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THE EFFICIENCY OF THE ESTIMATORS OF THE PARAMETERS
IN GARCH PROCESSES

BY ISTVAN BERKES! AND LAJOS HORVATH?
Hungarian Academy of Sciences and University of Utah

We propose a class of estimators for the parameters of a GARGH
sequence. We show that our estimators are consistent and asymptotically nor-
mal under mild conditions. The quasi-maximum likelihood and the likelihood
estimators are discussed in detail. We show that the maximum likelihood
estimator is optimal. If the tail of the distribution of the innovations is
polynomial, even a quasi-maximum likelihood estimator based on exponen-
tial density performs better than the standard normal density-based quasi-
likelihood estimator of Lee and Hansen and Lumsdaine.

1. Introduction. The generalized autoregressive conditional heteroscedastic
(GARCH) process was introduced by Bollerslev (1986). The GARCH process has
received considerable attention from applied as well as from theoretical points of
view. We say thafy;, —oo < k < oo} is a GARCH p, ¢) process if it satisfies the
equations

(1.1) Yk = Oké&k

and

(1.2) of=w+ > i ye i+ > ﬁjfsz—jv
1<i<p 1<j=q

where

(1.3) 0>00>0,1<i<p, B;=20,1<j=<gq

are constants. We also assume that

{e;, —00 < i < oo} are independent,

(1.4) identically distributed random variables.

Throughout this paper we assume that (1.1)—(1.4) hold.
The GARCHZ1, 1) model was studied by Nelson (1991) who showed that (1.1)
and (1.2) have a unique stationary solution if and onl¥ Ibg( 81 + ozleg) <0.
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The general case was investigated by Bougerol and Picard (1992a, b). Let
T, = (Br+a1e?, o, ..., By-1) eRITY,
£,=(2,0,...,00eRI?

and

@=(a,...,0p 1) €ERP72

[Clearly, without loss of generality, we may and shall assume(mig) > 2.]
Define the(p + ¢ — 1) x (p + ¢ — 1) matrix A,, written in block form, by

T By a  ap
ly-1 O 0 0

& O 0 o’

0 0 I,2 O

wherel ,_3 andl ,_, are the identity matrices of size- 1 andp — 2, respectively.
The norm of any/ x d matrix M is defined by

A, =

1M = supll|MxIla/ 11Xl - € RY, x # O},

where| - |4 is the usual (Euclidean) norm I?. The top Liapounov exponempt.
associated with the sequenck,, —oo <n < oo} is

yL=_Inf Elog|lAgAz--- Anl,

l<n<ocon +1
assuming that
(1.5) E(log|lAoll) < oo.

Bougerol and Picard (1992a, b) showed that if (1.5) holds, then (1.1) and (1.2)
have a unique stationary solution if and only if

(1.6) yL <0.

The estimation of the parametér= (w,a1,...,ap, f1,..., ;) has been
studied by several authors. Lee and Hansen (1994) and Lumsdaine (1996) used
the quasi-maximum likelihood method to estimate the parameters from the
sampleyy, ..., y, in GARCH(1, 1) models. The idea behind the quasi-maximum
likelihood method is the following. The likelihood function is derived under the
assumption thatg is standard normal. The estimator is the point where the
likelihood function reaches its largest value. The estimator in Lee and Hansen
(1994) and Lumsdaine (1996) is “local” since the likelihood function is maximized
in a small neighborhood of. They show that the quasi-maximum likelihood
estimator is consistent and asymptotically normal without assuming the normality
of 9. However, very strict conditions are assumed on the distributiosp @nd
the value ofd. Berkes, Horvath and Kokoszka (2003) investigated the asymptotic
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properties of the quasi-maximum likelihood estimator foin GARCH(p, q)
models. Berkes, Horvath and Kokoszka (2003) obtained their asymptotic results
under weak conditions. Berkes and Horvath (2003) showed that the quasi-
maximum likelihood estimator cannot be 1/2-consistent if E|go|¢ = oo for
some O< x < 4. This shows the limitations of the quasi-maximum likelihood
estimation method. The existence of the GAR@H;) sequence requires only
that E| Iogs§| < 0o but the estimation works only iE|gg|“ < oo with some

k > 4. The quasi-maximum likelihood estimator does not use the distribution of
¢o and therefore, as we shall see, it is not efficientEdy = 0 and Eeé =1,

then okz is the conditional variance of; given the past. However, without any
moment conditionsg; is the conditional scaling parameteryaf.

Sinceoy, is defined by a recursion, we use a recursion to define our estimator.
Letu = (x,st) e RPTHL x € R, se R? andt € RY. We start with the initial
conditions: ifg > p, then

cow) =x/(1— (1 +---+1p),
c1(u) = s1,

c2(U) = s2 + t1c1(U),

cp(U) =sp +11¢p-1(U) + -+ +1p_1c1(U),

cpr1(U) =ncp(U) + - - +1,c1(U),

cqg(U) = t1c4-2(U) + - - - +15-1c1(U),

and if¢g < p, the equations above are replaced with
co(W) =x/(1— (1 +---+1y)),
c1(u) = s1,

c2(u) = s2 + nic1(u),
Cq+1(u) =Sq+1+11¢q w+---+ [qcl(u)7
cp(U) =spF11cp-1(W) + - +1gcp—q (U).

