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EMPIRICAL-LIKELIHOOD-BASED CONFIDENCE INTERVAL
FOR THE MEAN WITH A HEAVY-TAILED DISTRIBUTION

By LIANG PENG
Georgia Institute of Technology

Empirical-likelihood-based confidence intervals for a mean were intro-
duced by OwenBiometrika 75 (1988) 237—-249], where at least a finite sec-
ond moment is required. This excludes some important distributions, for ex-
ample, those in the domain of attraction of a stable law with index between
1 and 2. In this article we use a method similar to Qin and Wdgr{d.

J. Satist. 23 (1996) 209—-219] to derive an empirical-likelihood-based confi-
dence interval for the mean when the underlying distribution has heavy tails.
Our method can easily be extended to obtain a confidence interval for any
order of moment of a heavy-tailed distribution.

1. Introduction. SupposeXy,..., X, are i.i.d. random variables with com-
mon distribution functiorF satisfying

1—-F(x)=x"“RL1(x),
(1.1)
F(—x)=x""La(x),

wherear > 1,07 > 1 andLi(x) andLz(x) are slowly varying functions, that is,
lim; o0 L1(tx)/L1(¢t) = 1 and lim_, o, L2(tx)/L2(t) = 1 for all x > 0. We are
interested in obtaining a confidence interval for the meaa E(X;). In the
caseag = ar =« € (1,2) and limy— o (L1(x))/(L1(x) + L2(x)) = p € [0, 1],
we know thatF lies in the domain of attraction of a stable law with indexIf
bothag anda; are greater than 2, thanis in the domain of attraction of a normal
distribution. The use of heavy-tailed models in financial markets, such as value-at-
risk in the context of risk management, is attracting more attention; see the book by
Embrechts, Klippelberg and Mikosch (1997). There are many other applications
of heavy-tailed distributions, for example, teletraffic data [see Resnick (1997)] and
community size [see Feuerverger and Hall (1999)].

To estimate the population mean a natural estimator is the sample mean
X, = 12" 1 X;. Since the type of limiting distribution of the sample mean,
a stable law or a normal, depends on the tail indiegsand ag, it is hard to
derive a confidence interval for based on the limit, especially when the limit is
a stable law with index between 1 and 2. To avoid distinguishing the type of limit,
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Hall and LePage (1996) proposed a subsample bootstrap method to construct
a confidence interval for under more general conditions than (1.1). However,
this method performed poorly in the casg = ap € (1,2) [see Hall and Jing
(1998)]. More recently, Peng (2001) proposed a new estimatop ftinat has
a limit that is always a normal distribution by assuming= «; > 1 and second
order regular variation conditions for-1 F(x) and F (—x). This result prompted
us to look at the empirical likelihood method. Empirical likelihood methods for
constructing confidence regions were introduced by Owen (1988, 1990). One
of their advantages is that they enable the shape of a region, such as the degree
of asymmetry in case of a confidence interval, to be determined automatically
by the sample. In certain regular cases, empirical-likelihood-based confidence
regions are Bartlett correctable; see Hall and La Scala (1990), DiCiccio, Hall
and Romano (1991) and Chen and Hall (1993). For more details on empirical
likelihood methods, see Owen (2001).

We organize this article as follows. In Section 2 we introduce our empirical
likelihood method and state our main results. A simulation study and a real
application are given in Section 3. All proofs are deferred to Section 4.

2. Methodology and main results. The key idea of our method is to employ
extreme value theory to deal with two tails of the underlying distribution and
to treat the middle part of the underlying distribution nonparametrically. Since this
approach involves estimation of tail index, we know we need a stricter condition
than (1.1) to investigate the asymptotic behavior of the tail index estimator.
For simplicity we assume, as— oo,

1= F(x) = cpa {1+ brx PR 4+ o(x 1)),
(2.1)
F(—x)=c x {1+ bpx P 4 o(x=PLy),

wherecg > 0, ¢ >0, bg #0, by #0, Br > 0 andB; > 0. We remark that
(2.1) is a special case of a general second-order regular variation [see de Haan
and Stadtmdller (1996)].
Puts; = 1(X; < X,.m) ands; = 1(X; > X, n—t41), WhereX, 1 <--- < X,
denote the order statistics of1,...,X,,, m = m(n) - oo, m/n — 0, k=
k(n) — oo, k/n — 0, X, ,» <0 andX, ,_x+1 > 0. We may approximate the two
tails of F by

F(-x) =1- cRx_aR’ if x = Xn,n—k—i—la
and
F(x) =cp(—x)"%, if x < Xnm-

Thus the log-likelihood function may be written as two parts, the parametric log-
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likelihood based on data in two tails and the nonparametric likelihood based on
data in the midrange, that is,

lo(cr,cL,ar,or, pi) =li(cr,cr,ar,ar) +1a(pi),

where
li(cr,cL,ag,ar)
=klogag +klogcg — (@g +1) Y _ logX;
5i=1
+mlogay + mloger — (g + 1) Z log(—X;)
§i=1
and

