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We present the asymptotic distribution theory for a class of increment-
based estimators of the fractal dimension of a random field of the form
g{X(t)}, whereg : R → R is an unknown smooth function andX(t) is a
real-valued stationary Gaussian field onRd , d = 1 or 2, whose covariance
function obeys a power law at the origin. The relevant theoretical framework
here is “fixed domain” (or “infill”) asymptotics. Surprisingly, the limit theory
in this non-Gaussian case is somewhat richer than in the Gaussian case (the
latter is recovered wheng is affine), in part because estimators of the type
considered may have an asymptotic variance which is random in the limit.
Broadly, wheng is smooth and nonaffine, three types of limit distributions
can arise, types (i), (ii) and (iii), say. Each type can be represented as a random
integral. More specifically, type (i) can be represented as the integral of a
certain random function with respect to Lebesgue measure; type (ii) can be
represented as the integral of a second random function with respect to an
independent Gaussian random measure;and type (iii) can be represented as a
Wiener–Itô integral of order 2. Which type occurs depends on a combination
of the following factors: the roughness ofX(t), whetherd = 1 or d = 2
and the order of the increment which is used. Another notable feature of
our results is that, even though the estimators we consider are based on a
variogram, no moment conditions are required on the observed fieldg{X(t)}
for the limit theory to hold. The results of a numerical study are also
presented.

1. Introduction.

1.1. Background. The problem of quantifying the roughness of a (continuous
but rough) curve or surface, whose height is observed at discrete locations on a
rectangular grid, arises in many areas of science and technology. A widely used
approach is to model the curve or surface as a random field whose covariance
function follows some form of power law behavior at the origin, and then to
estimate a scale-invariant measure such as the fractal dimension to quantify
roughness. A good entry point to recent statistical literature on this topic is the
discussion paper by Davies and Hall (1999).
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Frequently in this approach it has been assumed that the curve or surface is
Gaussian. However, in a number of applications the Gaussian assumption may be
open to doubt, and therefore the problem of estimating the fractal dimension in
non-Gaussian settings is of interest. In this paper we study estimators of fractal
dimension for a class of stationary non-Gaussian random fields, and we provide
a detailed account of the asymptotic distribution theory for these estimators, as
well as studying their numerical properties using simulation. As a preliminary, we
provide a brief review of recent work in which the Gaussian assumption is made.

1.2. The stationary Gaussian model. For simplicity we focus mainly on the
one-dimensional case (d = 1) in this Introduction. Let{X(t) : t ∈ R} denote
a stationary Gaussian process with a covariance functionγ which obeys the
following power law at the origin:

γ (t) = γ (0) − c|t|α + O(|t|α+β) as|t| → 0,(1.1)

whereα ∈ (0,2], known as the fractal index, governs the roughness of the sample
functions and is typically the parameter of greatest interest in roughness studies;
the positive quantityc is a (local) scale parameter known as the topothesy;
and β > 0 governs the size of the remainder term in (1.1). There is a simple
relationship, under model (1.1), betweenα and the fractal dimensionD of
the graph of the sample function, given byD = 2 − α/2; see, for example,
Adler (1981). [This result generalizes toD = d +1−α/2 whenX(t) is a stationary
Gaussian random field onRd with covariance function of the form (2.3).] Thus,
the larger the value ofα, the smoother the sample function.

Suppose we observe a sample

Sn = {X(i/n) : i = 0,1, . . . , n − 1}(1.2)

of observations ofX(t) at equally spaced locations in the region[0,1]. In
this formulation of the problem the asymptotic regime asn → ∞ is known as
“fixed domain asymptotics” and is often appropriate when interest is focused on
roughness at fine scales. See Stein (1999) for further discussion of this type of
asymptotic regime.

A variety of estimators ofα, based on dataSn, have been studied in recent
years under model (1.1), withX assumed to be stationary and Gaussian. For
example, Hall and Wood (1993) considered box-counting estimators; Jakeman and
Jordan (1990) and Constantine and Hall (1994) discussed estimators based on the
variogram; Feuerverger, Hall and Wood (1994) considered estimators based on
counting upcrossings; and Chan, Hall and Poskitt (1995) considered estimators
based on the periodogram. Kent and Wood (1997) considered two modifications
to variogram-based estimators: the use of higher-order increments and the use of
generalized least squares. The use of higher-order increments in a closely related
context was investigated independently by Istas and Lang (1997).
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In this paper the focus is on variogram-based estimators of fractal dimension,
and we now discuss these in more detail. The theoretical variogram is given
by ν(h) = E{X(t + h) − X(t)}2 and under (1.1)ν(h) ∼ 2c|h|α as|h| → 0. Given
data of the form (1.2), we can estimateν(u/n) by

ν̂u =∑
i

[
X{(i + u)/n} − X(i/n)

]2
,(1.3)

and we can estimateα using log–log regression based on the approximation
relationship

log ν̂u ≈ const.+α logu.(1.4)

The simplest estimator of this type is the ordinary least squares estimator given by

α̂ =
∑m

u=1 log ν̂u(logu − m−1∑m
k=1 logk)∑m

u=1(logu − m−1∑m
k=1 logk)2

,(1.5)

wherem stays fixed asn → ∞.
It turns out that when 0< α < 3/2 the estimator (1.5) has variance of ordern−1,

but when 3/2 < α < 2 the variance of (1.5) is of ordern2α−4. See Constantine and
Hall (1994); related results were also obtained by Jakeman and Jordan (1990).
More recently, it was noted by Kent and Wood (1997) and Istas and Lang (1997)
that if one bases the variogram in (1.3) on second-order differences, that is,

ν̂u =∑
i

[
X{(i + u)/n} + X{(i − u)/n} − 2X(i/n)

]2
,(1.6)

then the variance of the resulting estimator (1.5) is of ordern−1 for all α ∈ (0,2).
Thus, there is motivation for considering variograms based on increments
(i.e., differences) of higher order. In our terminology (1.3) is based on an increment
of order 0, and (1.6) is based on an increment of order 1, and in either case (1.3)
may be written in the form

ν̂u = ∑
i

{∑
j

au
j X

(
i + j

n

)}2

,

where theau
j notation for increments is described in detail in Kent and Wood

(1997) and Chan and Wood (2000) and is summarized in the Appendix.
More recently, the corresponding estimation problem for the two-dimensional

case was considered in the discussion paper by Davies and Hall (1999). The
analysis of data obtained by two-dimensional sampling is trickier than the one-
dimensional case, in part because of the possibility that anisotropy is present.
A helpful discussion of this issue is given by Davies and Hall (1999). A second
approach to the analysis of two-dimensional surface data is considered by Chan
and Wood (2000).
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1.3. Non-Gaussian data. In this paper we assume that, instead of observing
the stationary Gaussian processX(t), we observe a stationary non-Gaussian
processg{X(t)}, whereg is a smooth but unknown nonaffine function andX is a
stationary Gaussian process satisfying (1.1) as before. Two-dimensional sampling
of random fields (corresponding tod = 2) is also considered. We address the
following question: what are the asymptotic properties of the variogram-based
estimators when we observeg{X(t)} rather thanX(t)? From a theoretical point
of view, the quantity being estimated, namely the fractal dimension of the sample
function, will be the same as that of the underlying Gaussian random field
providedg is nondegenerate and reasonably smooth; see Hall and Roy (1994) for
the relevant results. However, it turns out that the asymptotic distribution theory
for nonaffineg is somewhat richer than in the Gaussian case (though the Gaussian
case is recovered, of course, wheng is an affine transformation).

Chan and Wood (2000) obtained (correct) preliminary results concerning
rates of convergence in the case wheng(x) = x2. However, no concrete
results concerning the asymptotic distribution theory were given, and in fact the
conjectures in Remarks 5.5 and 5.6 of that paper do not adequately describe
the results given below. Also, it turns out that the caseg(x) = x2 is not fully
representative of general smooth nondegenerateg, because some components of
the limit distribution disappear or are constant in the former case.

Our main theoretical results are stated in Section 2. One general point which
emerges is that the estimation of fractal dimension in this non-Gaussian setting is,
in a sense, more difficult than in the Gaussian case; see, in particular, point 2 in
Section 2.3. However, on the numerical side a fairly extensive simulation study
reported in Section 3 suggests that, in practice, the deterioration in the non-
Gaussian setting is fairly mild, provided thatg is not drastically nonaffine in the
relevant domain. The main theorems are proved in Section 5. These proofs make
use of several lemmas which are proved in Section 4.

2. Main results. The principal results in the paper are presented in Theo-
rems A and B. Theorem A covers those cases in which 4+ 4p − 2α > d and
Theorem B covers those cases in which 4+ 4p − 2α < d , wherep ≥ 0 is the
order of the increment used (see the Appendix),d = 1,2 is the dimension of the
parameter set of the underlying random field andα ∈ (0,2) is the fractal index.

Throughout this paper we make frequent use of the notation for increments and
multi-indices given in the Appendix.

2.1. Preliminaries. Let {X(t) :∈ Rd} denote a real-valued stationary Gaussian
process (d = 1) or field (d = 2) with covariance function given by

γ (t) = cov{X(s),X(s + t)}.
Let g : R → R be an unknown function. It is assumed that we observeg{X(t)}
rather thanX(t).
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Define the index set

In = {0 ≤ j < n0}.(2.1)

Whend = 1, j andn0 are integers and we taken = n0; and whend = 2, j andn0
are multi-indices inZ2 (see the Appendix) andn0 = n0(n) is a sequence such
thatn is the product of the elements ofn0, that is,n = n0[1]n0[2]. Thus,n is the
number of elements inIn. The dataset we actually sample is given by

Sn = {
gi ≡ g{X(i/n0)} :−mJ ≤ i < n0 + mJ

}
,

where division of multi-indicesj, k ∈ Zd is defined byj/k = (j [1]/k[1], . . . ,
j [d]/k[d]), assumingk[l] 	= 0 for eachl. In the definition ofSn, J is a multi-
index which depends on the increment that we use, andm, an integer, is the
number of dilations of the increment that we consider [see the Appendix and also
Kent and Wood (1997)]. It is assumed throughout thatm stays fixed asn → ∞;
justification for keepingm fixed is given by Constantine and Hall (1994). Note that
the sampling regime indicated above corresponds to “fixed domain” asymptotics
asn → ∞.

Consider the following conditions onγ andg.