In general, ifi > R =max(p, q), then
(1.7) ci(U) =nci—1(U) +tac;2(U) + - - +15¢i 4 (U).
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We choose an arbitrary positive functibrand define
N 1 1 \1/2
Lyw== )" Iog{%h(yk/wk (U))},
n 1<k<n wg/z(u)

where
D) = coW) + Y ci(UyZ ;.

1l<i<k
LetO<u <u,0< pg<1,qu < pgand define
U={u:itg+n+---+1t, < poand
u <mMin(x, 51,52, ...,5p, 11,12, ..., lg)
<max(x,s1,82,...,8p, 11,12, ..., 1q) <U}.
From now on we replace (1.3) with the somewhat stronger condition
(1.8) 6 is in the interior ofU.

We use| - | to denote the maximum norm of vectors and matrices.x ety =
max(x, y). In this paper we study the asymptotic properties of

8, = argmax’, (u).
uelU

We note thaﬁn(u) is a continuously differentiable function, so standard numerical
methods can be used to compdie

In our first result we give a sufficient criterion ft&n — 0| — 0 a.s. To state this
result we will need some additional regularity conditions:

the polynomialsy1x + aox?+ - - -+ a,x” and
(1.9) 1— prx — Pox? — .- — B,x? are coprimes
in the set of polynomials with real coefficients,

(1.10) gg is a nondegenerate random variable

and

(1.11) Iimot‘“P{eS <1}=0,  with someu > 0.
t—

Condition (1.8) is somewhatronger than (1.3) byt +- - - + 8, < 1is anecessary
condition for the existence of a GARQH, ¢) sequence [cf. Berkes, Horvath and
Kokoszka (2003)]. Assumptions (1.9) and (1.10) are needed to uniquely identify
the parameted. So far all our conditions are related to the structure of the
GARCH(p, g) process. The following set of conditions concerns the moments
of g9 and the smoothness bf

(1.12) E|3| <oo  with somex > 0,
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and there is B Co < oo such that
(1.13) E|logh(eot)| < Co(t™ + 1) for all + > 0, with some 0< vg < 2«.
Let
g(y, 1) =log{th(y1)}, —00 <y <00, t>0,

and

gﬂy,t):%g(y,t), —co<y<oo, t>0.
We also assume that there is a funct©(y) such that
lg1(y, )] < C1(M (™ + 1)/t forall0 <t < oo andy e R,
(1-14) with some 0< vy < 2k,
and
(1.15) EC1(eg) < 0.

If 7 is a density, then condition (1.14) means that the density functioyy) is
smooth in the parameter
We will show in Lemma 4.1 that

L(uW=E Iog{ h(yo/(wo(u))l/z)}

1
(wo(u))/?
exists for allu € U, where

we(W) =co(W) + Y ci(uyZ;.

1<i<oo
We note that
wi(0) = sz.

The following condition will imply [see (4.6)] thak (u) has a unique maximum
inU até:

(1.16) Eg(eo,t) < Eg(eo, 1) forallO0<t <oo, t #1L

THEOREM1.1. If(1.5), (1.6)and (1.8)(1.16)hold, then
é,, — 0 a.s.
The proof of Theorem 1.1 will be given in Section 4.

Next we discuss the asymptotic normality 020, — 6). We need further
smoothness conditions ami(yt). Let go(y, ) and g3(y,t) be the second and



638 I. BERKES AND L. HORVATH

third derivatives ofg(y, ) with respect ta. We assume that there are functions
C, andC3 such that

182y, )| < C2(y) (2 +1)/1*>  forall0<t <ooandy e R,

(1.17)
with some 0< vy < o0,
(1.18) ECa(gg) < 00,
1.19) lg3(y, )| < C3(y)(# + 1)/  forall0< <ooandyeR,
' with some 0< v3 < 00,
and
(1.20) EC3(gg) < 00.

We usew, (u) to denote the row vector of the derivativesof(u) and w;/(u)
the matrix of the second-order partial derivativesugfu) (the Hessian matrix).
Berkes, Horvath and Kokoszka (2003) showed that

A = E(wp(8)/wo(8))" (wp(8) /wo(6))
exists and is nonsingular’ (denotes the transpose). We also assume that

(1.21) 0 < Eg?(s0, 1) < 00,

(1.22) E|g2(g0,1)] <00 and Ega(eo, 1) #0.
If (1.21) and (1.22) hold, then
2
0<2= LEOD
(Eg2(c0, 1))

The multivariate normal distribution with me&rand covariance matri® will be
denoted byN(0, D).

THEOREM1.2. 1f(1.5), (1.6)and (1.8){1.22)hold, then
n22@6, — 6) B N0, 4r2A1),
This result will be proven in Section 4.
REMARK 1.1. Letf(y) denote the density function e and/ s (¢) the Fisher
information number of the scale family (xz), ¢t > 0. If g1, ..., &, is known, then

f, = arg max[]i<;<, tf (&it) :t > 0} can be used to estimate the scale parameter.
One can verify that under suitable regularity conditior’é2(, — 1) will be
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asymptotically normal with mean 0 and varianc® So by Lehmann [(1991),
page 406] we conclude that

1

2
(1.23) Tt = m,

and we have the equality in (1.23) whee= f.