L(p)= Y_ logp;.
S,‘ =5,‘ =0

By considering the log-likelihood functiorg(cg, cr, g, ar, p;) Subject to
the constraints

(2.2) ag > 1, ap > 1, cr >0, cr >0, pi >0,
(2.3) Z pi = 1_CRX,:ZIiH_l_CL(_Xn,m)_aL,
S,‘:(S,‘:O
R 1— ar _
(2.4) Y piXi=p- CRan,noﬁH - CLm(_Xn,m)l oL,
g,‘:&‘:o R L

we can employ the semiparametric likelihood ratio method, as in Qin and Wong
(1996), to obtain a confidence interval for The details are given in the following
discussion.

First we maximizelp subject to constraints (2.2) and (2.3). By the method
of Lagrange multipliers, we easily obtain

-1
_ 1 Xi
dp=1— log——— ,
[ k Szz:l Xnn—k+1 }
-1
_ 1 Xi
ap =1 — log ,
{m szzjl Xn,m }
(2.5)
ér =~ xin
n n,n—k+1°
eL=—(—Xpm),
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Note that bothxz anda; are Hill estimators [see Hill (1975)].
Next we maximizég subject to constraints (2.2)—(2.4) for fixgd Define

w; = w; (U, cr, L, AR, AL)
1—
=X; — (1 —crag(ar — 1)~ 1X,, R
—crap(oap — D H=Xpm) )

—ar\—1
X(l_CRXnn k+1 CL(—Xn,m) aL) ’

. k
Cr(ag, pu) = ;Xffﬁ,_kﬂ
k
Z Iog
n n—k+1 OlR
x {ar(er = Dn X0 g

— g — D27 XL

n,n—k+1
N m
crlop, mu) = ;(_Xn,m)al‘

{ . }
5i=1 oL

x ap(ap — Dn~H=X,.m)
— ulap — % =X )Y,

-1
N X; k
r2(ag, u) = {kn_l(oue — 1) 72X 0 k+1|: > |09X7 - —}

51 n,n—k+1 aR
=

—1
_n_laR(O(R - 1)_1Xn,n—k+l+n_1,u} ,

-1
izwmu):[mn‘l(oeL—1>—2<—Xn,m>[Zlog Xi —ﬁ}

(S,‘Zl Xn,m aL

-1
—nYap (o — )= X0m) + n_lu} :

Mg, ap, ) = (n—m—k)

x {1 = rlag, W)X, o8 g — Erlar, ) (= Xpm) )L
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Letag = agr(u) anday; = &y (n) denote the solutions to the equations

h(ag, ar, )
= Y (wi(u,érlag, w),érlar, 1), ag, ar))
5i=6;=0
(2.6) x (A(ar, @, 0
+ Ao(ar, wwi(w, Erlar, w), éLlar, 1), ag, ar))
=0
and
h(og, oL, 1)
= Y (wi(u,érlar, w), érlar, p),ar, ar))
5i=6;=0
(2.7) x (ha(og, our, 1)
+)_\2(aL,M)wi(l/héR(OfR,M),éL(aL,M),OfR,OfL))_l
=0.

(The existence is given in Lemma 3 in Section 4.) Hence

Cr=Cpr(aR, 1),

cL=cr(ar, 1,

(2.8) A =A1(Gr, &L, 1),
Ao = Aa(Gr, ),
pi = 1+ Aow; (i, Cr, é, GR, ar)) L, if 5 =8 =0

are the values which maximizi subject to (2.2)—(2.4). (The proof is given
in Section 4.) Therefore, the semiparetric likelihoodratio multiplied by—2 is
defined as

I(n) = —2{lo(Cr, ¢L, &R, &L, Pi) — lo(CR, CL, AR, CL, Pi)}-

Our main results are as follows.

THEOREM 1. Suppose (2.1) holds. Choose k = o(n?Pr/(@rt2r))
k/logn — oo, m = o(n?PL/@L+2BL)y and m/logn — oo asn — oo. Further
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assume Bon!o < m, k < Byn't for some Bo> 0, B1>0,0<[g<1l; < 1land

lim (k/n)2er
n=00 (k/n)t=2/ek 4 (m/n)1-2/er

exists. Let the true mean be 1. Then
d
(o) > xG&)-

Based on Theorem 1, a simple approach to construct & level confidence
interval for g is

Il—ot = {,LLl(,LL) = dl—ot},

whered;_, is the 1— « quantile of ax(zl) distribution. This gives a confidence
interval for .o with asymptotically correct coverage probability-Xv, as stated in
the following corollary.