(A1)
(d)
q For someα ∈ (0,2) andβ > 0, and for each nonnegative multi-indexr

with |r| = q,

γ (r)(t) = − ∂q

∂tr
{‖t‖αM(t/‖t‖)} + O(‖t‖α+β−q )

(2.2)
as‖t‖ → 0,

where ‖t‖ = (tT t)1/2 is the usual Euclidean norm onRd , and, for a
nonnegative multi-indexr = (r[1], . . . , r[d]), γ (r)(t) = ∂ |r |γ (t)/∂tr =
∂ |r |γ (t)/∂t

r[1]
1 · · · ∂t

r[d]
d , where|r| =∑d

l=1 r[l]. In (2.2)M(·) is assumed
to be a positive constant whend = 1; whend = 2 M(·) is a function on
the unit circle inR2, all of whose partial derivatives derivatives of order
q + 1 are assumed continuous.

(A2) The seventh derivative ofg, g(7), is continuous onR.
(A3) The set{x :g(1)(x) = 0} has Lebesgue measure 0, whereg(1) is the

derivative ofg.
(A4) (d = 2 only.) Asn → ∞ n0[1]/n0[2] stays bounded away from 0 and∞.

It is easily shown that, if(A1)
(d)
q holds, then(A1)

(d)
r holds for each 1≤ r < q.

Moreover,(A1)
(d)
q implies that

γ (t) = γ (0) − ‖t‖αM(t/‖t‖) + O(‖t‖α+β),(2.3)

where (2.3) reduces to (1.1) whend = 1.
It is possible to weaken assumption(A2) to some extent, but only at a
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considerable cost in technical detail in the proofs. Assumption(A3) is a mild
nondegeneracy condition which seems essential if our theorems are to hold.
Condition (A4) is needed whend = 2 to ensure that the sampling set does not
become too “thin.”

Puttinggi = g{X(i/n0)}, we define

Z̄u = n−1
∑
i∈In

{∑
j

au
j gi+j

}2

, µu = nα/dE

{∑
j

au
j X

(
i + j

n0

)}2

(2.4)

and

Gr =
∫
t∈[0,1]d

[
g(1){X(t)}]2r

dt, r = 1,2,(2.5)

whered = 1 or 2. The notation for incrementsa = {aj } used in (2.4) is explained
in the Appendix. LetLu, u = 1, . . . ,m, be real numbers which satisfy

m∑
u=1

Lu = 0,

m∑
u=1

Lu logu = 1.

Various choices for theLu are discussed by Kent and Wood (1997). All are based
on the log-linearity given by the power law relationship; see (2.3) and (1.4). The
simplest case is ordinary least squares [see (1.5)] for which

Lu = (logu − m−1∑m
v=1 logv)∑m

u=1(logu − m−1∑m
v=1 logv)2 , u = 1, . . . ,m.

Define

α̂ =
m∑

u=1

Lu logZ̄u and αn =
m∑

u=1

Lu logµu(2.6)

and

F = (F1 + F2)/G1,(2.7)

where

F1 =
{

m∑
u=1

Luµ
−1
0,u(τ0,1u + τ0,2u + τ0,3u)

}
(2.8)

×
∫
t∈[0,1]d

g(1){X(t)}g(3){X(t)}dt

and

F2 =
{

m∑
u=1

Luµ
−1
0,u(τ0,1u + τ0,2u + τ0,4u)

}
(2.9)

×
∫
t∈[0,1]d

[
g(2){X(t)}]2dt.
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In the aboveµ0,u = limn→∞ µu ∈ (0,∞) andτ0,ju = limn→∞ τju (j = 1, . . . ,4;
u = 1, . . . ,m), whereµu is defined in (2.4) andτ1u, τ2u, τ3u andτ4u are defined
in (5.13), (5.18) and (5.21). Note thatµ0,u andτ0,ju may be determined explicitly
using (1.1) whend = 1 or (2.3) whend = 2, but we omit the details because these
formulas are not required in what follows.

The quantityσ which appears in Theorem A is defined as follows. Whend = 1,

σ =
√

tT �0t,(2.10)

wheretu = C−1u−αLu, u = 1, . . . ,m, t = (t1, . . . , tm)T , C > 0 is the constant in
formula (2.7) in Kent and Wood (1997) and�0 is the covariance matrix defined
via (3.3) and (3.6) in Kent and Wood (1997) (the precise definitions ofC and�0

need not concern us here). Whend = 2, σ is still of the form (2.10), but with the
quantitiesC and�0 now given by (3.13) and (3.16) in Chan and Wood (2000).

The integratorB(·) which appears in Theorem A is a Gaussian random measure
such that, for any measurable subsetsA1, . . . ,Ak of [0,1]d ,(

B(A1), . . . ,B(Ak)
)T ∼ Nk(0,	),(2.11)

where	 = (ψjl), ψjl = λ(Aj ∩ Al) andλ denotes Lebesgue measure onRd .
In Theorem BZS is the zero-mean random Gaussian measure defined on

[−π,π ]d with the following properties: ifD1,D2 ⊆ [−π,π ]d , then

cov
{
ZS(D1),ZS(D2)

} = S(D1 ∩ D2),

whereS is the spectral measure of a covariance function onZd of the formρ(k) =
‖k‖−αA(k/‖k‖), where k ∈ Zd and A(·) > 0 is a continuous function on
the unit sphere inRd . In fact, ρ(k) is defined as the limit asn → ∞ of
the covariance cov(Yi, Yi+k), whereYi = ∑m

u=1 u2Yiu/(
∑m

u=1 u4)1/2 and Yiu is
defined in (5.1). Whend = 1, we may takeA to be a constant, and whend = 2,
A is determined byM in (2.3).

2.2. The theorems. We are now ready to state our main results, Theorems
A and B. Discussion of these results follows in Section 2.3.

THEOREM A. Suppose that γ and g satisfy conditions (A1)
(d)
4 , (A2)

and (A3), and, if d = 2, suppose also that the sampling regime satisfies (A4).
Let α̂ and αn be defined as in (2.6), using the index set (2.1) in (2.4). Suppose
that a = {aj } is an increment of order p ≥ 0 such that 4 + 4p − 2α > d ,
where d = 1 or d = 2. Then

α̂ − αn = n−α/dF + n−1/2σ

√
G2

G1
Z + op(n−α/d + n−1/2),(2.12)
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where σ > 0 is a constant and Z ∼ N(0,1) is independent of G1, G2 and F , where
the latter are defined by (2.5)and (2.7)–(2.9).

When 0 < 2α < d , the n−α/d term in (2.12)is dominant and, in this case,

nα/d(α̂ − αn)
D→F.

When d < 2α < min(4,4+ 4p − d), the n−1/2 term in (2.12)is dominant and, in
this case,

n1/2(α̂ − αn)
D→σG−1

1

∫
[0,1]d

[
g(1){X(t)}]2dB(t)

D=σ

√
G2

G1
Z,

where B(t) is the Gaussian random measure described in (2.11).When 2α = d ,
both terms contribute, and we have

n1/2(α̂ − αn)
D→F + σG−1

1

∫
[0,1]d

[
g(1){X(t)}]2 dB(t).

In the above the Gaussian measure {B(t)} is independent of the underlying
Gaussian field {X(t) : t ∈ [0,1]d}.

When 4+ 4p − 2α < d , the limit distribution of α̂ may be expressed as a
Wiener–Itô integral of order 2. See Dobrushin and Major (1979) and Major (1981)
for further details on Wiener–Itô integrals.

THEOREM B. Suppose that γ and g satisfy conditions (A1)
(d)
4 , (A2)

and (A3), and (when d = 2) the sampling regime satisfies (A4). Let α̂ and αn be
defined as in (2.6)where, as before, a = {aj } is an increment of order p = 0, and
suppose that either d = 1 and 3/2< α < 2 or d = 2 and 1 < α < 2 (corresponding
to the condition 4+ 4p − 2α < d). Then

n(2−α)/d(α̂ − αn)

D→G−1
1

∫
x1,x2∈[−π,π ]d

∫
t∈[0,1]d

I (x1 	= x2)e
itT (x1+x2)

× [
g(1){X(t)}]2dt dZS(x1) dZS(x2)

D=
∫
x1∈[−π,π ]d

∫
x2∈[−π,π ]d

I (x1 	= x2)Fg(x1 + x2) dZS(x1) dZS(x2),

where the indicator function I (x1 	= x2) excludes the diagonal and

Fg(x) = G−1
1

∫
t∈[0,1]d

eitT x[g(1){X(t)}]2 dt

is the Fourier transform of the random probability measure on [0,1]d whose
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density with respect to Lebesgue measure is given by [g(1){X(t)}]2/G1. In the
above, the Gaussian measure ZS is independent of the underlying Gaussian
field {X(t) : t ∈ [0,1]d}.

2.3. Discussion. A number of comments concerning Theorems A and B
now follow.

1. Wheng is affine in Theorem A,F ≡ 0,
√

G2/G1 = 1 and therefore the limit
distribution of n1/2(α̂ − αn) is N(0, σ 2). This agrees with the central limit
theorems given in Kent and Wood (1995, 1997) and Chan and Wood (2000).

2. Note that, in (2.12)
√

G2/G1 ≥ 1 by the Cauchy–Schwarz inequality, with
equality if g is affine. Moreover, whenα < d/2 the rate of convergence ofα̂

to αn is of slower order thann−1/2. Therefore, we may conclude that, from the
point of view of the estimator̂α in (2.6), the non-Gaussian case (g not affine) is
less favorable than the Gaussian case (g affine) in the framework considered in
this paper. This finding is confirmed by the numerical MSE results in Section 3,
though these results also suggest that the deterioration is not too severe provided
thatg is not drastically nonaffine over the relevant domain.

3. At the borderline between Theorems A and B [i.e., when the increment used
has order 0 andα = (4 − d)/2], the limit distribution is of the type given
in Theorem A, but the convergence rate ofn−1/2 is modified by a logarithmic
factor in n; compare the Constantine–Hall (1994) result whenα = 3/2. We
omit the proof.

4. The bias ofα̂ in the context of Theorem A depends not only on the right-
hand side of (2.12), but also onαn − α. It follows from (2.1) and (2.3) and the
definitions in (2.6) thatαn − α = O(n−β/d). It can be seen that, in Theorem A,
this term makes a negligible contribution to the bias if and only ifβ > α,
and it makes a negligible contribution to the mean squared error if and only
if β > min(α, d/2). In Theorem Bαn − α makes a negligible contribution to
the MSE ifβ > 2−α. See Constantine and Hall (1994), Kent and Wood (1997)
and Chan and Wood (2000) for further discussion of this bias term.

5. It is interesting to note that Theorems A and B do not require any moment
conditions ong{X(t)}. This is a consequence of the Gaussianity ofX(t) and
the smoothness ofg. See also the proof of Step 1 in Section 5.

