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ESTIMATING INVARIANT LAWS OF LINEAR PROCESSES
BY U-STATISTICS

BY ANTON SCHICK1 AND WOLFGANG WEFELMEYER

Binghamton University and Universität zu Köln

Suppose we observe an invertible linear process with independent mean-
zero innovations and with coefficients depending on a finite-dimensional
parameter, and we want to estimate the expectation of some function under
the stationary distribution of the process. The usual estimator would be the
empirical estimator. It can be improved using the fact that the innovations are
centered. We construct an even better estimator using the representation of
the observations as infinite-order moving averages of the innovations. Then
the expectation of the function under thestationary distribution can be written
as the expectation under the distribution of an infinite series in terms of the
innovations, and it can be estimated by aU -statistic of increasing order (also
called an “infinite-orderU -statistic”) in terms of the estimated innovations.
The estimator can be further improved using the fact that the innovations are
centered. This improved estimator is optimal if the coefficients of the linear
process are estimated optimally. The variance reduction of our estimator over
the empirical estimator can be considerable.

1. Introduction. There is a large literature on estimation in ergodic time
series driven by independent innovations. In the last fifteen years, optimality
questions have also been addressed. Efficient estimators for the parameters of
ARMA-type processes are constructed by Kreiss (1987a, b), Jeganathan (1995),
Drost, Klaassen and Werker (1997), Koul and Schick (1997) and Schick and
Wefelmeyer (2002a). For invertible linear time series, the innovations can be esti-
mated, and linear functionals of the innovation distribution can then be estimated
by corresponding empirical estimators based on the estimated innovations; see
Boldin (1982) and Kreiss (1991). Simple and efficient improvements of these es-
timators are possible if the innovations are centered; see Wefelmeyer (1994) and
Schick and Wefelmeyer (2002b).

Here we are interested in estimating functionals of the stationary law. Such
functionals can be estimated in a straightforward way from observations of
the time series. Linear functionals of the stationary law can be estimated by
corresponding empirical estimators. The stationary density can be estimated
by a kernel estimator; see, for example, Yakowitz (1989), Tran (1992) and
Honda (2000).
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These estimators are “nonparametric” in that they do not exploit the information
that the time series is driven by independent innovations. In this paper we show
how to use this information in order to construct efficient estimators forlinear
functionalsof the stationary law of causal and invertible linear processes with
coefficients depending on a finite-dimensional parameter. We restrict attention
to estimation of expectations of smooth functions. Examples are moments,
absolute moments, the characteristic function and other transformations of the
stationary law. One of the applications would be testing for Gaussianity. Under
stronger conditions on the time series, one could prove corresponding results
for expectations of step functions, for example, the distribution function. An
application would be estimating the value at risk in financial mathematics.

In the simplest such time series, a moving average process of order 1, Saavedra
and Cao (1999, 2000) show that the specific structure of the model allows
the stationarydensityto be estimated at the parametric raten−1/2. Schick and
Wefelmeyer (2004) prove that the estimator of Saavedra and Cao is efficient.
Analogous parametric rates can also be obtained for estimators ofconditional
expectations; see Müller, Schick and Wefelmeyer (2003) for a result in nonlinear
autoregressive processes. Such estimators could be combined with the estimators
in the present paper in order to efficiently estimate functionals ofjoint laws of
linear processes, for example, autocovariance functions.

A cautionary remark: unlike the usual empirical estimators for functionals of
the stationary law, our efficient estimators use the full structure of the model, in
particular, the independence of the innovations. Like all efficient estimators, they
are therefore sensitive against misspecification of the model.

Specifically, consider observationsY1, . . . , Yn from a causal linear process

Yt = Xt +
∞∑

s=1

δsXt−s , t ∈ Z,

with independent and identically distributed innovationsXt, t ∈ Z, with mean 0
and finite variance. A simple estimator of a linear functionalE[h(Y0)] of the
stationary distribution is the empirical estimator1

n

∑n
j=1h(Yj ). It does not use

the fact that the process is linear and centered. We shall show how to construct
better estimators if the process is invertible,

Xt = Yt +
∞∑

s=1

γsYt−s , t ∈ Z.