COROLLARY 1. Assumethe conditionsin Theorem1 hold. Thenasn — oo,

P(uoe o) =1—a+o(1).

REMARK 1. Our method can easily be extended to obtain a confidence
interval for any order of moment of a heavy-tailed distribution.

REMARK 2. The choices of sample fractiorkis and m are difficult both
theoretically and practically. This will be a part of our future research plan.
However, our simulation study in Section 3 shows that this approach is robust
against the choices of sample fraction.

REMARK 3. An empirical likelihood estimator forw can be obtained
as ji =argmin,/(n), which can be shown to give — u = OP(WL
whereo (s, t) is defined in Lemma 1. That is, the convergence rat@ aé the
same as that of the estimator proposed by Peng (2001). Indeleds the same
asymptotic behavior as the estimator in Peng (2001) since no side information is
involved in our empirical likelihood method.

3. A simulation study and areal application. For simplicity, our simulation
study and real application only deal with the right tail by assuming that the left
endpoint of the underlying distribution is finite. Hence we replégcex; , 1), cr.
andX, , by zero and remove (2.7) in our empirical likelihood method described
in Section 2.
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3.1. A simulation study. In this section we conduct a simulation study to
investigate the coverage accuracy of our proposed empirical-likelihood-based
confidence interval for a mean, and then we compare it with the normal
approximation method and the subsample bootstrap method which are given
below.

Define

1 n _ 1/2
Sy = {—Z(Xi — Xn>2} :
i

T, = \/’_Z(}_(n - /‘L)/Sn

Without verifying the finiteness of variance, a confidence interval with nominal
level 1— o based on normal approximation can be obtained as

I{V_a = (Xn - ZO{/ZSV!/\/Ea Xn + ZO{/ZSI’!/\/E)7

wherez, > satisfiesP(IN(0,1)| > z4/2) = a. The subsample bootstrap method
was proposed by Hall and LePage (1996) as follows. Condition&n. ., X,,,

let X7,..., X, denote independent and identically distributed random variables
drawn randomly, with replacement, froky, ..., X,. Put

_ 1M
k k
Xy, =— 2 X7

N1z

1 m . 1/2

;5
. Xy —X,)
Ty = ”1T
ni
and
X1—q =Sup{x: P(|Tn*1| <x|X1,....X,) <1—a}.
Then a nominal - « level confidence interval fon is
If_a = (Xn - )el—ocSn/\/ﬁa Xn + J?l—asn/\/ﬁ)7

which has asymptotic coverage probability—1l«a under very mild regularity
conditions, includingi1 — oo andny/n — 0 asn — oo [see Hall and LePage
(1996) for details].

We generated 500 pseudorandom samples ofsizel000 from one of the
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two distributions: (1) a Bukixg, Sg + ar) distribution, given byF(x) =1 —

(1 + xPry=er/Br x > 0; (2) a Frechetrg) distribution, given by F(x) =
exp{—x"“®}, x > 0. For the subsample bootstrap method we drew 1000 resamples
each time.

First we compare our empirical likelihood method with the normal approxima-
tion method and the subsample bootstrap method in terms of coverage probability
by employing a practical choice &f= [k*/log(k*)] = n1 in view of Theorem 1,
where

K= (2_105R}3123(,3R _ O{R)—3bE2Ci,3R/O‘R)(‘XR)/(ZISR—WR)

(3.1)
x n(2Br—=2ar)/(2Br—aR)

minimizes the mean squared error of the Hill estimator [see Hall and Welsh (1985)
or de Haan and Peng (1998)]. Here we use the theoretical vakierather than

the estimated value, since we investigate the effect of the choice of sample fraction
in our next comparison. Coverage probabilities based on these three methods are
reported in Table 1. We can conclude from Table 1 that our empirical likelihood
method is better than the other two methods when the inges near 2.

Second, we compare our empirical likelihood method with the normal approxi-
mation method and the subsample bootstrap method in terms of coverage probabil-
ity by employing different choices of sample fraction for distributions Fre@@t
and Burc2.0, 4.0); see Tables 2 and 3. These two tables show that the advantage
of our empirical likelihood method is robust against the choice of sample fraction.