6. It is straightforward to extend the results given ford = 1,2 to d > 2. In
short, if p is the order of the increment used, then we are in the situation of
Theorem A if 4+ 4p − 2α > d , and we are in the situation of Theorem B
if 4 + 4p − 2α < d .

7. It may be helpful to give some intuition as to whyX(t) is independent of
the Gaussian measureB in Theorem A and the Gaussian measureZS in
Theorem B. For simplicity consider the cased = 1 and letX(t) have covariance
functionγ (t) satisfying (1.1). Then ash → 0 (corresponding to a fixed-domain
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asymptotic regime), we have (i)Wh(t) ≡ h−α/2{X(t + h) − X(t)} converges
in distribution to N(0,2c), and (ii) Wh(t) is asymptotically independent
of X(t). Essentially, the increments ofB in Theorem A andZS in Theorem
B are linear combinations of terms of the formWh(t), while each integrand
depends only onX(t). Thus, the integrator and integrand are independent in
the limit. In Step 6 of Section 5 we establish this asymptotic independence
rigorously.

8. Note that the “diagonal”{x1 = x2} is explicitly excluded from the region of
integration in Theorem B. This is in line with the definition of the Wiener–
Itô integral given by many authors, including Dobrushin and Major (1979),
formula (1.9), Major (1981), Theorem 8.2, Nualart (1995), formula (1.13) and
Arcones (1994), formula (3.9), but note that in all of the above references the
exclusion of the diagonal is not made explicit in the notation. See Taqqu (1979),
page 77, for helpful discussion of this point.

3. Numerical results. In the simulation studies described below the covari-
ance function of the underlying stationary Gaussian field was chosen to be of the
form γ (t) = exp(−c‖t‖α), whereα ∈ (0,2) andc > 0, and‖t‖ is the usual Euclid-
ean norm onRd . We chosec = 1 whend = 1 andc = 10 whend = 2 throughout
our numerical work. The data were simulated using the circulant embedding ap-
proach; see, for example, Wood and Chan (1994) and Chan and Wood (1999) for
details and further references. In all cases considered, it was possible to use the
algorithm in its “exact” form.

Four types of point transformations were considered:

1. Uniform:g(x) = �(x);
2. Exponential:g(x) = − log{1− �(x)};
3. Chi-squared with one degree of freedom:g(x) = x2;
4. Log-normal:g(x; τ ) = exp(τx).

In the above� denotes the standard normal distribution function. Two
cases of the log-normal distribution were considered, corresponding toτ = 1
andτ = 4. Note thatτ = 4 corresponds to an extremely nonaffine transformation
in the relevant domain and is included as an extreme case. Each of the above
transformations preserves the fractal dimension of the underlying Gaussian
random field [see Hall and Roy (1994)].

Figure 1(a) shows a realization of a Gaussian process withα = 0.1, and Fig-
ure 1(b)–(f) shows various nonaffine transformations of this realization. Figure 2
shows similar nonaffine transformations of a smoother process, withα = 1.0. It
is clear from visual inspection of the graphs that the nonaffine transformations do
have a noticeable effect in both Figures 1 and 2, and in many cases the transformed
processes do clearly exhibit non-Gaussian features. The log-normal transformation
with τ = 4 is particularly extreme, as might be expected.
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FIG. 1. Gaussian process and its point-transformed non-Gaussian processes with n = 1000,
α = 0.1.
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FIG. 2. Gaussian process and its point-transformed non-Gaussian processes with n = 1000,
α = 1.0.
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Some representative numerical results ford = 1 are displayed in Tables 1–3 and
for d = 2 in Table 4.

Table 1 summarizes the results of a simulation study of the performance of three
estimators,̂α(0)

OLS, α̂(1)
OLS andα̂

(1)
GLS, of the fractal indexα of a Gaussian process, and

several transformations of this process. The notation used for these estimators is
the same as that in Kent and Wood (1997) and Chan and Wood (2000):α̂

(p)
OLS,

p = 0 or 1, is the ordinary least squares estimator ofα given by (1.5), based
on the log–log relationship (1.4), and using increment (A.3) whenp = 0 and
increment (A.4) whenp = 1; andα̂

(1)
GLS is a generalized least squares estimator

of α, again based on the log–log relationship, using increment (A.4). For smoother
processes (e.g.,α = 1.9) the GLS estimator performs slightly better, in terms of
the mean squared error (MSE), than the other two estimators, due to its smaller
bias. For rougher processes (e.g.,α = 1.0 and 0.1) all three estimators have
very similar MSE with slightly higher standard deviation (SD) for the estimators
with p = 1. One noticeable fact is that all estimators generally perform worse for
the transformed processes. However, the deterioration is fairly mild in most cases,
except in the case of the log-normal(4) transformation, where there is a substantial
increase in the MSE.

In the second study we compare the asymptotic and empirical rate of decrease
in variance ofα̂(0)

OLS andα̂
(1)
OLS as the sample sizen increases. The asymptotic rates

of decrease are computed using the following results in the Gaussian case [see
Constantine and Hall (1994) and Chan and Wood (2000)]:

var
(
α̂

(0)
OLS

) ∼


C1n
−1, 0 < α < 3/2,

C2n
−1 logn, α = 3/2,

C3n
2α−4, 3/2< α < 2,

and

var
(
α̂

(1)
OLS

) = C4n
−1, 0 < α < 2,

where C1, . . . ,C4 depend onα and m but not on n. Hence, the asymptotic
variance ratios for sample sizesn1 < n2 and α 	= 3/2 will be equal to either
(n2/n1)

−1 or (n2/n1)
2α−4. For a non-Gaussian process in the one-dimensional

case (d = 1), the variance formulas for botĥα(0)
OLS andα̂

(1)
OLS are the same as in the

Gaussian case except when 0< α < 1/2. In that case the asymptotic variances are
asymptotic toC5n

−2α for both estimators. Table 2 reports the estimated variance
whenn = 1000 and the estimated rate of decrease in variance:

v̂ar(α̂n)/v̂ar(α̂1000), whenn = 2000,4000,10,000,

for Gaussian, exponential(1) (as an example of mildly nonaffine transforma-
tion) and log-normal(4) (as an example of extremely nonaffine transformation)
processes. For the Gaussian case there is good agreement between the theoretical
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TABLE 1
Comparison of the three estimators and six processes with n = 1000,m = 4, based on 100simulations in each case

α̂
(0)
OLS α̂

(1)
OLS α̂

(1)
GLS

α Process Bias SD MSE Bias SD MSE Bias SD MSE
0.1 Gaussian −0.021 0.033 0.002 −0.021 0.043 0.002 −0.021 0.043 0.002

Uniform −0.028 0.034 0.002 −0.029 0.045 0.003 −0.029 0.045 0.003
Exp(1) −0.027 0.039 0.002 −0.025 0.051 0.003 −0.025 0.051 0.003
χ2

1 −0.041 0.041 0.003 −0.036 0.054 0.004 −0.036 0.054 0.004
Log-N(1) −0.032 0.047 0.003 −0.029 0.064 0.005 −0.029 0.063 0.005
Log-N(4) −0.079 0.090 0.014 −0.081 0.152 0.030 −0.075 0.133 0.024

1.0 Gaussian −0.002 0.041 0.002 0.002 0.059 0.003 0.001 0.057 0.003
Uniform −0.000 0.052 0.003 0.006 0.077 0.006 0.005 0.074 0.006
Exp(1) −0.005 0.055 0.003 −0.005 0.076 0.006 −0.004 0.074 0.006
χ2

1 −0.008 0.059 0.004 0.000 0.079 0.006 0.001 0.074 0.005
Log-N(1) −0.008 0.057 0.003 −0.008 0.079 0.006 −0.006 0.077 0.006
Log-N(4) −0.059 0.134 0.021 −0.054 0.186 0.038 −0.051 0.175 0.033

1.9 Gaussian −0.030 0.055 0.004 −0.002 0.056 0.003 −0.002 0.054 0.003
Uniform −0.025 0.060 0.004 −0.001 0.068 0.005 −0.000 0.064 0.004
Exp(1) −0.033 0.056 0.004 −0.003 0.068 0.005 −0.002 0.064 0.004
χ2

1 −0.041 0.055 0.005 −0.010 0.071 0.005 −0.009 0.066 0.004
Log-N(1) −0.038 0.054 0.004 −0.004 0.072 0.005 −0.003 0.067 0.005
Log-N(4) −0.068 0.063 0.009 −0.013 0.123 0.015 −0.012 0.119 0.014
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TABLE 2
Comparison of the two OLS estimators and three processes with n = 1000,2000,4000,10,000,m = 10,based on 500simulations in each case; the

empirical (asymptotic) variance ratios are given when n ≥ 2000

Order 0 Order 1

Process α var 2000 4000 10,000 var 2000 4000 10,000

Gaussian 0.1 0.0340 0.48 (0.50) 0.24 (0.25) 0.10 (0.10) 0.0360 0.48 (0.50) 0.25 (0.25) 0.10 (0.10)
0.4 0.0215 0.50 (0.50) 0.23 (0.25) 0.10 (0.10) 0.0221 0.52 (0.50) 0.22 (0.25) 0.10 (0.10)
0.7 0.0222 0.47 (0.50) 0.23 (0.25) 0.09 (0.10) 0.0232 0.45 (0.50) 0.23 (0.25) 0.10 (0.10)
1.0 0.0225 0.47 (0.50) 0.22 (0.25) 0.09 (0.10) 0.0237 0.49 (0.50) 0.25 (0.25) 0.10 (0.10)
1.3 0.0227 0.53 (0.50) 0.29 (0.25) 0.10 (0.10) 0.0236 0.55 (0.50) 0.29 (0.25) 0.11 (0.10)
1.6 0.0237 0.69 (0.57) 0.33 (0.33) 0.19 (0.16) 0.0239 0.52 (0.50) 0.27 (0.25) 0.11 (0.10)
1.9 0.0241 0.73 (0.87) 0.62 (0.76) 0.40 (0.63) 0.0246 0.44 (0.50) 0.22 (0.25) 0.09 (0.10)

Exp(1) 0.1 0.0349 0.56 (0.87) 0.28 (0.76) 0.14 (0.63) 0.0373 0.56 (0.87) 0.28 (0.76) 0.14 (0.63)
0.4 0.0223 0.57 (0.57) 0.30 (0.33) 0.12 (0.16) 0.0234 0.53 (0.57) 0.28 (0.33) 0.11 (0.16)
0.7 0.0233 0.50 (0.50) 0.27 (0.25) 0.11 (0.10) 0.0247 0.50 (0.50) 0.28 (0.25) 0.12 (0.10)
1.0 0.0234 0.58 (0.50) 0.27 (0.25) 0.11 (0.10) 0.0258 0.55 (0.50) 0.26 (0.25) 0.10 (0.10)
1.3 0.0238 0.53 (0.50) 0.34 (0.25) 0.11 (0.10) 0.0253 0.58 (0.50) 0.30 (0.25) 0.11 (0.10)
1.6 0.0245 0.71 (0.57) 0.32 (0.33) 0.20 (0.16) 0.0261 0.50 (0.50) 0.28 (0.25) 0.10 (0.10)
1.9 0.0242 0.74 (0.87) 0.63 (0.76) 0.41 (0.63) 0.0258 0.51 (0.50) 0.25 (0.25) 0.11 (0.10)