The idea is to express the functionalE[h(Y0)] asE[h(X0 + ∑∞
s=1 δsX−s)] and

to estimate it by aU -statistic of increasing order based on estimated innovations,
taking into account the constraint that the innovations have mean 0. We do this for
a situation often encountered in applications: the coefficientsδ1, δ2, . . . and hence
alsoγ1, γ2, . . . depend on an unknown Euclidean parameterϑ .
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The construction of our estimator involves several steps. Let us illustrate them
with the simplest example, a linear autoregressive model of order 1,

Yt = ϑYt−1 + Xt, t ∈ Z,

with ϑ belonging to the interval(−1,1). Our result is new, and nontrivial,
even for this simple case. The model is a semiparametric model with one-
dimensional parameterϑ and infinite-dimensional parameterP , the distribution
of the innovations. The stationary distribution of this process thus depends on the
pair (ϑ,P ).

We want to estimate the linear functionalE[h(Y0)] of the stationary distribution.
The obvious estimator is again the empirical estimator1

n

∑n
j=1h(Yj ). It is known

that the empirical estimator is a least dispersed regular estimator in Markov chain
models with completely unspecified transition distribution; see Penev (1991),
Bickel (1993) and Greenwood and Wefelmeyer (1995). Here, however, we are
dealing with a semiparametric submodel. Thus, we should be able to improve upon
this estimator.

Before we describe our estimator, let us briefly describe a simple improvement
of the empirical estimator, obtained by exploiting the fact that the innovations, and
hence the observations, have mean 0. This is a linear constraintE[Y0] = 0 on the
stationary distribution. For anyc ∈ R we obtain a new estimator forE[h(Y0)]:

1

n

n∑
j=1

(
h(Yj ) − cYj

)
.

For general Markov chain models, Müller, Schick and Wefelmeyer (2001b)
determine the constantc which minimizes the asymptotic variance of the new
estimator. For our autoregressive model, this constant becomes particularly simple
if h is a polynomial. For example, for the stationaryvarianceE[Y 2

0 ], that is,
h(y) = y2, the optimal constant is

c = c∗ = µ3

(1+ ϑ)µ2
,

with µk = E[Xk
1]. This optimalc∗ depends onP andϑ and must be estimated. We

estimateϑ by the least squares estimatorϑ̂∗ = 1
n

∑n
j=1Yj−1Yj/

1
n

∑n
j=1Y 2

j−1, the

innovations byYj − ϑ̂∗Yj−1 andµk by its empirical estimator based on estimated
innovations:

µ̂k = 1

n

n∑
j=1

(Yj − ϑ̂∗Yj−1)
k.(1.1)

The resulting estimator forE[Y 2
0 ] is

1

n

n∑
j=1

(
Y 2

j − µ̂3

(1+ ϑ̂∗)µ̂2
Yj

)
.
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This simple improvement of the empirical estimator does not use the autore-
gressive structure of the chain. As mentioned above, this structure is exploited by
a U -statistic of increasing order. Improving the empirical estimator then involves
three steps. In the first step, we assumeϑ as known and exploit the structural rela-
tion Yt = ϑYt−1 + Xt . In the second step, we use the information that the innova-
tion distribution has mean 0. The last step consists of replacingϑ by an estimator.

The key step is the first one: we represent the observations as an infinite series
of the innovations:

Yt =
∞∑

s=0

ϑsXt−s , t ∈ Z.