TABLE 1
Coverage probabilities by employing a practical choice of sample fraction

* N * N —
Iooo Ipogy Ipgy loos Ipgs Ipgs k=m

Freche(l.5) 0.894 0.888 0.728 0.944 0.950 0.782 37
Frechegl1.8) 0.900 0.926 0.830 0.952 0.970 0.868 37
Frecheg2.0) 0.910 0.936 0.850 0.954 0.980 0.902 37
Frechef2.2) 0.910 0.940 0.874 0.956 0.978 0.920 37
Frecheg3.0) 0.908 0.940 0.902 0.968 0.984 0.932 37
Frecheg5.0) 0.914 0.922 0.896 0.968 0.980 0.946 37
Burr(1.5,3.00 0.886 0.906 0.728 0.946 0.962 0.784 25
Burr(1.8,3.6) 0.894 0.938 0.834 0.954 0.980 0.868 25
Burr(2.0,40) 0.896 0.946 0.854 0.952 0.982 0.900 25
Burr(22,4.4) 0910 0.950 0.874 0.956 0.984 0.924 25
Burr(3.0,6.00 0.906 0.944 0.900 0.960 0.988 0.936 25
Burr(5.0,10.0) 0.910 0.936 0.904 0.966 0.976 0.942 25

Note: We report the coverage probabilities for confidence intervals based on
our empirical likelihood method, the normal approximation method and the
subsample bootstrap method with confidence leve&l® &nd 095. We choose

k = [k*/log(k*)] = n1, wherek* is defined in (3.1).
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TABLE 2
Coverage probabilities by employing different choices of sample
fraction for Frechef2.0)

k=n1 Iogo Ifey Iogy Toss  Ifgs  Ios
20 0.900 0.956 0.850 0.950 0.988 0.902
22 0.900 0.956 0.850 0.946 0.990 0.902

24 0.898 0.950 0.850 0.958 0.986 0.902
26 0.892 0.946 0.850 0.954 0.988 0.902

28 0.898 0.940 0.850 0.956 0.982 0.902
30 0.904 0.936 0.850 0.956 0.980 0.902
32 0.898 0.936 0.850 0.958 0.980 0.902
34 0.918 0.936 0.850 0.952 0.980 0.902
36 0.908 0.936 0.850 0.954 0.980 0.902
38 0.908 0.934 0.850 0.958 0.974 0.902
40 0.912 0.932 0.850 0.958 0.976 0.902
42 0.906 0.934 0.850 0.954 0.972 0.902
44 0.906 0.930 0.850 0.958 0.968 0.902
46 0.900 0.930 0.850 0.960 0.968 0.902
48 0.898 0.930 0.850 0.962 0.966 0.902
50 0.900 0.926 0.850 0.962 0.966 0.902
52 0.902 0.928 0.850 0.958 0.964 0.902
54 0.904 0.926 0.850 0.958 0.964 0.902
56 0.906 0.926 0.850 0.958 0.962 0.902
58 0.906 0.926 0.850 0.960 0.960 0.902
60 0.908 0.922 0.850 0.954 0.960 0.902

Note: We report the coverage probabilities for confidence intervals
based on our empirical likelihood method, the normal approximation
method and the subsample bootstrap method with confidence levels
0.90 and 095. The underlying distribution is taken as FrecBeY).

Third, we investigate the lengths of confidence intervals based on these three
methods by employing the practical choice lof= [k*/log(k*)] = n1 given
above. We took confidence level 90% and considered distributions F(&éhet
Frechef2.0), Frechet2.2), Burr(1.8,3.6), Burr(2.0,4.0) and Bur2.2,4.4).
Since we found that our empirical likelihood method gave a very large value for
the right endpoint from time to time, we report in Table 4 the median of left and
right endpoints of the confidence intervals based on these three methods. Note that
the distributions considered above are skewed to the right and our empirical likeli-
hood method clearly shows this property, that is, with a larger median of endpoints.
This also explains why our empirical likelihood method is better than the other two
methods in terms of coverage probabilithen the tail index is near 2. Moreover,
our box plots for the endpoints, which are not presented here, show that the sym-
metric intervals based on the subsample bootstrap method are not good since there
are some left endpoints have negative values wheg 2.
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TABLE 3
Coverage probabilities by employing different choices of sample
fraction for Burr(2.0, 4.0)

k=n1 Ioso Ipgy I0go  loos  ITpgs  IDos

20 0.904 0.948 0.854 0.952 0.986 0.900
22 0.902 0.948 0.854 0.946 0.984 0.900
24 0896 0948 0854 0954 0986  0.900
26 0.894 0.946 0.854 0.952 0.982 0.900
28 0.900 0.938 0.854 0.954 0.978 0.900
30 0906 0938 0854 0956 0976  0.900
32 0.896 0.936 0.854 0.956 0.978 0.900
34 0.916 0.936 0.854 0.952 0.976 0.900
36 0908 0932 0854 0956 0978  0.900
38 0.910 0.932 0.854 0.958 0.974 0.900
40 0.916 0.932 0.854 0.958 0.970 0.900
42 0908 0934 0854 0952 0970  0.900
44 0.908 0.932 0.854 0.960 0.970 0.900
46 0.900 0.930 0.854 0.958 0.968 0.900
48 0898 0926 0854 0962 0964  0.900
50 0.904 0.930 0.854 0.960 0.966 0.900
52 0.900 0.930 0.854 0.958 0.964 0.900
54 0900 0926 0854 0958 0962  0.900
56 0.906 0.922 0.854 0.960 0.962 0.900
58 0.906 0.922 0.854 0.958 0.960 0.900
60 0912 0922 0854 0956 0962  0.900