Log-normal(4) 0.1 0.0212 0.75 (0.87) 0.91 (0.76) 0.57 (0.63) 0.0233 0.69 (0.87) 0.80 (0.76) 0.53 (0.63)
0.4 0.0111 1.0 (0.57) 0.76 (0.33) 0.91 (0.16) 0.0121 0.92 (0.57) 0.62 (0.33) 0.74 (0.16)
0.7 0.0118 0.73 (0.50) 0.54 (0.25) 0.36 (0.10) 0.0136 0.77 (0.50) 0.49 (0.25) 0.31 (0.10)
1.0 0.0117 0.63 (0.50) 0.35 (0.25) 0.18 (0.10) 0.0137 0.56 (0.50) 0.32 (0.25) 0.14 (0.10)
1.3 0.0111 0.52 (0.50) 0.38 (0.25) 0.15 (0.10) 0.0129 0.50 (0.50) 0.27 (0.25) 0.11 (0.10)
1.6 0.0283 0.70 (0.57) 0.36 (0.33) 0.22 (0.16) 0.0124 0.49 (0.50) 0.25 (0.25) 0.09 (0.10)
1.9 0.0246 0.77 (0.87) 0.69 (0.76) 0.50 (0.63) 0.0118 0.48 (0.50) 0.26 (0.25) 0.11 (0.10)
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and the numerical results. For the non-Gaussian cases, there is good agreement
for medium to largeα (smoother process). For the exponential(1) process, the nu-
merical variance ratios are closer to those for the Gaussian process for smallα

(rough process). The rate of decrease in variance does not depend noticeably on
the choice ofm.

In Table 3 we study the effect of the number of pointsm used in the regression
for α̂

(0)
OLS, α̂

(1)
OLS andα̂

(1)
GLS. Table 3 suggests that the number of points used in the

regression does not affect the MSE significantly for all three estimators. For these
simulated data a choice ofm = 4 would be suitable.

Next we take a closer look at the distribution ofα̂
(1)
GLS for both Gaussian and

non-Gaussian processes. Figure 3 shows normal quantile–quantile plots based
on 100 estimates for Gaussian, chi-square(1) and log-normal(4) processes. The
added straight lines go through the first and third quartiles of these estimates and
the corresponding value of the standard normal distribution. With the exception of

TABLE 3
Comparison of the three estimators for the χ2

1 process in terms of
MSE with n = 2000,m = 2,4,6,8,10, based on 100simulations

in each case

m

α α̂ 2 4 6 8 10

0.1 α̂
(0)
OLS 0.0056 0.0031 0.0032 0.0031 0.0031

α̂
(1)
OLS 0.0103 0.0035 0.0033 0.0030 0.0031

α̂
(1)
GLS 0.0103 0.0035 0.0033 0.0030 0.0031

0.3 α̂
(0)
OLS 0.0054 0.0037 0.0041 0.0045 0.0048

α̂
(1)
OLS 0.0111 0.0041 0.0040 0.0043 0.0045

α̂
(1)
GLS 0.0111 0.0041 0.0038 0.0039 0.0040

1.0 α̂
(0)
OLS 0.0017 0.0018 0.0019 0.0020 0.0022

α̂
(1)
OLS 0.0053 0.0038 0.0039 0.0035 0.0033

α̂
(1)
GLS 0.0053 0.0035 0.0028 0.0023 0.0021

1.7 α̂
(0)
OLS 0.0021 0.0025 0.0029 0.0032 0.0035

α̂
(1)
OLS 0.0054 0.0033 0.0029 0.0032 0.0036

α̂
(1)
GLS 0.0054 0.0030 0.0027 0.0024 0.0022

1.9 α̂
(0)
OLS 0.0028 0.0031 0.0033 0.0035 0.0037

α̂
(1)
OLS 0.0048 0.0032 0.0032 0.0034 0.0037

α̂
(1)
GLS 0.0048 0.0027 0.0024 0.0022 0.0023
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FIG. 3. Normal quantile–quantile plots for α̂
(1)
GLS with n = 2000,α = 0.1,1.0,1.9, m = 10.

the top right-hand corner [log-normal(4) withα = 0.1], all cases suggest that these
empirical distributions are reasonably close to normal. This graphical finding is
supported by the Kolmogorov–Smirnov goodness-of-fit test.

Our tentative conclusions ford = 1 are as follows:

1. All three estimators perform fairly well under modest departures from normal-
ity (of the type introduced by the nonaffine transformationg).

2. Our numerical results suggest there is no advantage in using the GLS estimator
in the non-Gaussian case (which is not surprising, as it was designed for the
Gaussian case).

3. The number of points used in the regression is not critical and can be taken as
small as 4 for the simulation data considered.

For d = 2, the performance of the OLS estimator, based on the “square”
increment defined in (A.8), is studied forn0 = (50,50), (100,100) and(500,500),
andm = 2(1)10. We denote this estimator bŷαn0. In particular, we compare the
asymptotic and empirical rates of decrease in variance ofα̂n0 as the sampling
region increases. Theoretical results from Chan and Wood (2000) imply that for
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TABLE 4
Comparison between empirical and asymptotic variance ratios among Gaussian and non-Gaussian random fields with n0 = (50,50), (100,100),

(500,500), m = 4, based on 100simulations in each case

α var 100/50 500/50 500/100 var 100/50 500/50 500/100

Gaussian field Uniform field

0.1 0.0214 0.15 (0.25) 0.01 (0.01) 0.04 (0.04) 0.0213 0.15 (0.87) 0.01 (0.63) 0.04 (0.72)
0.4 0.0215 0.23 (0.25) 0.01 (0.01) 0.04 (0.04) 0.0215 0.21 (0.57) 0.01 (0.16) 0.05 (0.28)
0.7 0.0230 0.24 (0.25) 0.01 (0.01) 0.03 (0.04) 0.0229 0.22 (0.38) 0.01 (0.04) 0.05 (0.11)
1.0 0.0241 0.20 (0.25) 0.01 (0.01) 0.04 (0.04) 0.0252 0.24 (0.25) 0.01 (0.01) 0.04 (0.04)
1.3 0.0249 0.21 (0.25) 0.01 (0.01) 0.03 (0.04) 0.0269 0.28 (0.25) 0.01 (0.01) 0.03 (0.04)
1.6 0.0255 0.22 (0.25) 0.01 (0.01) 0.05 (0.04) 0.0111 0.34 (0.25) 0.01 (0.01) 0.03 (0.04)
1.9 0.0112 0.26 (0.25) 0.01 (0.01) 0.02 (0.04) 0.0138 0.48 (0.25) 0.01 (0.01) 0.03 (0.04)

χ2
1 field Log-normal(4) field

0.1 0.0215 0.23 (0.87) 0.01 (0.63) 0.03 (0.72) 2.98 0.23 (0.87) 0.01 (0.63) 0.03 (0.72)
0.4 0.0220 0.21 (0.57) 0.01 (0.16) 0.05 (0.28) 1.95 0.32 (0.57) 0.01 (0.16) 0.03 (0.28)
0.7 0.0249 0.29 (0.38) 0.01 (0.04) 0.05 (0.11) 3.59 0.06 (0.38) 0.01 (0.04) 0.01 (0.11)
1.0 0.0297 0.23 (0.25) 0.01 (0.01) 0.04 (0.04) 6.60 0.23 (0.25) 0.01 (0.01) 0.04 (0.04)
1.3 0.0113 0.25 (0.25) 0.01 (0.01) 0.04 (0.04) 1.36 1.20 (0.25) 0.03 (0.01) 0.03 (0.04)
1.6 0.0116 0.21 (0.25) 0.01 (0.01) 0.05 (0.04) 1.00 0.54 (0.25) 0.04 (0.01) 0.02 (0.04)
1.9 0.0126 0.33 (0.25) 0.01 (0.01) 0.02 (0.04) 2.87 0.11 (0.25) 0.04 (0.04) 0.41 (0.04)
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the Gaussian case,

var
(
α̂(n1,n1)

)/
var

(
α̂(n2,n2)

) = (n2/n1)
2, 0 < α < 2.

Theorem A implies that for non-Gaussian fields,

var
(
α̂(n1,n1)

)/
var

(
α̂(n2,n2)

) =
{

(n2/n1)
2 1 < α < 2,

(n2/n1)
2α, 0 < α < 1.

Table 4 reports the estimated variance whenn0 = (50,50) and the estimated
variance ratios whenn1 > n2 for n1, n2 = 50,100,500, for the following types
of fields: Gaussian, uniform,χ2

1 and log-normal(4). For the Gaussian case there is
good agreement between the theoretical and numerical results. For non-Gaussian
fields there is close agreement for medium to largeα. For smallα the empirical
ratios are closer to those in the Gaussian case. As in the one-dimensional
case, the number of points used in the regression is not critical. In summary,
the OLS estimator withp = 1 performs reasonably well under mild departures
from Gaussianity.

4. Some lemmas. We now present some results which are required in
Section 5. Lemmas 4.1 and 4.2 are used to prove Lemma 4.3 which (along with
the elementary Lemma 4.4) plays a key role in bounding remainder terms which
arise in Steps 2–5 in Section 5. Lemma 4.5 is used in Step 6 of Section 5.

LEMMA 4.1. Let (AT
i ,Bi)

T , i ∈ Zd , where Ai = (Ai1, . . . ,AiK)T , be a
stationary Gaussian vector field and assume that (AT

i ,Bi)
T has a standard

multivariate Gaussian distribution (i.e., with mean the zero vector and identity
covariance matrix). Define

σAA(i − j) = max
k,l=1,...,K

|cov(Aik,Ajl)|, σBB(i − j) = |cov(Bi,Bj )|,
σAB(i − j) = max

k=1,...,K
|cov(Aik,Bj )|

= max
k=1,...,K

|cov(Bi,Ajk)| = σBA(i − j).