Suppose first that the parameterϑ is known. Then we can calculate the innovations
Xt = Yt − ϑYt−1, t = 1, . . . , n, from the observations. SinceY0 has the same
distribution asS = ∑∞

s=1 ϑs−1Xs , the problem is now reduced to estimating the
functional

E[h(Y0)] = E[h(S)]

= E

[
h

( ∞∑
s=1

ϑs−1Xs

)]

from i.i.d. observations X1, . . . ,Xn. This expectation is approximated
by E[h(S(m))] with S(m) = ∑m

s=1 ϑs−1Xs if m increases withn. This suggests
using the following variant of aU -statistic as an estimator forE[h(S(m))]. Form
the sums

Si(ϑ) =
m∑

s=1

ϑs−1Xi(s) =
m∑

s=1

ϑs−1(Yi(s) − ϑYi(s)−1
)

for injective functionsi from {1, . . . ,m} into {1, . . . , n}. These sums are distributed
as S(m). Hence we estimateE[h(Y0)] by an average over these sums, the
U -statistic

κ̂(ϑ) = (n − m)!
n!

∑
i∈�

h
(
Si(ϑ)

)
,

where� denotes the set of all injective functions from{1, . . . ,m} into {1, . . . , n}.
We can show, via Hoeffding decomposition, that ifm = m(n) increases withn at

an appropriate rate, then theU -statisticκ̂(ϑ) is asymptotically linear,

κ̂(ϑ) = E[h(Y0)] + 1

n

n∑
j=1

h∗(Xj ) + op(n−1/2),

with influence functionh∗ = ∑∞
s=1 hs , wherehs(x) = E[h(S)|Xs = x]−E[h(S)].
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For fixed m, the U -statistic κ̂(ϑ) is a least dispersed regular estimator of
E[h(S(m))] = E[h(

∑m
s=1ϑs−1Xs)] if nothing is known about the distribution of

theXj . See Levit (1974), or argue via the asymptotic equivalence of theU -statistic
and the von Mises statistic and efficiency of the empirical distribution function
[Beran (1977)]. Optimality is preserved if we letm tend to∞ at the appropriate
rate. ForU -statistics of increasing order, see also Shieh (1994) and Heilig and
Nolan (2001).

In Section 2 we prove these results for functionals of the more general
form E[h(

∑∞
s=1 βsXs)] with summable coefficientsβ1, β2, . . . . The results are

of independent interest. For simplicity, we do not prove them under minimal
assumptions on the functionh. In our applications to linear time series in
Sections 4 and 5, we shall need stronger assumptions anyway. The assumptions
are general enough to cover moments and absolute moments and other smooth
functions.

Now we turn to the second step of the construction of our estimator,
exploiting the fact thatXt has mean 0. This is a linear constraint of the form
E[Y1 − ϑY0] = E[X1] = 0. The simple improvement of the empirical estimator
1
n

∑n
j=1h(Yj ), described above, has used the linear constraintE[Y1] = 0 on

observations from a Markov chain. Here we use the constraintE[X1] = 0
on the observed innovations, which are i.i.d. This simplifies improving our
estimatorκ̂(ϑ). Similarly, as above, we form, for anya ∈ R, the estimator

κ̂(ϑ, a) = κ̂(ϑ) − a
1

n

n∑
j=1

(Yj − ϑYj−1),

which has influence functionx �→ h∗(x) − ax. It is easy to check that the choice

a = a∗ = E[X1h∗(X1)]
E[X2

1]
yields an estimator with smallest asymptotic variance in this class of estimators.
The optimala∗ stems from projection on[X1]. It depends onP and must be
replaced by an estimator. A consistent estimator is

â∗(ϑ) =
∑n

j=1(Yj − ϑYj−1)
∑m

s=1 Hs,j (ϑ)∑n
j=1(Yj − ϑYj−1)2 ,

where

Hs,j (ϑ) = (n − m)!
(n − 1)!

∑
i∈�,i(s)=j

h
(
Si(ϑ)

)
, s = 1, . . . ,m, j = 1, . . . , n.