Note: We report the coverage probabilities for confidence intervals
based on our empirical likelihood method, the normal approximation
method and the subsample bootstrap method with confidence levels
0.90 and 0.95. The underlying distribution is taken as 8.0 4.0).

TABLE 4
Median of endpoints of confidence intervals with confidence level 90%

MoLE- MoLE- MoLE- MoRE- MoRE- MoRE-
SBM ELM NAM SBM ELM NAM
Freche(l.8) 1.635 1.853 1.782 2.275 2.428 2.137
Frecheg2.0) 1.547 1.683 1.633 1.961 2.013 1.884
Freche{2.2) 1.472 1.559 1.527 1.765 1.789 1.717
Burr(1.8,3.6) 1.394 1.632 1.559 2.080 2.242 1.920
Burr(2.0,4.0) 1.333 1471 1.428 1.770 1.816 1.686
Burr(2.2,4.4) 1.278 1.373 1.336 1.586 1.603 1.533

Note: We report the median of both left and right endpoints of the confidence intervals based on
the subsample bootstrap method (SBM), the empirical likelihood method (ELM) and the normal
approximation method (NAM) with confidence level 90%. We use MoLE-SBM and MoRE-SBM
to denote the median of left and right endpointste# tonfidence intervals based on the subsample
bootstrap method, respectively; similarly for notation MoLE-ELM, MORE—ELM, MoLE-NAM and
MoRE-NAM.
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3.2. A real application. The data set we analyzed consists of 2156 Danish
fire losses over one million Danish krone from the years 1980 to 1990 inclusive
(see Figure 1). The loss figure is a total loss figure for the event concerned and
includes damage to buildings, furnishings and personal property as well as loss
of profits. This Danish fire data set was analyzed by McNeil (1997) and Resnick
(1996), where the right tail index was confirmed to be between 1 and 2. Here we try
to find a confidence interval for the mean value of the Danish fire loss. In Figure 2
we plot the endpoints of the confidence intervals based on the normal approxima-
tion method, our empirical likelihood method and the subsample bootstrap method
with various choices of sample fractiégrand subsample sizg. We observe that
the empirical-likelihood-based confidence interval has larger values than the inter-
val constructed from the subsample bootstrap method in most cases. The interval
based on normal approximation has a significantly smaller length than the other
two types of intervals due to infinite variance. Moreover, our empirical likelihood
method clearly demonstrates the skewness of the data to the right and gives asym-
metric confidence intervals. As we mentioned in Remark 2, the choice of sample
fraction is difficult and very important. We hope to be able to carry on our research
on this issue in the future.

Danish Data

300 T T T T T T T T T T
250 1
200 - J
150 - J
100~ J
50 4
0 M | SAVRLTI R WP OUR CATER, B0 7 TP T e e 01 ORI TR A LL

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fic. 1. Danish fire loss data, which consists of 215610sses over one million Danish krone for the
years 1980to 1990inclusive.
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FIG. 2. Confidence intervals for the mean value of Danish fire loss data. The endpoints of confi-
dence intervals with level 95% based on our empirical likelihood method, the normal approximation
method and the subsample bootstrap method are plotted against k =n1 = 20, 30,40, ..., 210 Here
NAM, ELM and SBM denote the normal approximation method, our empirical likelihood method and
the subsample bootstrap method, respectively.

4. Proofs.

PROOF OF(2.8). Put
g1=g1(cr,crL, ar,ar) =1—crX, %, 11 —cL(=Xnm) L,

g2=2g82(u,cr,cr, R, L)

R 1—ag oL 1-«
=pu—cp——X, ' —cr (=Xp.m)E,
OR — 1 n,n—k+1 ay, 1 m

H(w,cr,cr,ar,ar, 1,12, p;)
=klogag +klogeg — (g +1) Y _ logX;
5i=1

+mlogay +mloge, — (ar +1) Y logX;
=1

+ ) |09Pi—K1{ > Pi—gl}—)\Z > piwi.