Let a denote a nonnegative multi-index a = (a[1], . . . , a[K]) ∈ ZK , and write
Ha(Ai) = ∏K

k=1Ha[k](Aik), where Hm, m ≥ 0, is the Hermite polynomial of
degree m. Then∣∣E[

Ha(Ai)Hm(Bi)Ha(Aj)Hm(Bj)
]∣∣

≤ (a0!m!)2
a0∑

r=max(a0−m,0)

σAA(i − j)rσAB(i − j)2(a0−r)

r!(a0 − r)!(a0 − r)!(m − a0 + r)! ,

where a0 = |a| =∑K
k=1a[k].
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PROOF. From the diagram formula for moments (see Remark 4.1) we have,
under the assumptions of the lemma,

E
[
Ha(Ai)Hm(Bi)Ha(Aj)Hm(Bj )

]
(4.1)

= (a[1]! · · ·a[K]!m!)2

q!
∑

σl1,t1(i − j) · · ·σlq,tq (i − j),

whereq = m + a0, the l’s are associated with the components of(AT
i ,Bi)

T , the
t ’s are associated with the components of(AT

j ,Bj )
T and the summation is over all

indicesl1, t1, . . . , lq , tq ∈ {1, . . . ,K +1} such that there are preciselya[k] l-indices
andt-indices equal tok = 1, . . . ,K , andm l-indices andt-indices equal toK + 1.
In the above,σr,s(i − j) = cov(Air ,Ajs) for 1 ≤ r , s ≤ K , σr,K+1(i − j) =
cov(Air,Bj ) for 1≤ r ≤ K , σK+1,s(i−j) = cov(Bi,Ajs) andσK+1,K+1(i−j) =
cov(Bi,Bj ).

Consider a typical productσl1,k1(i − j) · · ·σlq,kq (i − j). If this consists
of r pairings of components ofAi with components ofAj , then there must
bea0 − r pairings of components ofAi with Bj , a0 − r pairings of components
of Aj with Bi and m − a0 + r pairings of Bi with Bj , where necessarily
max(a0 − m,0) ≤ r ≤ a0. Therefore,∣∣σl1,k1(i − j) · · ·σlq ,kq (i − j)

∣∣
≤ σAA(i − j)rσAB(i − j)a0−rσBA(i − j)a0−rσBB(i − j)m−a0+r

≤ σAA(i − j)rσAB(i − j)2(a0−r),

since 0≤ σBB(i − j) ≤ 1 andσAB(i − j) = σBA(i − j). But the number of terms
in the sum in (4.1) with preciselyr pairings of components ofAi with components
of Aj is bounded above by(

a0!∏K
k=1 ak!

)2(
(m + a0)!

r!(a0 − r)!(a0 − r)!(m − a0 + r)!
)
.

Therefore, sinceq = m + a0, we have the bound∣∣∣∣∣∑σl1,k1(i − j) · · ·σlq ,kq (i − j)

∣∣∣∣∣
(4.2)

≤
(

a0!∏K
k=1 ak!

)2 a0∑
r=max(a0−m,0)

σAA(i − j)rσAB(i − j)2(a0−r)q!
r!(a0 − r)!(a0 − r)!(m − a0 + r)! ,

and the lemma follows after application of the bound (4.2) to the right-hand side
of (4.1). �
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REMARK 4.1. For details of the diagram formula for moments of products
of Hermite polynomials in Gaussian variables, see, for example, Taqqu (1977),
Major (1981) and Arcones (1994). Note that the expectation on the left-hand side
of (4.1) reduces to the expression on the right-hand side of (4.1) because the
components of(AT

i ,Bi)
T are independent Gaussian variables for eachi. Note also

that the factor 2−q which appears in Major’s (1981) version of the formula does
not appear in (4.1) because we have employed the convention that, for eachk,
lk andtk in σlk,tk (i − j) are such thatlk is always associated with ani-index andtk
is always associated with aj -index.

LEMMA 4.2. Let f : R → R denote a function with compact support
whose qth derivative f (q) is continuous on R. Write Hm(x) for the mth
Hermite polynomial and φ(x) for the standard normal density, and let cm =∫∞
−∞ f (x)Hm(x)φ(x) dx denote the mth coefficient in the expansion of f in

Hermite polynomials. Then
∑∞

m=0 c2
m+q/m! < ∞.

PROOF. By assumption,f (q) is continuous onR and has compact support.

Therefore,f (q) has an expansion in Hermite polynomials of the form
∑∞

m=0 c
(q)
m ×

Hm(x)/m!, which isL2-convergent in the sense that
∑∞

m=0(c
(q)
m )2/m! < ∞. But

repeated integration by parts using the identity
∫ y
−∞ φ(x)Hm(x) dx = −φ(y) ×

Hm−1(y) for m = 1,2, . . . shows thatc(q)
m = cm+q , which proves the lemma.�

Lemmas 4.1 and 4.2 are used to prove the following result.

LEMMA 4.3. Let (A
(n)T
i ,B

(n)
i )T , i ∈ Zd , n = 1,2, . . . , be a sequence of

stationary Gaussian vector fields, where A
(n)
i = (A

(n)
i1 , . . . ,A

(n)
iK )T is a zero-mean

Gaussian vector whose dimension does not depend on n, and B
(n)
i ∼ N(0,1).

Suppose that (i) for each n B
(n)
i is independent of A

(n)
i (but not necessarily

independent of A
(n)
j when i 	= j ) and (ii) the smallest eigenvalue of cov(A(n)

i )

is bounded away from 0 as n → ∞. Let π(A
(n)
i ) be a polynomial of degree q in

the components of A
(n)
i such that E[π(A

(n)
i )] = 0 for all n. Suppose that

σ
(n)
AA(i − j) = sup

k,l=1,...,K

∣∣cov
(
A

(n)
ik ,A

(n)
j l

)∣∣ ≤ C{1+ |i − j |}α−2p−2

and

σ
(n)
AB(i − j) = sup

k=1,...,K

∣∣cov
(
A

(n)
ik ,B

(n)
j

)∣∣≤ Cn−α/(2d){1+ |i − j |}α−p−1,

where p is a nonnegative integer and C > 0 and α ∈ (0,2) are constants
independent of n. Let h : R → R be expressible as a sum of the form h = h1 + h2,
where h1 is a polynomial and h2 is a function of compact support whose qth



FD ESTIMATION IN NON-GAUSSIAN MODELS 1243

derivative is square integrable over R. Then for d = 1,2,

var

(
n−1

∑
i∈In

π
(
A

(n)
i

)
h
(
B

(n)
i

)) =


O(n−1), if p = 0 and (2− α) > d,

O(n−1 logn), if p = 0 and (2− α) = d,

O
(
n(α−2)/d

)
, if p = 0 and (2− α) < d,

O(n−1), if p ≥ 1.

PROOF. Assumption (ii), combined with the assumption that the elements
of cov(A(n)

i ) are bounded above byC, implies that we may without loss of

generality assume thatA(n)
i is a standard multivariate normal vector for eachn.

Then, using multi-index notation again, we may write the polynomialπ(A
(n)
i ) as a

sum of the form
∑

a caHa(A
(n)
i ), wherea ranges over a finite set of multi-indices

in ZK andca ∈ R. Therefore, the result will follow for a general polynomialπ of
degreeq if we can prove that it holds for each productHa(A

(n)
i ) =∏

k Ha[k](A(n)
ik )

of degree at mostq.
Let the Hermite polynomial expansion ofh (which is convergent in the

L2 sense) be given byh(x) =∑∞
m=0 bmHm(x)/m!. Using Lemma 4.1, we obtain

var

(
n−1

∑
i∈In

Ha

(
A

(n)
i

)
h
(
B

(n)
i

))

= var

(
n−1

∑
i∈In

Ha

(
A

(n)
i

) ∞∑
m=0

bm

m!Hm

(
B

(n)
i

))

≤ n−2
∞∑

m=0

(
bm

m!
)2

[ ∑
i,j∈In

∣∣∣E[
Ha

(
A

(n)
i

)
Ha

(
A

(n)
j

)
Hm

(
B

(n)
i

)
Hm

(
B

(n)
j

)]∣∣∣]

≤ n−2
∞∑

m=0

(
bm

m!
)2

×
[ ∑

i,j∈In

(a0!m!)2

×
a0∑

r=max(a0−m,0)

σ
(n)
AA(i − j)rσ

(n)
AB(i − j)2(a0−r)

r!(a0 − r)!(a0 − r)!(m − a0 + r)!
]

= (a0!)2
∞∑

m=0

b2
m

[
a0∑

r=max(a0−m,0)

{r!(a0 − r)!(a0 − r)!(m − a0 + r)!}−1

× n−2
∑

i,j∈In

σ
(n)
AA(i − j)rσ

(n)
AB(i − j)2(a0−r)

]
.
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Using the elementary result [see Chan and Wood (2000), page 364] that

n−2
∑

i,j∈In

(1+ |i − j |)−ρ =


O(n−1), if ρ > d,

O
(
n−1L(n)

)
, if ρ = d,

O(n−ρ/d), if ρ < d,

where we can takeL(n) = logn, and omitting some straightforward details,

we find that the assumed bounds forσ
(n)
AA andσ

(n)
AB imply that

n−2
∑

i,j∈In

σ
(n)
AA(i − j)rσ

(n)
AB(i − j)2(a0−r)

=


O(n−1), if p = 0, (2− α) > d,

O(n−1 logn), if p = 0, (2− α) = d,

O
(
n(α−2)/d

)
, if p = 0, (2− α) < d,

O(n−1), if p ≥ 1,

whered = 1,2. Note that the above statement is valid for each integerm ≥ 1 and
each integerr satisfying max(0, a0 − m) ≤ r ≤ a0. Also, using Lemma 4.2, it is
straightforward to check that

∞∑
m=0

b2
m

[
a0∑

r=max(a0−m,0)

{r!(a0 − r)!(a0 − r)!(m − a0 + r)!}−1

]
< ∞.

Finally, we put these results together and the proof is complete.�

The following result is elementary but is used repeatedly, and so is stated
explicitly for convenience.

LEMMA 4.4. Let {Xk,n :k = 1, . . . , n;n ≥ 1} be an arbitrary triangular
array of random variables such that supk=1,...,n supn≥1 E|Xk,n| ≤ C < ∞.
Then n−1∑n

k=1 Xk,n = Op(1) as n → ∞.

PROOF. Note thatE|n−1∑
k Xk,n| < C and then use the Markov inequality.

