we find that
for anye > 0,

ZéLm;l(n—l 3 (;ajfwij) (Zak W2> D (2))

ied,

=0T+ 0, (™) + 0™ HF),

where
m
(5.17) Tii= (ZLMM;lrzu) 1508+ (32)7)
u=1 ied,
and
(5.18) tu=E (Za;fwij) (Zak )(Zb}")wﬂ)}
J

so the first part of Step 4 is proved. Justification of the claim concerning the limit
distribution ofT3 1 follows along similar lines to that fofpy in Step 3. [

PROOF OFSTEP5. In this case

D @B _ <13 - 2 2 _
gPe® = V@ 4 /@y Ry and (§P)2 = (5P)% + n~/@sy Re;.
Using Lemmas 4.3 and 4.4 again and writing

m

u=1 zel,,

m
(520) Ty = ( Z Luﬂu_174u> Z (2) s

u=1 ied,

2
(5.21) r3u=%E<Za7Wl-]> (Za ”), t4u—4E<Za ) ,
J
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we find thatn =%/ T, = n=*/4(T1 + T2p) + 0, (n™1) as required. Justification of
the claim concerning the limit distributions @b, and T»» follows along similar
lines to that forTp; in Step 3 andl11 in Step 4. O

PROOF OFSTEP 6. Here we shall show that
622 V10 Go R (o [ [P X@)P B Gy),
(0,1]

where Tog is given in (5.16),G; is defined in (5.4),G1 is defined in (2.5)
with » = 1, {B(¢)} is the random Gaussian measure given in (2.11), which is
independent ofX (r)}, ando is givenin (2.10). Recall thatyg = (no[1], ..., nold])
andn = ﬂ;’zlno[l] and that we assume that conditio#t4) in Section 2.1 holds
whend = 2.

Let # denote the class of smooth functions with compact supporth leogt,
define

L)y =n"2Y"&n{X(i/no)},  Ju(W)=n"1) h{X(i/no)}
ied, ied,
and K, (h) = (I,(h), J,(h)), where& =" 4 Lu(u,;lYii — 1). Note that by
constructionk,, {(g™)2} = (nY/2Tyo, G1). Also define

o= [ mx@)dB@. o= [ hx)d

andKo(h) = (Io(h), Jo(h)). Note that by constructio&o{(¢?)?} is equal to the
right-hand side of (5.22).

We will show that, for eaclh € #, K,,(h) converges t&Kg(k) in distribution.
Then, in view of (5.22) and Step 1, Step 6 will follow.

For each positive integet, let 7, denote a partition of0, 1]¢ given by, =
{A;,jed) whered, ={jez?:0< jll]<r,1<I<d}, whereA; c [0, 1]
is defined in the following way. Write; = r~1j. Whend =1, A; is the interval
of width r—* centered at; = r=1j + %; whend =2, A; is a square with sides
of lengthr 1 which are parallel to the coordinate axes, and eaglis centered
attj = rlj+ %1, wherel = (1, 1) is a 2-vector of 1's. Givem,., we define two
functions,t*(r) andi*(i), as follows: forz € [O, 19, t*(t) =t; whent € A}, and
for each multi-index O< i < ng, we definei* (i) = i)} (i) = not;, wherej is such
thati/ng € A;. Define

Iy = Ly m) =n~ Y2 gn{X(i* /no)},
ied,

Tr) = Tihsm) =n~ Y h{X(i*/no)}

ied,
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andK;(h) = (I (h), J;;(h)), and write

By =I5 =0 [ hXG)dBa),

Ji=Jihn =/ h{X (™)) dt
0 o (h; 7ty) 0130 {X (M)}

andK;(h) = (I5(h), J5(h)), where{B(t)} is a random Gaussian measure of the
form (2.11) which is independent ¢X (7)}.
Let P,.n, Pon, P;ih and Pé'ih denote the distributions o, (h), Ko(h), K, (h)

and K§(h), respectively. We need to show that 3 Po.,. We shall do this by
showing that, giverz > 0, there exists a partition, of [0, 1]¢, depending orz
andh, such that

(5.23) p(Pon, Pyp) <e/3
and, for any suchr,, whenn is sufficiently large,
(5.24) PPy PEy) < /3
and for a sufficiently fine partition, andn sufficiently large,
(5.25) p(Pus Pry) <e/3,
wherep denotes the Prohorov metric. Then, wheis sufficiently large,
0(Pa.ns Pop) < p (P Pyy) + 0 (P, Pog) + p(Py s Pon) <e,
and, since > 0 may be chosen arbitrarily small, Step 6 will have been proved.