5[28,‘20 S,‘:S,‘:O S,‘:S,‘:O
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By the method of Lagrange multipliers we have

k
; - len n—k+1
4.1
aR 1-a -1 —a
- }‘2{ op — 1Xn,n—1§<+1 — 81 ngn,nlik—i-l} =0,
m w
- - }Vl(_Xn,m)
@2 "

_)\2{ ( Xnm)l aL_g gZ( Xnm)_aL}=07
O(L—

k
— — Y logX; + A1cr X, w® 1109 Xy 0 k11

YR 51
CR l1-ap CRAR 1-ag
(43) + )\.2{ (O[R 1_)2Xn n— k+l + 70(]3 _ 1Xn’n_k+l|oanvn_k+1
- gl_ngCRX,ZZIik+1 log Xn,n—k-i—l} =0,
E‘ Y 109X, + A1cp(—Xpm)* 109(— X m)

8i=1

‘L l-«o
Aol —F (—X L
+ 2{ (OfL — 1)2( n,m)

(4.4) e )
o 1K) 10G(— X )
— g7 g (—Xp) Iog(—xn,m>} _
(4.5) pi={A+row) ™t if§=6=0,
1
(4.6) Y ———— =g,
5,=8,=0 A1+ Aow;
w;
4.7 % o
( ) - Z kl + Azw,-
5[: [:0
By (4.1) and (4.3),
X; A _
(4.8) Al Z log 4 2R _ylear o _q

n—k+1
nn —k+1 (aR_l)Z mn—kE
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By (4.2) and (4.4),

m X; Aocy 1—
4.9 — = lo —-X “L =,
(4.9) - gigxmem—D” wm)
By (4.5)—(4.7),
n—m-—=k
M=—
81

(4.10)

= —m—k){1—cgX, %, 1 —cL(—Xpm) )} h
By (4.1), (4.2) and (4.10),
(4.11) A28 82 = hop + A1 —n.
By (4.1) and (4.11),
@12) IR X X =0
By (4.2) and (4.11),

A
413 O _t2L
Cl, oy — 1

By (4.8) and (4.12),

(_X",m)l_aL + }VZM(_Xn,m)_aL - n(_Xn,m)_aL =0.

-1
_ _ Xi k
rp=1kn"Hag — 1) 2Xn,n—k+l|: |09X71 - —}
5i—1 nn—k+1  ®R
(4.14) .
—n"Yag(ar — D7 Xy k1 + n_lu}
and
k
CR= ;XZ‘,’Z_M
X; k
(4.15) — 1> log—~———
51 Xnn—k+1 OR
- - -1
x {ag(ar — Dn 1Xfll,1§’l—k+1 — (g — 1)%n 1Xfll,1§’l—k+l}'

By (4.9) and (4.13),

-1
Ao = [mn_l(aL — 1)_2(—Xn,m)|: 3" log Xi _ ﬁ}

(S,‘Zl n,m aL

(4.16)

-1
—nYap(ar = D)= Xpm) + n_lu}
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and

m
cL = ;(_Xn,m)aL

X,‘ m

Xn,m (75

@17)  —1Ylog
§i=1
X{aL(O(L — 1)n_l(_Xn,m)aL _ M(OlL _ 1)2n—l(_Xn’m)OtL—l}.

So (2.6) follows from (4.7), (4.10), (4.14), (4.15) and (4.17). Similarly (2.7)
follows from (4.7), (4.10) and (4.15)—(4.17). Hence (2.8)]

Before we prove Theorem 1, we need some notation and several lemmas.
Let F~ denote the inverse function &f. Then (2.1) implies that

F1l-—x)= c}e/aRx_l/aR{l + drxPR + o(x"R)},
(4.18)

F™(x) = —cy/“ x Mol 4 dp xPt + 0(x"))

as x — 0, where pg = Br/ar, dg = brcr"*/ag, pr = Br/ar and dp =

bre; ™ Jay.
Let Uy, Uy, ... be i.i.d. random variables with a uniform distribution @) 1)
andletU, 1 <--- < U, , denote the order statistics Ui, . .., U,. DefineG, (1) =

%Z?zll(U,- < u). Then from Cso6rg, Csor@, Horvath and Mason (1986) there
exists a sequence of Brownian bridgggu), 0<u <1,n=1,2,..., such that

(4.19) sup py |\/ﬁ(Gn(u) —u) — B,(u)|

=0,(1)
1/n<u<l-1/n u(—u))t/2z—n p

asn — oo, whereu is any fixed number such that € [0, 1/4). Without loss of
generality we assumg, ; = F~ (U, j), j=1,2,...,n.We useuo, cro, L0, ®R0
anda; o to denote the true parameters under model (1.1).