�

The Prohorov metricρ and Ky Fan metric, here denotedκ , are defined as
follows [see Dudley (1989)]. LetX and Y be random elements of a metric
space(S,dist), with laws P and Q, respectively, defined on the Borel sigma
field of (S,dist). Then ρ(P,Q) = inf{ε > 0 :P (A) ≤ Q(Aε) + ε for all Borel
setsA}, where Aε = {y ∈ S : dist(x, y) < ε for somex ∈ A} and κ(X,Y ) =
inf{ε > 0 :P [dist(X,Y ) > ε] ≤ ε}. Note that, by Theorem 11.3.5 of Dudley
(1989), we have

ρ(P,Q) ≤ κ(X,Y ).(4.3)
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LEMMA 4.5. Let X and Y be random elements with laws P and Q,
respectively, defined on the Borel sigma field of a metric space (S,dist), and let ρ

denote the Prohorov metric. Then ρ(P,Q) ≤ {E[dist(X,Y )2]}2/3.

PROOF. Chebyshev’s inequality yields

P
[
dist(X,Y ) >

{
E
[
dist(X,Y )2]}1/3

]
≤ {

E
[
dist(X,Y )2]}1/3

,

and so the result follows from (4.3).�

In all applications of this result given below,S = R2 and dist is the usual
Euclidean metric.

5. Proofs. We now prove the theorems stated in Section 2. The structure of the
proof of each theorem is very similar, and, in fact, the proofs given for Steps 1–5
cover both theorems. The only substantial difference between Theorems A and B
is in the limit distribution which arises in Step 6. Throughout the proof, we will
use the multi-index notation specified in the Appendix, on the understanding
thatd = 1 or 2.

We first introduce some notation that will be used throughout this section. Write

Wij = nα/(2d)

{
X

(
i + j

n0

)
− X

(
i

n0

)}
and

Yiu = nα/(2d)
∑
j

au
j X

(
i + j

n0

)
=∑

j

au
j Wij ,(5.1)

whereX(t) is the underlying Gaussian field (see Section 2). Note that the last
equality is a consequence of the fact that

∑
j au

j = 0 (see the Appendix). Define

σWW(i − j) = sup
k,l

∣∣cov(Wik,Wjl)
∣∣,

σWX(i − j) = sup
k

∣∣cov{Wik,X(j/n0)}
∣∣,

σYY (i − j) = sup
u,v

∣∣cov(Yiu, Yjv)
∣∣,

σYX(i − j) = sup
u

∣∣cov{Yiu,X(j/n0)}
∣∣.

Then condition(A1)
(d)
4 implies the existence of a constantC independent ofi, j

andn such that

σWW(i − j) ≤ C(1+ |i − j |)α−2,
(5.2)

σWX(i − j) ≤ Cn−α/(2d)(1+ |i − j |)α−1,
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σYY (i − j) ≤ C(1+ |i − j |)α−2p−2,
(5.3)

σYX(i − j) ≤ Cn−α/(2d)(1+ |i − j |)α−p−1,

wherep is the order of the incrementa on which Y is based. See Kent and
Wood (1997) and Chan and Wood (2000), Lemma 3.1, for justification of (5.2)
and (5.3).

PROOF OF THEOREM A. The proof is broken into a number of steps.
The Ti andTij referred to below are defined in the course of the proof; each of
these quantities isOp(1) and in some cases of smaller order.

STEP 1. Show that it is sufficient to prove the theorem for thoseg which
satisfy(A2) and(A3) and have compact support.

STEP 2. Show that

Ḡ1(α̂ − αn) = T0 + n−α/(2d)T1 + n−α/dT2 + Op

(
n−3α/(2d) + n−1),

where

Ḡ1 = n−1
∑
i∈In

[
g(1){X(i/n0)}]2(5.4)

andT0, T1 andT2 are defined in (5.9) via (5.6)–(5.8).

STEP 3. Show that

T0 = T00 + n−α/dT01 + Op

(
n−3α/(2d))

+
{

O(n−1/2), if p = 0 andd = 2,

O(n−1), if p ≥ 1 and/ord = 1,

whereT00 andT01 are defined in (5.16) and (5.14), respectively, and show that

T01
D→

(
m∑

u=1

Luµ
−1
0,uτ0,1u

)

×
∫
t∈[0,1]d

[
g(1){X(t)}g(3){X(t)} + [

g(2){X(t)}]2]dt

asn → ∞, whereµ0,u andτ0,1u are defined below (2.9).

STEP 4. Show thatT1 = n−α/(2d)T11 + Op(n−α/d), whereT11 is defined
in (5.17), and show that asn → ∞,

T11
D→

(
m∑

u=1

Luµ
−1
0,uτ0,2u

)

×
∫
t∈[0,1]d

[
g(1){X(t)}g(3){X(t)} + [

g(2){X(t)}]2]dt,
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whereτ0,2u is defined below (2.9).

STEP5. Show thatT2 = T21+T22+Op(n−α/(2d)+n−1/2), whereT21 andT22
are defined in (5.19) and (5.20), respectively, and show that, asn → ∞,

T21
D→
(

m∑
u=1

Luµ
−1
0,uτ0,3u

)∫
t∈[0,1]d

g(1){X(t)}g(3){X(t)}dt

and

T22
D→
(

m∑
u=1

Luµ
−1
0,uτ0,4u

)∫
t∈[0,1]d

[
g(2){X(t)}]2dt,

andτ0,3u andτ0,4u are defined below (2.9).

STEP 6. Establish convergence in distribution of(n1/2T00, Ḡ1), whereT00 is
defined in (5.16) and̄G1 is defined in (5.4).

PROOF OF STEP 1. Condition(A1)
(d)
4 implies (1.1) whend = 1 and (2.3)

whend = 2. In each case, we may use Kolmogorov’s lemma [see, e.g., Rogers
and Williams (1994), page 59] to establish thatX(t) has a continuous version
on [0,1]d . Consequently, for eachε > 0 there exists aC, depending onε and the
distribution ofX, such that

P

[
sup

t∈[0,1]d
|X(t)| > C

]
< ε.(5.5)

For giveng, let gC denote a function with compact support such thatg(t) = gC(t)

for all ‖t‖ < C, and letα̂C denote the estimator ofα that would have been obtained
if gC{X(t)} rather thang{X(t)} had been observed. It follows from (5.5) that

P [α̂ 	= α̂C for somen] < ε.

As a consequence, if the theorem is true for all functions of compact support
which satisfy assumptions(A2) and(A3), then it is also true for eachg which
satisfies(A2) and (A3), whether or notg has compact support. This argument
can be established rigorously using probability metrics (cf. the argument given in
Step 6). We omit the details.�

For the remainder of the proof we shall assume thatg has compact support [in
addition to satisfying(A2) and(A3)].

PROOF OFSTEP 2. By Taylor’s theorem

∑
j

au
j gi+j = ∑

j

au
j (gi+j − gi)

(
since

∑
j

au
j = 0

)
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= ∑
j

au
j

( 3∑
r=1

n−rα/(2d)(r!)−1Wr
ij g

(r)
i + n−2α/d(4!)−1W4

ij g̃
(4)
i

)

=
4∑

r=1

n−rα/(2d)Mriu,

where, forr = 1,2,3,

Mriu = g
(r)
i

1

r!
∑
j

au
j Wr

ij , M4iu = (4!)−1
∑
j

au
j g̃

(4)
ij W4

ij ,

g
(r)
i is g(r) evaluated atX(i/n0), r = 1,2,3, and from Taylor’s theorem,

g̃
(4)
ij = g

(4)
i [θjX{(i + j)/n0} + (1 − θj )X(i/n0)], where eachθj ∈ [0,1] is

suitably chosen.
Then

nα/dZ̄u = n−1
∑
i∈In

(
nα/(2d)

∑
j

au
j gi+j

)2

= n−1
∑
i∈In

( 4∑
r=1

n−(r−1)α/(2d)Mriu

)2

=
(
n−1

∑
i∈In

M2
1iu

)
+ n−α/(2d)µuT̃1u + n−α/dµuT̃2u

+ n−3α/(2d)n−1
∑
i∈In

Siu,

where

T̃1u = 2µ−1
u n−1

∑
i∈In

M1iuM2iu,(5.6)

T̃2u = µ−1
u n−1

∑
i∈In

(M2
2iu + 2M1iuM3iu)(5.7)

and

Siu = 2(M1iuM4iu + M2iuM3iu) + n−α/(2d)(M2
3iu + 2M2iuM4iu)

+ 2n−α/dM3iu + M4iu + n−3α/(2d)M2
4iu.

Since by Step 1 we are assuming that theg(r) are bounded for 1≤ r ≤ 4, it
is a straightforward (if tedious) matter to check thatE|Siu| < ∞. Therefore,
since theSiu are identically distributed for each 1≤ u ≤ m, it follows from
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Lemma 4.4 that

n−3α/(2d)n−1
∑
i∈In

Siu = Op

(
n−3α/(2d))

for eachu. Moreover,

n−1
∑
i∈In

M2
1iu = n−1

∑
i∈In

(∑
j

au
j Wij

)2(
g

(1)
i

)2
= n−1

∑
i∈In

(Y 2
iu − µu + µu)

(
g

(1)
i

)2
= µuḠ1 + µuT̃0u,

whereḠ1 is defined in (5.4) and

T̃0u = n−1
∑
i∈In

(µ−1
u Y 2

iu − 1)
{
g

(1)
i

}2
.(5.8)

Sonα/dZ̄u = Ḡ1µu + Ruµu, where

Ru = T̃0u + n−α/(2d)T̃1u + n−α/d T̃2u + Op

(
n−3α/(2d)

)
.

Since each̃Tku is bounded in probability for k = 1,2,3, it follows that

Ḡ1(α̂ − αn) = Ḡ1

m∑
u=1

Lu log(Z̄u/µu)

= Ḡ1

m∑
u=1

Lu

{
logḠ1 + log(1+ Ru/Ḡ1)

}

=
m∑

u=1

LuRu

{
1+ Op(Ru/Ḡ1)

}

=
m∑

u=1

Lu

[
T̃0u + n−α/(2d)T̃1u + n−α/dT̃2u + Op

{
n−3α/(2d) + R2

u

}]
= T0 + n−α/(2d)T1 + n−α/dT2 + Op

(
n−3α/(2d) + n−1),

where

Tk =
m∑

u=1

LuT̃ku, k = 0,1,2,(5.9)

and we have used the fact thatRu = Op(n−1/2 + n−α/d), so thatR2
u = Op(n−1 +

n−2α/d). The order statement forRu follows from Steps 3–6. �
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We now introduce some notation which is needed in Steps 3–5. Recall
the definition of Wij given at the beginning of Section 5. Writingζ (n)

j =
cov(X(i/n0),Wij ), defineζ (n) = (ζ

(n)
j ,−mJ ≤ j ≤ mJ) andWi = (Wij ,−mJ ≤

j ≤ mJ), and letV (n)
W denote the covariance matrix ofWi . Note thatV (n)

W does
not depend oni because of the stationarity ofWi , but that the distribution ofWi

does depend onn; this dependence onn has been suppressed for notational
convenience. Defineb(n) = (b

(n)
j ,−mJ ≤ j ≤ mJ) by b(n) = nα/(2d)(V

(n)
W )−1ζ (n).