REMARK 1.2. Newey and Steigerwald (1997) consider more general models
which include the GARCHY, ¢) sequence. They point out that identification
of the parameters in the drift term might be difficult. In our paper we study
the estimation of the parameters in the error process of the Newey-Steigerwald
model. This is the part which makes GARCH different from other time series.
Our results cannot be applied directly to other versions of GARCH but our
method can be used to investigate the properties of estimators in LGARCH
[Bollerslev (1986)], NGARCH [Engle and Ng (1993)], MGARCH [Geweke
(1986)], EGARCH [Nelson (1991)] and VGARCH [Engle and Ng (1993)].

REMARK 1.3. Lee and Hansen (1994) assume that the observed sequence
vk IS a stationary and ergodic martingale. They also assume that

Eyg < 0.
We do not impose this moment condition. Under our conditions we have only that
Elyol® < o0, with somes > 0.

It would be interesting and practically useful to extend the results of Lee and
Hansen (1994) to the present situation.

REMARK 1.4. Drost and Klaassen (1997) showed that there is a reparame-
trization of GARCHZ, 1) such that the efficient score functions in the parametric
model of the autoregression parameters are orthogonal to the tangent space gen-
erated by the nuisance parameter, thus suggesting that adaptive estimation of the
parameters is possible. Drost and Klaassen (1997) construct adaptive and hence
efficient estimators in the reparametrized GARCH,) in a mean-type context.

Next we consider three special choices:of
2. Examples.

EXAMPLE 2.1. Leth(r) = (2n)~ V2 exp(—zz/g) (the standard normal density
function). Using this function in the definition df,,, we get the quasi-maximum
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likelihood estimator investigated by Lee and Hansen (1994) and Lumsdaine
(1996). Elementary calculations give thédg/(yr)| < Co(y%t2 + 1),

g1(y, ) =1 — /1, lg1()] < A+ y) (A +12)/1,
2,0 =—1+y)/% g0 < A+ yH(A+1?)/1

andgs(y, 1) = 2/t3. Itis easy to see that= 1/E¢Z is the unique solution of the

equationEg1(eg, 1) = 0 and Eg(eo, t) has a unigue maximum at/Eeg. If we
assume that

(2.1) Es3=1,

then condition (1.16) is satisfied. We note that (2.1) is a standard condition
assumed by Lee and Hansen (1994) and Lumsdaine (1996). Cledty, 1) =

1— &2 andga(eo, 1) = —1— 2. Hence (1.21) holds if and only g < co. Also,
Ega(e0,1) = -2 by (2.1) and? = E(1—¢3)%/4 = (Ee§— 1) /4. Hence the quasi-
maximum likelihood estimator is almost sure consistemm‘gr‘ < oo with some

k > 1 and asymptotically normal iEeé < 00.

EXAMPLE 2.2. Leth(r) = (1/2) exp(—|t]) (two-sided exponential distribu-
tion). Elementary calculations show thabdgh(y?)| <1+ |y|t, E|logh(eot)| <
1+ tE]eol, g(y,t) =logt —log2— |y|t,

g1(y, ) = —1Iyln/1, g1 = A+ 1yDA+0)/1,

g2(y, 1) = —1/1% andgs(y, t) = 2/¢3. Hence the unique solution of the equation
Egi(eo,t) =0ist =1/E|eg|, which will be 1 if and only ifE|eg] = 1. Assuming
that

(22) E|80| S 1,

we get that (1.16) holds. Clearly; (eg, 1) = 1 — |gg| and g2(e0, 1) = —1. Hence
(1.22) is always satisfied and (1.21) holds if and onlyE#3 < co. Also, T2 =
E(—|eo))?= Esg — 1. Hence the exponential density based estimator is almost
sure consistent iE|sg|’< < oo with somex > 1/2 and asymptotically normal if
Egg < Q.

EXAMPLE 2.3. Leth(t) = {(® —1)/2}(1+ |z|)~? with somey > 1. We note
that E|logh(eot)| < Co(E log(|eol +1) +log(1+ 1) + 1),

g(y, 1) =logt +log((® — 1)/2) — ¥ log(1 + |ylt),

g1y, 1) =1/t =9|yl/(1+[ylt), lg1(y, ) = C1/1,

y2

————,  lga(y, 0| < Ca/1?
1+ [y[r)?

1
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and|ga(y, 1)| < C3/t3. The unique solution of the equatidig (o, 1) = 0isr =1
if and only if

(23) E<14|f(IJ«’|30|> :%

and sincega(y, t) < 0, Eg(ep, t) has a unique maximum at= 1, that is, (1.16)
holds. By (1.10) we have (1.21) and

leol )2 leol
E 8,1=—1+19E< )<—1+15‘E< ):O,
s2(e0. 1) 1+ e 1T+ [eol

showing that (1.22) holds. Thus we can estiméteising thisz as long as
E|e3|< < oo with somex > 0.