LEMMA 1. Put

1t p1-
oz(s,t)=f t/ t(u/\v—uv)dF_(u)dF_(v).
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Suppose (2.1) holds. Then

1-k/n
[ s, ifor =20, > 2,
m/n
1-2/ay, 1
(ﬂ) (c§+ ) ifag > 2 ar <2,
n 2—ar

1-2/ar, 1 1-k/n
(ﬂ) <c§ + —) [P wRas,
n 2—ap 1/2

iforp =201 <2,

Gz(ﬂ, f) ~ kN 1 _
n'n (;) CR+2—0(R)’ ifag <2, a1 > 2,
k 1-2/ag 9 1 1/2 _ 2
(_) (CR + )+ [ treas,
n 2—O(R m/n

ifO(R < 2, oy, =2,

k 1-2/ap ) 1 m 1-2/ayp ) 1
() ) () (drmy)

ifar <2,a1 <2.

Moreover, if Bon'®c <m, k < Bin't for some Bg> 0, B1 > 0,0< g <11 < 1,then

1—k/n
f [F~()%ds/(m/m)*%* 0  incase ag=2 a7 <2,
1/2

1/2
/ [F~(s)1?ds/(k/n)t™%/*r >0  incase ag <2, a; =2.

m/n

PROOF. lItis easy to check that
(o) =5l G -G ()]
o=, =)=—|F (=)| = (=) |F(—
n n n n n n

N 2%F‘(%> /ml/;k/n F~(s)ds
IR
_ 251:—(1 . 5) /H/n F~(s)ds

m/n

1—k/n 2 1—k/n 2
+ [F_(s)} ds — |:/ F_(s)a’s} .

m/n m/m
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The rest of the proof follows by applying Potter’'s bounds [see Geluk and de Haan
(1987)] to (4.18) in a similar way to the proof of Lemma 2.5 in C€Xigaeusler
and Mason (1988).

LEMMA 2. Suppose the conditions in Theorem 1 hold. Then the following
approximations are true:

Viag — aro)
n k n 1 B,(s)
— —ago/ Bu(1- 2 n d 1,
cwo) 5oL ) vewo [ [, T ds o
vmiar —aro}

m/n B,
:aLO\/%Bn(%) —aLo\/%/o s(s) ds + 0,(1),
ER n k
\/l?{— — 1} = \/jB,, (1— —) +0,(1),
CRO k n
22
CLo m n

ﬂ{w_l}

CRO

_1[ /n k) \/ﬁ/l B, (s) }
_ "p(1-%)- /2 d
aRO{\/; n( n kJikm 1—s s
Ve { K\ YR
x {aRo«xRo—l)—uo(am—l)ché/ (;) }+op<1>,

\/E{ cr(aro, o) 1}

CLO

n m

-~z
m n

Y B L £ W L 10 }
aLO{ mBn<n>+ m/o . ds

/a0
_ m
« {aLomo ~ 1) — polaro— 1)2cLé/°‘L°(;) } +0,(D),
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N (aRo ro) _ ((f)l/“’wk_l/z)
n P n ’

1/
)-LZ(OKL& 0) _ 0p<<ﬂ> OlLOm_l/2>’
n n

~ (@Ro, @0, 10)
AM—mMmMmMmMm——

=1 1),
» +0p()

Jn 1-k/n
o(m/n, k/n){ Z i = //n F (s)ds}

PrRoOOF

(4.20)

(4.21)

Similarly

(4.22)

(4.23)

B _/1—k/n B, (s)dF~(s)

- o(m/n,k/n) n

—————— 4 0,(1

win ok kgm0

n 1

i { > wi(MO,CRO,CLO,OtRo,OlLO)}+0p(1)-
S,‘:(S,‘:O

Using Theorems 2.3 and 2.4 of Cséand Mason (1985), we have

{—_Z' 1- Unnl+l_1}

:\f < ) \ffl k/n 1 —sd+0p(l)

k41
vk { —log(1 — Uy n—+1) + log %}

k
= \/an (1 - ;) +0,().

{_Eilog Ui —1}

n m n (m/n B,(s)
:—\/%Bn(;)—l—\/;/o " ds +0p(1),

\/E{—IogU,,,m +Iogﬂ}
n

— —\/an(ﬂ) +0,(D).
m n

Hence the lemma follows from (4.18)—(4.23) and Lemmalll.
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LEMMA 3. Suppose the conditions in Theorem 1 hold. Then there exist
solutions (&g (o), &z (o)) to (2.6) and (2.7) such that &g (110) — aro = O, (84)
and &z (no) —aro= 0,(8,), wheres, = O(k™? +m~9) for any g € [1/3,1/2).