Note thatn−α/(2d)∑
j b

(n)
j Wij is the projection ofX(i/n) onto the span ofWij ,

−mJ ≤ j ≤ mJ . Letb(0) = limn→∞ b(n) denote the limit ofb(n) which necessarily

exists under assumption(A1)
(d)
4 .

We may write

X(i/n0) = n−α/(2d)

(∑
j

b
(n)
j Wij

)
+ (

1− n−α/db(n)T V
(n)
W b(n)/γ0

)1/2
X̆i,

where X̆i ≡ X̆(i/n0), X̆i ∼ N(0, γ0) is independent ofWi , γ0 = γ (0) is the
variance ofX(i/n0) andV

(n)
W andb(n) are as defined above. Then

X(i/n0) = X̆i + n−α/(2d)δ1i + n−α/dδ2i + n−2α/dδ3i

= X̆i + n−α/(2d)δ0i ,

where

δ1i = ∑
j

b
(n)
j Wij , δ2i = −{

b(n)T V
(n)
W b(n)/(2γ0)

}
X̆i,

n−2α/dδ3i = (
1− n−α/db(n)T V

(n)
W b(n)/γ0

)1/2
X̆i − X̆i − n−α/dδ2i

and

δ0i = δ1i + n−α/(2d)δ2i + n−3α/(2d)δ3i .

PROOF OF STEP 3. Writing g
(r)
i for g(r)(X(i/n0)) as before, andğ(r)

i

for g(r)(X̆i), we obtain(
g

(1)
i

)2 = (
ğ

(1)
i

)2 + 2n−α/(2d)δ0i ğ
(1)
i ğ

(2)
i

(5.10)
+ n−α/dδ2

0i

{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2}+ n−3α/(2d)δ3
0iR1i ,

whereR1i is a remainder term which can be determined explicitly.
We now study the contribution of each of the four terms on the right-hand side

of (5.10). First, note thatδ3
0iR1i can be expressed as a finite sum of terms, each

of which can be expressed as a bounded function multiplied by a polynomial in
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Gaussian variables. Therefore, since theδ3
0iR1i (i ∈ In) are identically distributed,

we may use Lemma 4.4 to show that

m∑
u=1

Luµ
−1
u

(
n−1

∑
i∈In

(
n−3α/(2d)δ3

0iR1i

)) = Op

(
n−3α/(2d)

)
.(5.11)

Also, using similar arguments,(∑
j

au
j Wij

)2

δ2
0i

{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2}
= τ1u

{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2}(5.12)

+
{(∑

j

au
j Wij

)2

δ2
0i − τ1u

}{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2}
,

where

τ1u = E

[(∑
j

au
j Wij

)2(∑
k

b
(n)
k Wik

)2]
.(5.13)

It follows, after applying Lemmas 4.3 and 4.4 to the second term on the right-hand
side of (5.12), that

m∑
u=1

Luµ
−1
u

(
n−1

∑
i∈In

(∑
j

au
j Wij

)2

δ2
0i

{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2})

= T01 + Op

(
n−α/(2d)

)
,

where

T01 =
(

m∑
u=1

Luµ
−1
u τ1u

)(
n−1

∑
i∈In

ğ
(1)
i ğ

(3)
i + (

ğ
(2)
i

)2)
.(5.14)

A similar argument, using Lemmas 4.3 and 4.4 again, shows that

n−α/(2d)n−1
∑
i∈In

(∑
j

au
j Wij

)2

δ0i ğ
(1)
i ğ

(2)
i = Op(n−1),(5.15)

except whenp = 0 andd = 2, in which case we can conclude that the left-hand
side of (5.15) is of sizeOp(n−1/2). Writing

T00 =
m∑

u=1

Lun
−1

∑
i∈In

(µ−1
u Y 2

iu − 1)
(
ğ

(1)
i

)2(5.16)
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and putting (5.10)–(5.16) together, we see that the first part of Step 3 is proved. To
establish the limiting distribution ofT01, we may use an identical argument to that

given in Step 6 to prove thatJn(h)
D→J0(h) [which is the more straightforward

part of showing thatKn(h)
D→K0(h)]. To avoid duplication, we omit the details.

�

PROOF OFSTEP 4. By a Taylor expansion,

g
(1)
i g

(2)
i = ğ

(1)
i ğ

(2)
i + n−α/(2d)δ0i

{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2}+ n−α/dδ2
0iR3i .

Using similar arguments to those in Step 3, in particular Lemma 4.3, we find that
for anyε > 0,

T1 =
m∑

u=1

Luµ
−1
u

(
n−1

∑
i∈In

(∑
j

au
j Wij

)(∑
k

au
k W2

ik

)
g

(1)
i g

(2)
i

)

= n−α/(2d)T11 + Op(n−α/d) + O(n−1+ε),

where

T11 =
(

m∑
u=1

Luµ
−1
u τ2u

)
n−1

∑
i∈In

{
ğ

(1)
i ğ

(3)
i + (

ğ
(2)
i

)2}(5.17)

and

τ2u = E

{(∑
j

au
j Wij

)(∑
k

au
k W2

ik

)(∑
l

b
(n)
l Wil

)}
,(5.18)

so the first part of Step 4 is proved. Justification of the claim concerning the limit
distribution ofT11 follows along similar lines to that forT01 in Step 3. �

PROOF OFSTEP 5. In this case

g
(1)
i g

(3)
i = ğ

(1)
i ğ

(3)
i + n−α/(2d)δ0iR4i and

(
g

(2)
i

)2 = (
ğ

(2)
i

)2 + n−α/(2d)δ0iR5i .

Using Lemmas 4.3 and 4.4 again and writing

T21 =
(

m∑
u=1

Luµ
−1
u τ3u

)
n−1

∑
i∈In

ğ
(1)
i ğ

(3)
i ,(5.19)

T22 =
(

m∑
u=1

Luµ
−1
u τ4u

)
n−1

∑
i∈In

(
ğ

(2)
i

)2
,(5.20)

τ3u = 1
3E

(∑
j

au
j Wij

)2(∑
j

au
j W3

ij

)
, τ4u = 1

4E

(∑
j

au
j W2

ij

)2

,(5.21)
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we find thatn−α/dT2 = n−α/d(T21 + T22) + Op(n−1) as required. Justification of
the claim concerning the limit distributions ofT21 andT22 follows along similar
lines to that forT01 in Step 3 andT11 in Step 4. �

PROOF OFSTEP 6. Here we shall show that

(n1/2T00, Ḡ1)
D→
(
σ

∫
[0,1]d

[
g(1){X(t)}]2 dB(t),G1

)
,(5.22)

where T00 is given in (5.16),Ḡ1 is defined in (5.4),G1 is defined in (2.5)
with r = 1, {B(t)} is the random Gaussian measure given in (2.11), which is
independent of{X(t)}, andσ is given in (2.10). Recall thatn0 = (n0[1], . . . , n0[d])
andn = ∏d

l=1 n0[l] and that we assume that condition(A4) in Section 2.1 holds
whend = 2.

Let H denote the class of smooth functions with compact support. Forh ∈ H ,
define

In(h) = n−1/2
∑
i∈In

ξih
{
X̆(i/n0)

}
, Jn(h) = n−1

∑
i∈In

h{X(i/n0)}

and Kn(h) = (In(h), Jn(h)), where ξi = ∑m
u=1 Lu(µ−1

u Y 2
iu − 1). Note that by

constructionKn{(g(1))2} = (n1/2T00, Ḡ1). Also define

I0(h) =
∫
[0,1]d

h{X(t)}dB(t), J0(h) =
∫
[0,1]d

h{X(t)}dt

andK0(h) = (I0(h), J0(h)). Note that by constructionK0{(g(1))2} is equal to the
right-hand side of (5.22).

We will show that, for eachh ∈ H , Kn(h) converges toK0(h) in distribution.
Then, in view of (5.22) and Step 1, Step 6 will follow.

For each positive integerr , let πr denote a partition of[0,1]d given byπr =
{Aj, j ∈ Jr}, whereJr = {j ∈ Zd : 0 ≤ j [l] < r,1 ≤ l ≤ d}, whereAj ⊂ [0,1]d
is defined in the following way. Writetj = r−1j . Whend = 1, Aj is the interval
of width r−1 centered attj = r−1j + 1

2; whend = 2, Aj is a square with sides
of lengthr−1 which are parallel to the coordinate axes, and eachAj is centered
at tj = r−1j + 1

21, where1 = (1,1) is a 2-vector of 1’s. Givenπr , we define two
functions,t∗(t) andi∗(i), as follows: fort ∈ [0,1]d , t∗(t) = tj whent ∈ Aj , and
for each multi-index 0≤ i < n0, we definei∗(i) ≡ i∗n(i) = n0tj , wherej is such
thati/n0 ∈ Aj . Define

I ∗
n (h) ≡ I ∗

n (h;πr) = n−1/2
∑
i∈In

ξih
{
X̆(i∗/n0)

}
,

J ∗
n (h) ≡ J ∗

n (h;πr) = n−1
∑
i∈In

h{X(i∗/n0)}
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andK∗
n(h) = (I ∗

n (h), J ∗
n (h)), and write

I ∗
0 (h) ≡ I ∗

0 (h;πr) = σ

∫
[0,1]d

h{X(t∗)}dB(t),

J ∗
0 ≡ J ∗

0 (h;πr) =
∫
[0,1]d

h{X(t∗)}dt

andK∗
0(h) = (I ∗

0 (h), J ∗
0 (h)), where{B(t)} is a random Gaussian measure of the

form (2.11) which is independent of{X(t)}.
Let Pn,h, P0,h, P ∗

n,h andP ∗
0,h denote the distributions ofKn(h), K0(h), K∗

n(h)

andK∗
0(h), respectively. We need to show thatPn,h

D→P0,h. We shall do this by
showing that, givenε > 0, there exists a partitionπr of [0,1]d , depending onε
andh, such that

ρ(P0,h,P
∗
0,h) < ε/3(5.23)

and, for any suchπr , whenn is sufficiently large,

ρ(P ∗
n,h,P

∗
0,h) < ε/3;(5.24)

and for a sufficiently fine partitionπr andn sufficiently large,

ρ(Pn,h,P
∗
n,h) < ε/3,(5.25)

whereρ denotes the Prohorov metric. Then, whenn is sufficiently large,

ρ(Pn,h,P0,h) ≤ ρ(Pn,h,P
∗
n,h) + ρ(P ∗

n,h,P
∗
0,h) + ρ(P ∗

0,h,P0,h) < ε,

and, sinceε > 0 may be chosen arbitrarily small, Step 6 will have been proved.