EXAMPLE 2.4. Leth(t) = f(¢t), wheref is the density function ofp. Since
—log is strictly convex, Jensen’s inequality shows that

(2.4) Elog{tf (eot)/f(e0)} < log E{tf (e0t)/f (e0)} =0
if
(2.5) tf(eot)/f (e0) is nonconstant.

If, following Lehmann [(1991), page 409], we assume that the distributions
determined by the scale family of densitigqyr), ¢+ > 0, are distinct, then (2.5)
holds, with the exception af = 1, and therefore (1.16) holds. Alsgi(eo, 1) =
1+e0f'(e0)/f (20),

sl 2 (2]

and 2 = 1/17(1), wherel;(¢) is the Fisher information number of the scale
family ¢f(yt), t > 0. In this case (1.13)—(1.19) are analogous to the conditions
used by Lehmann (1991), Section 6.2, to establish the asymptotic normality of the
maximum likelihood estimator of the scale parameter of the fanfilyr) based

on independent, identically distributed observations.

Condition (L.16) connect# and the distribution of the innovations. We have
seen in Example 2.4 that (1.16) is always satisfied if the maximum likelihood
method is used. However, using anotlierwe may have to scale the model
[cf. (2.1)—(2.3)]. Next we study the effect of scaling on the estimators and their
asymptotic distributions. Let us assume that our model is

(2.6) Yk = Okék,

(2.7) (}/(2267)-{- Z &iylg—i+ Z 5j~lg_j.
1<i<p 1<j=q
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The parameter of (2.6) and (2.7)8s= (&, &1, ..., d,, f1, ..., By). The scaling
of & will resultin ex = &;/d, d > 0 andoy = do. Thus (1.1) and (1.2) hold with
0 = (d%d,d%, ...,d%qa,, p1, ..., By). We choosel such that (1.16) holds. By
Theorem 2.2 we have that

nY2(0, — 6) 2 N(0, 472A1).
The definitions ot; (u), 0 <i < oo, yield that

wi ) _\, wi®)
wi(0)  w()

whereM = (M (i, j),0<i,j <p+q}, MG, j)=0if i # j, M(@i,i) =1/d? if
O<i<pandM(i,i)=1if p<i < p+q.Hence

nY2@, — )2 N(O 4r2|\/|—1E<wl/<(6:’))T<wk(9)> )
wi(0)/ \wy(8)

and therefore

nl/Z((éo’n/dZ’ é1,n/d2’ ceey ép,n/dz’ ép—+—1,n’ ceey ép—%—q,n) - 0)

T Bn(oae(MD ) (i)

whered,, = (00,,/d?, 01,/d?,...,0,.,/d? 0 p11.0,...,0,1,.,). The limit result
in (2.8) means that the only term which dependsian the limitis T = t(g/d).
So the efficiency of the estimator is determinedcbynly.

Let us assume that the innovatiofsin (2.6) and (2.7) are standard normal
random variables. Using the quasi-maximum likelihood method of Example 2.1
(which is the likelihood method of Example 2.4 in this case), we get that

qua5|_ 1/2. If we use the method of Example 2.2, we must rescale since it is
assumed that the expected value of the absolute value of the innovations is 1, so

the standard normal innovation must be divided/&8)/7 . Hencerezxp_ w/2—1.

2
Clearly, 72 Tquasi < Texp

Now we assume that the innovatiofg are two-sided exponential random
variables In this case the methods of Examples 2.2 and 2.4 are the same and
exp_ 1. If we use the method of Example 2.1, we need that the second moment

is 1, so the innovations must be divided 4. HencerquaS,_ 5/4in Example 2.1.

This means that the variance of the estimatorsfar..., 8, (B1...., 8, are
invariant for rescaling the innovations) will be 25% more if the quasi-maximum
likelihood method is used instead of the likelihood method.

Let £, be independent, identically distributed random variables with den-
sity function f(r) = {(® — 1)/2}(1 + |¢|)~?, where¥ > 5. Elementary calcu-
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lations show thatE|;| = 1/(® — 2), E|&i|2=2/((9 — 2)( —3)) and E|&;|* =
24/((0 — 2)(¥ — (¥ — 4 (¥ — 5)). If the quasi-maximum likelihood method is
used, we use; = &;/(E|%;|%)Y/2 and therefore
2 1{6(19—2)(19—3) 1}
Tauasi= = -1
wast 4l (@ — 4@ —5)
If we use the method of Example 2.2, that is, the two-sided exponential density in
the definition ofL,,(u), we use the innovations = ¢; / E|¢;| and we get
2 20 -2
Texp_ 19 _ 3
Elementary calculations show '[hacfu

-1

asi > Taxp fOr any ® > 5. If 9 = 6, then

T a5 = 8.75 while 13, ~ 1.67. If » is large thentd,~ 1.25 while 75, ~ 1.
The parametergs, ..., B, are invariant for scaling, so the two-sided exponential
method gives smaller asymptotic variance than the quasi-maximum method. We
note that the likelihood method of Example 2.4 provides the smallest possible
variance for the estimation ¢y, ..., 8,. However, this example illustrates that
if the density is unknown and we suspect that the tail of the distribution of the
innovations is polynomial, the two-sided exponential method performs better than
the quasi-maximum likelihood.