PROOF OF(5.23). Using Lemma 4.5,

(5.26)  p(Pos, P&y < [Ello(h) — IE (Y2 + E{Jo(h) — I (Y72,

Using Fubini's theorem, the Cauchy—Schwarz inequality and the fac{xh@j}
and{B(¢)} are independent, we obtain

2
ElIo(h) — I3 ()2 = E[o [ mixoy - h{X(r*)}]dB(r)]

[0,1)

(5.27) ,
_ 2 _ *
— &y /[OylldE[h{X(t)} h{X (t)}]2 dt

and
. 2 _ %112
(5.28) E{Jo(h) — Jy(h)} 5/[071]dE[h{X(t)} h{X(t )}] dt.

Givenh € #¢ ande > 0, it is clear (sincg X (z)} is almost surely continuous and
therefore uniformly continuous of®, 1]¢) that we can find a (sufficiently fine)
partition, of [0, 1]¢ such that

— x\12 1 3/2
AO,l]d E[h{X(t)} h{X(t )}] < 2(8/3) .
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Then, using (5.27) and (5.28),
E{lo(h) — Ig(M)* < 5(¢/3%? and  E{Jo(h) — J5 ()}* < 3(s/3%?,
in which case (5.23) follows from (5.26)

PrROOF OF(5.24). For any Lebesgue-measurableset [0, 1]¢, define
(5.29) En(A)=n"Y2 3 g,
iii/ngeA
Then, for a given partitior,,
L)y =n Y2 ER{X G no)} = Y Ea(APh{X (1))}

ied, JEGr

and
Tr)y=n"1 Y m{X (@ /no)t =n"1 ) c;h{X (1))},

ied, j€gr

wherec; =#{i:i/noe Aj} ~ n/r¢. In all cases covered by Theorem A a central

limit theorem applies t&, ([0, 1]¢); that is, &, ([0, 1]¢) B N, 02), whereo? is
defined in (2.10). See Kent and Wood (1995, 1997) and Chan and Wood (2000)
for further details. It follows from a straightforward extension of those proofs

that, for any fixedn,, {E,(A)),j € gr}i)){O'B(Aj),j € 4,}, where B is the
random Gaussian measure defined in (2.11). Moreover, it is an easy consequence

of the definition ofX that {X(z;), j € g,}g{X(tj),j € g,}, where the random
variables {X (¢;), j € §,} are independent of the random variablgB(A ),
J € 4,}. Consequently, an application of the continuous mapping theorem implies

that K,j‘(h)g K3 (h), from which (5.24) follows for sufficiently large, since
the Prohorov metrip metrizes convergence in distribution]

ProoF oF(5.25). We will only sketch the proof of this result. It is sufficient
to show that

(5.30) lim E{I,(h) — I,’f(h)}zzcrz/ E[R{X(6)} — h{X (t*)}]? dt
n—oo [0,1]d

and

(5.31) lim E{J,(h) — J,;‘(h)}2 < / E[h{X(t)} — h{X(t*)}]zdt,
n—oo [0’1]51

because, if we choose a partitiansuch that, for alk sufficiently large,

[ EBX©) = hx @i < 3672
[0,1]4

then (5.25) will follow from (5.30), (5.31) and Lemma 4.5.
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The proof of (5.31) is omitted as it is quite straightforward. However, we outline
the proof of (5.30), which requires more work. For simplicity, we focus on the case
inwhichh =3, ¢,y Hy, is @ polynomial; it is an easy matter to extend the proof to
all h € #. Now

E{L,(h) — ;W2 =n"1 Y E[&&;(hi —hi)(hj —hj»)]

i,j€dn
M CmC
= > mah Y 8. jom.m),
m!m’!
m,m’'=1 i,jedn

whereh; = h{X (i /no)}, hi» = h{X(i* /ng)} and
8, j.om,m') = E[&&;{ Hn(X;) — Hpn(Xp){{ Hp (X ;) — Hp (X j)}].
Then (5.30) is a consequence of the following: for eaci m’,
(5.32) nt 3" 8G, jom,m) = o(L);
ijedn
and
. -1 ..
Nim n™ Y7 8G, jom,m)
i,jedn
x lim n=t 21 EL&&;1E[Hu(Xi) — Hu(X;)]
1,jedy

(5.33) . .
X [Hm(Xj) - Hm(Xj*)]

=02 [ [HaX () — Hy(X ()P

The results (5.32) and (5.33) are derived using the diagram formula (see the
references given in Remark 4.1) combined with (5.2) and (5.3). The arguments
are broadly similar to those used in the proof of Lemma 4.3. That concludes our
sketched proof of (5.25).00