PROOF By Taylor expansion we can easily show that

Cr(aroE 84, 10) = cro+0p(8y),
cr(oro®dy, o) =cro+o0p(y),
ha(ago &84, 110) = n(ago — D2pd X, b 1{E8, + 0, (k1)

Ao(aro £ 8g, o) = n(aro — D2a (= Xum) " HES, + 0,(m =),
h(aro =+ 84, oL, 110)

— 1-
= {_(aRO -1 2Xn,na—1§c0+1

1

2 —1yv—1

—[; > w,-(uo,cRo,cL,oeRo,am}(aRo—1) ) S
Sl’=3i=O

X (£, + 0, (k" Y?)},

h(aro, aro=+ 84, o) = —(@10 — 1) 2(— X m) T 40{£8, + 0,(m =)},

oty £ 84, L, o) = —(orgo — 1) 72X, 50, (8, + 0, (k" H2)),
h(og, apo & 84, po)

= {—(aLo — )72 (=X, )0

1 _ 2 -1 -1
- > wipo, cr, cro. g, ar0) |(ero — D%y (— X m)
S,‘:(S,‘:O

x {£8, + 0,(m~Y?)}.

Hence the lemma follows from the above expansions and
Xn,m < 1 )
——— —1=0,|—,
F=(m/n) P\ m

Xn,n—k+1 _ i
F—(1—k/n) _1_Op<ﬁ)' O
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Letn = (cg,cr,aR,ar, p;). The key idea in the

proof is to expandy () around; and to derive the convergence ratesdQr— ag,
&L —ar, 61{ —CR andéL —CL.
Using Lemma 3 we can easily prove that

h2(GR, 110) = ”Xn_,i—kﬂ[(o‘RO -1 ( Z log ——— O‘Ré)

}:2(&La no) = n(_Xn,nz)_l{(aLO -1 ( Z Iog

nn —k+1

2 2,4 1
+ (@ro — D apg(ar _aRO)+0p<ﬁ>}’

“LO)

1
+ (azo— D% §Gr — aro) + Op(ﬁ) }

It follows from (2.6) and (2.7) that

A(AR, AL, 10) D5, —5,—0 Wi (140, CR, CL, GR, &L)

A2(GR, 110) =

ZS,:(SI:O wlz(MO, éR? éLv &R7 &L)

x {1+0,(1)}

_2 m k 1
=no R - Wi (MO’ CRO, CLO, ®RO, aLO)
n n n .
8;=6;=0
(4.24)
X {1 + Op(l)}’
- A _2 m k 1
kZ(aL, MO) =no T T - Wi (MO’ CRO, CLO, ®RO, aLO)
n n n .
8;=6;=0
x {1+4+0,(D)}.
Hence
OlR—OlRO——OlRo{ Z IOg O{Eé}
n n—k+1
_2 m k
+Xnn k+1(aro— 1D OlRoU ;, ;
(4.25)

1

x = > wi(®o, CRO, CLO, RO, L)

S,‘:(S,‘:O

+op<\/iz)
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and
1 X;
A 2 i -1
Qp —oLo=—argy — log—— —«
L L LO{ m s,gl Xpm LO }
m k
Xn,m(OCLO ™ OlLo 2(;,;>
(4.26)
1
X > w;(io. cro, L0, @RO, XLO)
g,‘:&‘:o
ron( )
Op \/r? .
Furthermore
Cr(Gg, mo)  Cr(aro, o)  _ .
@.27) £ CRO =K CRO re(@ro — 1) (Gr — aro)(1+0,(D)
R R
and
cr(ar,mo)  crlaro, mo)  _ .
(4.28) L CLo“ =L CLo“ — o] daro— D@L — aro)(1+0,(1)).
L L

Expandingo(n) atn by noting that; is the maximum likelihood estimate, we have

192

o) = —2} 5

13210
™ Z(CR,CL,OtR ar. plar —ar)?

"2

1 azzo

292

162l

Py (€r.CL. @R, AL, pi)lar — ag)?

2
—(Cr, €L, &R, &L, Pi)[CR — CR]

+ Z—3 (. ér.ag.ar, p)lér —crl?

29cf

B 202(m/n,k/n) | n

2
n 1 A A A oA
|:— > wi(MO,CR7CL,05R,aL)i| +0p(1)}

S,’:B,’ =0

= —2[—2—1ka,;§[&R —agl® -2 Y%a 2la, —ar)?

— 27 kegdlér — Er1? — 27 ke Bler — Er)?

 202(m/n, k/n)

2
n 1
[n Z wi(M07CR07CLO7aRO,05LO):| +0p(1)}-
5i=5;=0
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It follows from Lemma 2 and (4.24)—(4.28) that
klag — arl? =op(D),
klar —ar)® =0,(D),
kg — Er1P = 0p (D),

ke —éLl =0, (D)
and

Jio (1

d
o(m/n, k/n) | n i (10, CRO: €LO: &R0 N(O, 1).
o(m/n,k/n) nS‘—%:—ow (0, crO, L0, RO, @0) { — N (0, 1)

Hence the asymptotic limit di o) is x2(1). O
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