If we are interested in the estimation dfin the examples above, we can
use the residuals. The residuals are defined; as yi/@i(én), 1<i<n. Let
us assume that the estimation is done under the scaling assumption (1.16). Then
d, = (Zl<i5n§i2/(n — 1))¥/2 can be used when we move to a model with
scaling assumptiom% = 1. However, replacing! with d in (2.8) will change
the asymptotic variance. Using differes in L, (u), we study models based
on different scaling assumptions. Since the parameters in (1.1) and (1.2) are
not uniquely defined, scaling assumptions or reparametrizations [cf. Drost and
Klaassen (1997) and Newey and Steigerwald (1997)] are required.

3. Preliminary results. The first six lemmas are from Berkes, Horvath and
Kokoszka (2003).

LEMMA 3.1. If the conditions of Theorem 1.1 are satisfied and ag = wo(u*)
withsomeu* € U, thenu* = 0.

PROOF This result is part of the proof of Lemma 5.5 in Berkes, Horvath and
Kokoszka (2003). [

Let log™x = logx if x > 1 and O otherwise.

LEMMA 3.2. Let ¢o, 91, @2, ... be identically distributed random variables
satisfying E log™ |¢o| < co. Then > l<k<oco oz convergesa.s. for all |z| < 1.
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LEMMA 3.3. If(1.5), (1.6)and (1.12)hold, then thereis§ > 0 such that
(3.1) E|y3’ <oo and E|od|® < oco.

LEmMmMA 3.4. If (1.5), (1.6)and (1.8) hold, then there are constants 0 <
C*, C*™ <ooand 0 < p < 1suchthat

(3.2) C*swk(U)SC**(1+ > piyf_i), ueU,

1<i<oo

and

C*gwk(u)gc**<l+ > p"y,E_,-), ueu,

1<i<o

for any —oo < k < o0.

LEMMA 3.5. If (1.2), (1.5), (1.6), (1.8), (1.113nd (1.12) hold, then, for

any0 < «* <k,
O.2 K*
E(sup k ) < o0.
ueu Wi (U)

LEMMA 3.6. If (L.5), (1.6), (1.8), (1.11and (1.12)hold, then
E(suplwk(u)|)K < 00,

uey Wi (W)

E(sup'w"(u)|> < oo

uey Wi (W)

and

K.*

" u
E suq w (W)

uet| wr(U)

for any «* > 0.
Foranyu = (x,s1,...,5p,11,...,1;) € U andy > 1, we define
_ * * ok Xk * . * g
(3.3) U(y,u)_{u =(x ,sl,...,sp,tl,...,tq)eU.lr;.a;(Itj/tj§y}.

LEmma 3.7. If (1.5), (1.6), (1.8), (1.11and (1.12) hold, then for any
—o0 < k* < oo thereisy > 1 such that

*

E(sup{ wi (U7 Ut eU®y/, u)})K <00

wi (U)
foralueUandl<y’ <y.
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PROOF Due to symmetry we can assume tkét> 0. We note that /(1 —
p0) < co(u) for all u € U and 0< ¢; (u*) < K1y'¢;(u) with some constank’; for
all u* € U(y,u) by Lemma 3.1 of Berkes, Horvath and Kokoszka (2003). Thus
Lemma 3.7 will be proven if we show that

. 2 K*
E( D l<i<oo Vlci(u)yk;i ) <Ko
1+ Zl§i<oo ci(Wyr_;

By Lemma 3.1 in Berkes, Horvath and Kokoszka (2003) there are constants
0 < p <1 such that

(3.4) lex(U)] < cp®  forallue U andk.

For anyM > 1 we have

Y 1cicoo ViCi(WYE, :
1<i<oo i k21 < )/M + Z )/lci(u)ylg_i
14X 1<icoci(Wyp; M <i<oo

<yM+Ks > (o)yii

M <i<oo

with someK3 on account of (3.4). By the Markov inequality we have

P> (vo)yEi>1/2

M<i<oo

= X PO 02007 (A= o)) rp) )
M <i<oo

= Y PP > /21— o)D) (ro) 2
M <i<oo

<ERPA-wmMd) " A- wp)A) /2 rp) M2,
ChoosingM =log(t/2)/logy, t > y2, we have, for any* > 0,

j 2
P{su D l<i<oo Vlci(u)yk;i - t}
uel 14 3 1<icoo Ci(U)YE_;

EP{ 3 (yp)iyf_i>t/2}

M<i<oo

< Ksexp(—(8/2)(1+logp*/logy)log(t/2))
—2k*

< Kst

if y > 1is close enough to 1, whef&, and K5 are constants. This completes the
proof of Lemma 3.7. (O
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4, Proofs.

LEMMA 4.1. If (1.5), (1.6)and (1.8)«1.13) hold, then L(u) is defined for
anyueU.