PROOF OF(5.23). Using Lemma 4.5,

ρ(P0,h,P
∗
0,h) ≤ [

E{I0(h) − I ∗
0 (h)}2 + E{J0(h) − J ∗

0 (h)}2]2/3
.(5.26)

Using Fubini’s theorem, the Cauchy–Schwarz inequality and the fact that{X(t)}
and{B(t)} are independent, we obtain

E{I0(h) − I ∗
0 (h)}2 = E

[
σ

∫
[0,1]d

[
h{X(t)} − h{X(t∗)}]dB(t)

]2

(5.27)
= σ 2

∫
[0,1]d

E
[
h{X(t)} − h{X(t∗)}]2 dt

and

E{J0(h) − J ∗
0 (h)}2 ≤

∫
[0,1]d

E
[
h{X(t)} − h{X(t∗)}]2 dt.(5.28)

Givenh ∈ H andε > 0, it is clear (since{X(t)} is almost surely continuous and
therefore uniformly continuous on[0,1]d ) that we can find a (sufficiently fine)
partitionπr of [0,1]d such that∫

[0,1]d
E
[
h{X(t)} − h{X(t∗)}]2 < 1

2(ε/3)3/2.
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Then, using (5.27) and (5.28),

E{I0(h) − I ∗
0 (h)}2 < 1

2(ε/3)3/2 and E{J0(h) − J ∗
0 (h)}2 < 1

2(ε/3)3/2,

in which case (5.23) follows from (5.26).�

PROOF OF(5.24). For any Lebesgue-measurable setA ⊆ [0,1]d , define

�n(A) = n−1/2
∑

i : i/n0∈A

ξi.(5.29)

Then, for a given partitionπr ,

I ∗
n (h) ≡ n−1/2

∑
i∈In

ξih
{
X̆(i∗/n0)

} = ∑
j∈Jr

�n(Aj)h
{
X̆(tj )

}
and

J ∗
n (h) ≡ n−1

∑
i∈In

h{X(i∗/n0)} = n−1
∑
j∈Jr

cjh{X(tj )},

wherecj = #{i : i/n0 ∈ Aj } ∼ n/rd . In all cases covered by Theorem A a central

limit theorem applies to�n([0,1]d); that is,�n([0,1]d)
D→N(0, σ 2), whereσ 2 is

defined in (2.10). See Kent and Wood (1995, 1997) and Chan and Wood (2000)
for further details. It follows from a straightforward extension of those proofs

that, for any fixedπr , {�n(Aj), j ∈ Jr} D→{σB(Aj), j ∈ Jr}, whereB is the
random Gaussian measure defined in (2.11). Moreover, it is an easy consequence

of the definition ofX̆ that {X̆(tj ), j ∈ Jr} D→{X(tj ), j ∈ Jr}, where the random
variables {X(tj ), j ∈ Jr} are independent of the random variables{B(Aj),

j ∈ Jr}. Consequently, an application of the continuous mapping theorem implies

that K∗
n(h)

D→K∗
0(h), from which (5.24) follows for sufficiently largen, since

the Prohorov metricρ metrizes convergence in distribution.�

PROOF OF(5.25). We will only sketch the proof of this result. It is sufficient
to show that

lim
n→∞E{In(h) − I ∗

n (h)}2 = σ 2
∫
[0,1]d

E
[
h{X(t)} − h{X(t∗)}]2dt(5.30)

and

lim
n→∞E{Jn(h) − J ∗

n (h)}2 ≤
∫
[0,1]d

E
[
h{X(t)} − h{X(t∗)}]2 dt,(5.31)

because, if we choose a partitionπ such that, for alln sufficiently large,∫
[0,1]d

E
[
h{X(t)} − h{X(t∗)}]2 dt < 1

2(ε/6)3/2,

then (5.25) will follow from (5.30), (5.31) and Lemma 4.5.
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The proof of (5.31) is omitted as it is quite straightforward. However, we outline
the proof of (5.30), which requires more work. For simplicity, we focus on the case
in whichh =∑

m cmHm is a polynomial; it is an easy matter to extend the proof to
all h ∈ H . Now

E{In(h) − I ∗
n (h)}2 = n−1

∑
i,j∈In

E
[
ξiξj (hi − hi∗)(hj − hj∗)

]

=
M∑

m,m′=1

cmcm′

m!m′!n
−1

∑
i,j∈In

δ(i, j,m,m′),

wherehi = h{X̆(i/n0)}, hi∗ = h{X̆(i∗/n0)} and

δ(i, j,m,m′) = E
[
ξiξj

{
Hm(X̆i) − Hm(X̆i∗)

}{
Hm′(X̆j ) − Hm′(X̆j∗)

}]
.

Then (5.30) is a consequence of the following: for eachm 	= m′,

n−1
∑

i,j∈In

δ(i, j,m,m′) = o(1);(5.32)

and

lim
n→∞n−1

∑
i,j∈In

δ(i, j,m,m)

× lim
n→∞n−1

∑
i,j∈In

E[ξiξj ]E[
Hm(X̆i) − Hm(X̆i∗)

]
(5.33)

× [
Hm(X̆j ) − Hm(X̆j∗)

]
= σ 2

∫
[0,1]d

[
Hm(X(t)) − Hm(X(t∗))

]2
dt.

The results (5.32) and (5.33) are derived using the diagram formula (see the
references given in Remark 4.1) combined with (5.2) and (5.3). The arguments
are broadly similar to those used in the proof of Lemma 4.3. That concludes our
sketched proof of (5.25).�

Thus, Step 6 is now complete.�

To conclude the proof of Theorem A, we use (5.22) and the continuous mapping
theorem to show that

Ḡ−1
1 n1/2T00

D→ σ

G1

∫
[0,1]d

[
g(1){X(t)}]2 dB(t)

D= σ

√
G2

G1
Z,

whereZ ∼ N(0,1) is independent ofG1 and G2, and G2 is defined in (2.5)
with r = 2. Finally, putting Steps 1–6 together, we see that the proof of Theorem A
is complete. �
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PROOF OFTHEOREM B. The proof of Theorem B is essentially the same as
the proof of Theorem A, except that Step 6 is different. The decomposition given
by (5.23)–(5.25) can still be used, but the principal difference is that�n in (5.29)
does not obey a central limit theorem, and thereforeIn(h) does not converge to
a stochastic integral with respect to the random Gaussian measureB(t). What
actually happens is that, whend = 1 and 3/2< α < 2 ord = 2 and 1< α < 2,

var

(
n−1

∑
i∈In

ξ

)
= O

(
n(2α−4)/d

)
,

andn(2−α)/dn−1∑
i∈In

ξi obeys a noncentral limit theorem of the type given by
Theorem 6 in Arcones (1994). Then it can be shown, via the decomposition
(5.23)–(5.25), thatIn(h) converges to the Wiener–Itô integral specified in the
statement of Theorem B. The particular form of the spectral measureS follows
in part as a consequence of Theorem 1′ of Dobrushin and Major (1979) and in part
as a consequence of the degeneracy result given in part (c) of Theorem 1 in Kent
and Wood (1997). �

APPENDIX: NOTATION FOR INCREMENTS

Further details concerning increments may be found in Kent and Wood (1997)
and Chan and Wood (2000); we only give brief details here.

The univariate case (d = 1). An increment of orderp ≥ 0 is a finite array of
real numbersa = {aj :−J ≤ j ≤ J } such that, for all integers 0≤ r ≤ p,∑

j : −J≤j≤J

j raj = 0,(A.1)

but ∑
j : −J≤j≤J

jp+1aj 	= 0.(A.2)

An example of an increment of orderp = 0 is given by

a = {a0, a1}, wherea0 = −1 anda1 = 1;(A.3)

an example of an increment of orderp = 1 is given by

a = {a−1, a0, a1}, wherea−1 = 1, a0 = −2 anda1 = 1.(A.4)

Note that, here and in the main text, we adopt the convention that any compo-
nentsaj which are not given explicitly are 0 [so, in (A.3), for example, we have
omitteda−1 = 0].
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For an integeru ≥ 1, thedilation au = {au
j :−Ju ≤ j ≤ Ju} of an incrementa

has elements defined by

au
j =

{
aj ′, if j = j ′u,

0, otherwise,
(A.5)

where−Ju ≤ j ≤ Ju. It follows immediately from this definition that

∑
j

j rau
j =


0, if 0 ≤ r ≤ p,

ur
∑
j

j raj , if r ≥ p + 1,

where here and in the main text
∑

j indicates summation over−Ju ≤ j ≤ Ju.
Let {yj : j ∈ Z} be a sequence of numbers. Then if the incrementa is given
by (A.3), it follows that ∑

j

au
j yn+j = yn+u − yn,

while if a is given by (A.4), then∑
j

au
j yn+j = yn+u + yn−u − 2yn.

The multivariate case (d > 1). Let j = (j [1], . . . , j [d]) ∈ Zd denote a multi-
index. We say thatj is nonnegative and writej ≥ 0 if j [l] ≥ 0 for eachl =
1, . . . , d ; and ifk is another multi-index, we say thatj ≤ k if j [l] ≤ k[l] for eachl,
and writej < k if each inequalityis strict. Formulti-indicesj andr , we define

|r| =
d∑

l=1

r[l](A.6)

and

jr =
d∏

l=1

j [l]r[l],(A.7)

where 00 = 1.
In the d-dimensional case, an increment of orderp ≥ 0 is a finite arraya =

{aj :−J ≤ j ≤ J } satisfying (A.1) and (A.2), but withj , J and r now multi-
indices withjr defined by (A.7) and eachaj real as before.

The so-called “square” increment in the cased = 2, which is an example of an
increment of orderp = 1, is given by

a = {
a(0,0) = a(1,1) = 1, a(1,0) = a(0,1) = −1

};(A.8)

see Chan and Wood (2000).
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The dilationau = {au
j :−Ju ≤ j ≤ Ju} is defined by (A.5), but withj andj ′

now multi-indices. It follows immediately from this definition that

∑
j

j rau
j =


0, if 0 ≤ |r| ≤ p,

u|r |∑
j

j raj , if |r| ≥ p + 1,

where|r| is given by (A.6).
Note that if {yj : j ∈ Z2} is an array of real numbers and the square

increment (A.8) is used, then for anyn ∈ Z2,∑
j

au
j yn+j = yn+(0,0) + yn+(u,u) − yn+(u,0) − yn+(0,u).
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