Thus, Step 6 is now completel]

To conclude the proof of Theorem A, we use (5.22) and the continuous mapping
theorem to show that

GT 1n1/2Too—> / [eV(X))]°dB(t) 2 —Vz
G1 Jio,1¢

where Z ~ N(0,1) is independent ofz1 and G», and G2 is deflned in (2.5)

with r = 2. Finally, putting Steps 1-6 together, we see that the proof of Theorem A

is complete. (I
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PrROOF OFTHEOREM B. The proof of Theorem B is essentially the same as
the proof of Theorem A, except that Step 6 is different. The decomposition given
by (5.23)—(5.25) can still be used, but the principal difference is &an (5.29)
does not obey a central limit theorem, and therefyng) does not converge to
a stochastic integral with respect to the random Gaussian me&sureWhat
actually happensis that, whén=1and 32 <a <2ord=2and l<a < 2,

Var<n_1 Z g_—) — O(n(Za—4)/d)’

ied,

andn@-®/dp=1%", , & obeys a noncentral limit theorem of the type given by
Theorem 6 in Arcones (1994). Then it can be shown, via the decomposition
(5.23)—(5.25), thatr, (k) converges to the Wiener—Itd integral specified in the
statement of Theorem B. The particular form of the spectral meastodows

in part as a consequence of TheoréroflDobrushin and Major (1979) and in part

as a consequence of the degeneracy result given in part (c) of Theorem 1 in Kent
and Wood (1997). O

APPENDIX: NOTATION FOR INCREMENTS

Further details concerning increments may be found in Kent and Wood (1997)
and Chan and Wood (2000); we only give brief details here.

The univariate case (d =1). An increment of ordep > 0 is a finite array of
real numbersi={a;: —J < j < J} such that, for all integers 8 r < p,

(A1) > ja;=0,
ji=J<j=<J

but

(A.2) > jrta; #£0.
Jji=J=j=J

An example of an increment of order= 0 is given by

(A.3) a={ag, a1}, whereag = —1 anda; = 1;

an example of an increment of ordee= 1 is given by

(A.4) a={a_1,ao, a1}, wherea_1=1,ap0=—-2 anda; = 1.

Note that, here and in the main text, we adopt the convention that any compo-
nentsa; which are not given explicitly are 0 [so, in (A.3), for example, we have
omitteda_1 = 0].
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For an integer > 1, thedilation & = {a;? :—Ju < j < Ju} of an increment
has elements defined by

aijr, ifj:j’u,

0, otherwise,

(A.5) a? = {

where—Ju < j < Ju. It follows immediately from this definition that
0, ifO<r<p,

erff:’u’Zj’aj, if r>p+1,
J J
where here and in the main teth indicates summation overJu < j < Ju.

Let {y;:j € Z} be a sequence of numbers. Then if the incremeem given
by (A.3), it follows that

u
Zaj Yn+j = Yntu = Yn,
J

while if ais given by (A.4), then

ZQ?)’n—&-j = Yntu + Yn—u — 2Yn-
J

The multivariate case (d > 1). Let j = (j[1],..., j[d]) € Z¢ denote a multi-
index. We say thaf is nonnegative and writg > 0 if j[/] > O for eachl =
1,...,d;andifk is another multi-index, we say that< k if j[/] < k[/] for eachl,
and writej < k if each inequalityis strict. Formulti-indices; andr, we define

d
(A.6) Pl =3l
=1
and
d
(A7) jr=1T1iur,
=1
where @ = 1.

In the d-dimensional case, an increment of orger 0 is a finite arraya =
{aj:—J < j < J} satisfying (A.1) and (A.2), but withyj, J andr now multi-
indices withj” defined by (A.7) and eaaly real as before.

The so-called “square” increment in the case 2, which is an example of an
increment of ordep = 1, is given by

(A.8) a={a0 =awy=1a10=a01=-1}:
see Chan and Wood (2000).
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The dilationa” = {a]”- :—Ju < j < Ju} is defined by (A.5), but withy and j’
now multi-indices. It follows immediately from this definition that
0, if0 <|r|<p,
i =uN ey, il = p 1,
J J

where|r| is given by (A.6).
Note that if {y;:j € Z? is an array of real numbers and the square
increment (A.8) is used, then for anye Z2,

Za?ynﬂ = Yn+0,0) + Yn+(u,u) = Yn+u,0) = Yn+(0,u)-
J
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