PrROOF BylLemma3.3thereis & § <1 such thaIE|y§|‘S < oo and therefore

8
E(l + ) piy;f_,-)

1<i<oo

(“4.1) §E(1+ > p5i|yg|5)

1<i<oo

=1+ EDGP° > () <oo

1<i<oo
forall 0 < p < 1. Therefore by Lemma 3.4 we have
(4.2) E sup|logwg(u)| < oco.

ueU

Sincegg andao/wé/z(u) are independent, by (1.13) we obtain

E‘Io h( 70 )‘<C <1+E< % )WZ)
E0—F7m — .
’ “wPw/ = wo(u)

Using Lemma 3.5 and (4.2), we conclude

1 )0
(4.3) Esuqlog{ h( )H < 00,
weol  Lwg?(u) \wg'?(u)

and thus Lemma 4.1 is proved

Let

1 1 Yk
L,(u)=- lo { h( )}
(w " > log w,%/z(u) w2

1<k<n k

LEMMA 4.2, If (1.5), (1.6)and (1.8)~(1.14)hold, then

E{suplu v IL,(U) — L,(W)|:ueU,ve U} < 0.

PROOF By the mean value theorem there is a random varightelU such
that

g (ex. o /w2 (W) — g(ex. ox/wi (V)|
Uk ,

ka(n)‘-

1/2
g1(ex. o /wi “(n) 3/
w, “(n

—1|U Vi
Y
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So by condition (1.14) we conclude

g@“%)_g(&" 17;(\/))’
() 3/ G g e
<sexeofal (575) " ) sl

We note thats and{akz/wk(u), u € U} are independent for any. The Holder
inequality and Lemmas 3.5 and 3.6 yield

2 v1/2 /
s (255)" )
sz v1/2 Y1y ,/c
<sewenle(su5) ) | s

< Ki,

sup
uyv [U—V|

1

5 Ca(er) S)l71p

Yy’ }1/1/

with some constank;, where 1< y,y’ < oo satisfy (v1/2)y <« and Yy +
1/y’ = 1. SinceL,(u) is the average of stationary random variables, the proof of
Lemma 4.2 is now complete.[J

LEMMA 4.3. If (1.5), (1.6)and (1.8)«1.14)hold, then
nsup|lL,(u)—L,(W)|=0(1) as

uelU

PrROOF We use (3.4). Let
Z ol y2
1<i<oo

We note that by Lemmas 3.2 and 3.3 the series defipiognverges a.s. Using the
definitions ofwy (u), wy(u) and (3.4), we conclude

(4.4) suplug (U) — (W] <c Y plyp,; =cple.

ueu k<i<oo

Using next the mean value theorem, thereg s(ok/wk/ (u), ok/wl/z(u)) such
that

|g(ex. o /w 2(W)) — g(ex. ox /i 2 (W))]

= |81(¢k, N -
wi2wy P/
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Applying condition (1.14) and Lemma 3.4, we get

J—

< C1(e){(n"* + 1)/77}0k

wi(U) — wy(u)
D2y (wi2(u) +

" 1/2

2y w)

v 1/2 A
1 w (W) or Jwg(u) — wi(U)]
ol
1(ex) D72 o w?u) 2C*

< K2C1(ex) (0" + Dgp*

for anyk. Applying (4.2) withu = 6, we see thaE|logop| < co. We can assume
without loss of generality thaf'; in (1.14) is larger than 1 and thus by (1.15) we
conclude that| Iog(Cl(eso)(og1 + 1))| < co. Thus we can apply Lemma 3.2 to
get

nSUpIL,(U) — Ly(W| < K2t Y Cien)op*+Dpf <0 as.
uey 1<k<oo 0

PrROOF OFTHEOREM1.1. Since Iogw,:l/z(u)h(ykw,:l/z(u))) is a stationary
sequence with finite meah(u) and by Theorem 3.5.8 of Stout (1974) it is also
ergodic, the ergodic theorem implies tHat(u) — L(u) a.s. for any fixedi € U.
Thus Lemma 4.2 yields

sup|L,(u) — L(uw|—0 a.s.

ueU

Using now Lemma 4.3, we conclude that

(4.5) sup|L,(u) — L(u)| - 0 a.s.

uelU

We note that
(4.6) L(0) — L(u) = E{g(0, 1) — g(0, 00/ w/?(u))}.

Since ¢g and {oo/wé/z(u),u € U} are independent, by (1.16) we have that
L(#) > L(u) and we have thaL(#) = L(u) if and only if og = wé/z(u). Using
Lemma 3.1, we get thak(u) has a unique maximum # The functionL(u)
is continuous, and thus the uniform a.s. convergencé,,QU) to L(u) implies
0,— 0, proving Theorem 1.1.

Since

1 1
Law=— 3 g(ek,o-k/wi”(u))—; 3" logox,

1<k=<n 1<k=<n
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we get that

, 1 1/2 1 o wp(u)
4.7 Ln U):— Ek, Ok /W (u) <__7—)
4.7) ( n 15](2;71 gl( ks O/ k ) 2 wlj{l./Z(u) wy (U)
and

1
Liw== 3" galer, ox/w*W)

1<k=<n

(_} Of wk(U)) (_1— Of wk(U))
2020 wew) 723,720 wew)

(4.8) 1
+= 3 ailer on/wiAW)
1<k<n
(3 Ok (wk(u)) w,/c(u) _} Ok //(u))
4yl \wk W/ weW) 2372 ) i)
Similarly,
/ _ 1/2 1 oo wo(U))
(4.9) L'(u) = Egi(g0, 00/ wy (U))< 2w1/2(u) wo(U)
and

"o 1/2 1 oo wo(U)) <_} 00 wo(U))
V@ = E{aleo- oo/ )~ i wow) 72,3725 wow)

3 oo (wo(u))Tw6(u)
422y \wo(w) ) wo(u)

} 00 wg(u) )}

2 wé/z(u) wo(u) /)’
The expected value in (4.9) exists, since by (1.14) and (1.15) and the independence
of &g andog/wl/2(u) we have

a0 ) (s )
" wa2(u)/ \wi/?(u) wo(w)

(4.11) < ECye )((i)vl - 1)‘%—([”
' - ° wa/2(u) wo(u)

oo V1 wp(U)
SECl(SO)E<< 1/2(u)> +1)‘wo(u) -

on account of the Holder inequality and Lemmas 3.5 and 3.6. A similar argument
shows that the expected value in (4.10) also exists far ally. [J

(4.10) + g1(eo0, Uo/wo/ (U))(

E
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LEMMA 4.4. If (1.5), (1.6), (1.8K1.14), (1.17)and (1.18) hold, then there
exists U*, a neighborhood of 8, such that

(4.12) sup|L)(u)—L'(u)] —0 a.s.
ueU*

If, inaddition, (1.19)and (1.20)are satisfied, then

(4.13) sup|L/(u) — L"(u)| -0 a.s.
ueU*

Also, E{(wé(u)/wo(u))Twé(u)/wo(u)} isanonsingular matrix for any u € U*.

PROOF LetU* =U(y,#) with somey to be chosen later. Applying (1.17),

we obtain
(sl i)
1 /
0l
Wy
or \” )( ok )‘1 wj, (U)
C —_— 1 .
= 2(8k)<<w]1_/2(u)> + 1/2(u) wi (U)

Using (4.7), (4.14) and conditions (1.14) and (1.17), we get

n|L,0) — Ly ()]

o—u
< 2 gl(sk’w%%>_gl<8 (u)>H 0 it
+|9iu|1<1§n 81(8’ 1/2(u)>H 1/2(0)322; ;’f(u) :%;
- 5 e ) ) e
> cl<5k>(vség/e<<177z(v)>vl+1> (177;(\,)))_1

s i)
zeU* w /(Z) uer \ 2| wi (U) wi (U)

= Y (k1+Ik2).

1<k=<n

Using the Cauchy inequality and the independencs, @nd{wy(u), u € U}, we
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)

conclude from Lemmas 3.7 and 3.6 that

= ECaeE o ((07)”2+1)<L)—15u4w
k1= 2k VEUE l/Z(V) l/Z(V) uev | wi(U)
1.2, 1/2
EC E
< z(ek)( (f;;/g(( 1/2(V)) )( 1/2(V)) ))

/ 1/2
X <E Suq ) < 00,
uet | wi(U)

providedy > 1 is chosen close enough to 1. Similarly,

El; 2 < o0.

Thus I 1 and I > are stationary sequences with finite expectations and by
Theorem 3.4.8 of Stout (1974) they are also ergodic. Hence our previous estimates
and the ergodic theorem imply

(4.15) sup
ueU* |0 - |

IL.(@)— L, (w=0(1) as.

SinceL/, (u) is an average of a stationary, ergodic sequence with finite expectation
[cf. (4.11)], another application of the ergodic theorem gives, forwaay/*,

(4.16) L (u)y— L'(u) a.s.

Putting together (4.15) and (4.16), we get (4.12). Similar arguments yield (4.13).
Berkes, Horvath and Kokoszka (2003) proved tano(u))Tw (u)/wg(u) is

a continuous function and it is nonsingulamuat @, so the proof of Lemma 4.4 is

complete. O

Letd, =argmaxXL,(u):uelU}.

LEMMA 4.5. If (1.5), (1.6)and (1.8)—(1.22)are satisfied, then

(4.17) 2 W) s
1/2 1«2;,1 gk D Ega(g0, 1) wk(o)A (1+o0®) as
and
nt20, _0)
(4.18) 2 w®

“14o0p).

1/2 2. sl D Eg2(c0, 1) wi(9)

1<k<n
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PrROOF We showed [cf. (4.9) and (4.11)] that(u) is differentiable for all
u € U and proved after (4.6) thai(u) has a uniqgue maximum at= 6. Thus
L'(#) = 0. By the independence ef andwg () /wo(#) and (4.9), we have

1 w)(8)
L'@)=E ,1(——E 0 )
(0) = Egi(eo, 1) 25 %00
Berkes, Horvéath and Kokoszka (2003) showeu;(#)/wo(8) # 0, so we have
(4.19) Eg1(eg,1) =0.

By (4.5) it follows easily tha#,, — 6 a.s. Hence there is a random variaijesuch
that@, € U* if n > ng, whereU* is defined in Lemma 4.4. Clearlyj* Cc U is
compact and foy > 1 sufficiently close to 1 it does not have common points with
the boundary ot/. SinceL, (u) is twice differentiable and it reaches a maximum
até,, we have

(4.20) L 0, =0 if n>ng,
and thus
L0, —L,0)=—L,(9).
By (4.13) we have thak,,(6,) — L,,(6) = (8, —6)(L"(8) + o(1)) a.s. Observing
that L”(6) = Egx(eo, 1)%1A, and using (4.7), the proof of (4.17) is complete. By
the orthogonality and stationarity of the summandsin (4.17), and in view of (1.21),
the variance of the sum Q(1/n) and therefore (4.18) follows from (4.17)0J
A simple calculation shows, in analogy with (4.7),

1 o w;(u))

2 w;/Z(u) wi(u) /)

~ 1
@21) Lw=-Y gl(ek,ok/w,i/%u))(—

1<k<n

LEMMA 4.6. If (1.5), (1.6)and (1.8)—(1.22)are satisfied, then
(4.22) sup/L,(u) — L, (u)| = 0(3) as.

ueu n

PrRoOOF Berkes, Horvath and Kokoszka (2003) showed that there are con-

stantsc and O< p,. < 1 such that
lci(Wl <epl and ¢} (u)] < cpl

for allu e U and 0<i < co. Hence
(4.23) suplwy (U) — (W] <c Y plyf; =cpiés,

uel k<i<oo

whereé, =3 1. piy,f_i converges a.s. by Lemmas 3.2 and 3.3. By (1.14),
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(2.17), (4.7), (4.21) and; (u) < wg(u), we have
n|L;,(u) — Ly(u)|

Ok B wy (U)
= Z g1<8k’ ﬁ),}/z(u)> g1<8’ l/Z(U))H l/2(u) wi (U)

1<k<n
Ok Ok wk(u) Ok wk(u)
+ gl(ek, )‘ = -
1<1<X;n b2/ g2 uy D) w2y wi (W)

<y C2(8k)((1/72w)>vz+1>(177§w)>_2

1<k<n Wy
O Ok ‘ ’
w2y %)

+ > Cl(gk)«%)”JFl)(;izk(u))_l

1<k<n

log% wk(U)

. 1/z(u) wi (U)

Wy (U) 3 wy (1)
A3/2(u) 3/2(u)

X O

= n,l(u) + Jn,Z(U)-
By Lemma 3.4 and (4.4), usirtggandp in the proof of Lemma 4.3, we get

IOEDS cg(ek>((—")vz+1)(i)_l
n, 1/2(U) 1/2(U)

1<k<n

Jar| [~ 5
wi (U) 1/2(u) haa()

= > (o))

wi (U) — Wi (U) ‘
W) (2 (u) + w?(u))

wi (W) | | 1/2

suplwg (U) — W (W]
uelU

v wy (U)
<Kz 151271 Ca(er)(op°+ 1) feulﬁ we(U)

<Kst Y Cale)(o?+ Dsup i W)

1<k<n UEU k( )

k <00 a.s.

<Kt Y Cz<8k><a;2+1>su4wk(“)p

1<k=o0 uer| wr(U)
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In the last step we also used Lemma 3.2 and the observatio@i4tea (ok”2 +1) x
SUR,cy lwy (U)/wi(U)] is a stationary sequence with

E‘Iog(Cz(esk)(crk”2 +1) sup{ Wi (W D‘ <00

uet| wi(U)

Hence sup.; J,,1 = O(1) a.s. Replacing (4.4) with (4.23), similar arguments
show that sup.;; J,.2 = O(1) a.s., completing the proof of (4.22)

LEMMA 4.7. If (1.5), (1.6)and (1.8)—(1.22)are satisfied, then

N 1
(4.24) 0, — 0, = O(—) a.s.
n

PrROOF Similarly to the proof of Lemma 4.5 there is a random varialije
such that

(4.25) L'0,)=0 and 6,cU* ifn=>no,
where the selU* is defined in the proof of Lemma 4.5. By (4.13) we have
L0, —L.0,)=0,—0,)L"0)(1+0(1) as.
and therefore
00 —0,)=(L,0,) — L,0))(L"®)  (1+0(1) as.

We recall thatl/ (9,,) = 0. Lemma 4.6 and (4.25) yield that, (§,) = L (9,) +
0O(1/n) = 0(1/n) a.s., completing the proof of Lemma 4.7]

PROOF OF THEOREM 1.2. By Lemma 4.7, relation (4.18) remains valid if
we replaced,, by 0,. Observe now thagy(ex, Dwy (0)/wi(0) is a stationary
martingale difference sequence with respect to #halgebra generated by
{ej, j <k}. By Theorem 3.4.8 of Stout (1974) it is also ergodic. Using the Cramér—
Wold device [cf. Billingdey (1968), page 49] and Theorem 23.1 of Billingsley
[(1968), page 206], we obtain the multivariate central limit theorem expressed by
Theorem 1.2. OJ
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