This leads us to the estimator

κ̂
(
ϑ, â∗(ϑ)

) = κ̂(ϑ) − â∗(ϑ)
1

n

n∑
j=1

(Yj − ϑYj−1).
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We show that this is a least dispersed regular estimator ofE[h(Y0)] in the submodel
with knownparameterϑ . For a related efficiency result in such i.i.d. models with
linear constraints, but for simpler functionals, see Levit (1975). In Section 3 we
generalize these results to functionals of the formE[h(

∑∞
s=1 βsXs)].

The third and last step of the construction of our estimator consists of
replacingϑ by an estimator̂ϑ , leading to thesubstitution estimator̂κ(ϑ̂, â∗(ϑ̂)).
It then follows from thesubstitution principlethat the substitution estimator is
efficient for E[h(Y0)] = E[h(

∑∞
s=1 ϑs−1Xs)] if ϑ̂ is efficient forϑ . Conditions

for this principle to hold were first formulated by Klaassen and Putter (2001) in
models with independent and identically distributed observations, and generalized
to Markov chain models by Müller, Schick and Wefelmeyer (2001a).

In Section 4, rather than checking the conditions for the substitution principle,
we calculate directly the influence function of the substitution estimator for func-
tionalsE[h(

∑∞
s=1αs(ϑ)Xs)] from observations which approximateX1, . . . ,Xn.

In Section 5 we apply the results of Sections 2–4 to estimate stationary expecta-
tionsE[h(Y0)] from observations of causal invertible linear processes. Efficiency
of our estimator follows from Schick and Wefelmeyer (2002a) who character-
ize efficient estimators for arbitrary differentiable functionals in such time series
models.

In Section 6 we compare the asymptotic variances of the empirical estimator,
the improved empirical estimator and our estimator for the stationary variance
in AR(1) models. In this situation the asymptotic variances of the estimators can
be calculated explicitly. For innovation distributions far from normal the variance
decrease can be considerable.

2. Estimating the distribution of an infinite series. Let X1,X2, . . . be
independent and identically distributed random variables with

E[|X1|2p] < ∞(2.1)

for somep ≥ 1 and with unknown common distributionP . Let β1, β2, . . . be
known real numbers such that

∞∑
r=1

|βr | < ∞.(2.2)

Then the series

S =
∞∑

r=1

βrXr

converges almost surely and inL2p. Let h be a function fromR to R such that

|h(x)| ≤ C1(1+ |x|p), x ∈ R,(2.3) ∣∣h(x + y) − h(x)
∣∣ ≤ C2(1+ |x|p)(|y| + |y|p), x, y ∈ R,(2.4)
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for some finite constantsC1 andC2. Then the expectationE[h(S)] is well defined.
Examples of functionsh that satisfy (2.3) and (2.4) are polynomials inx or |x| of
degree at mostp and Lipschitz continuous functions.

We are interested in estimatingE[h(S)] from the observationsX1, . . . ,Xn. Let
us introduce our estimator. It follows from (2.1)–(2.4) that the infinite sumS is
well approximated by the finite sumS(m) = ∑m

r=1βrXr for moderately largem.
Indeed, the Minkowski inequality yields that

E

[∣∣∣∣∣
b∑

j=a

βjXj

∣∣∣∣∣
q]

≤ E[|X1|q ]
(

b∑
j=a

|βj |
)q

, 1 ≤ a ≤ b,1≤ q ≤ 2p.(2.5)

In view of (2.4) and the independence ofS − S(m) andS(m),

E
[∣∣h(S) − h

(
S(m)

)∣∣2]
≤ C2

2E
[(

1+ ∣∣S(m)
∣∣p)2](

E
[(∣∣S − S(m)

∣∣ + ∣∣S − S(m)
∣∣p)2])

.

It is now easy to see that there exists a constantK such that

E
[∣∣h(S) − h

(
S(m)

)∣∣2] ≤ K2

( ∞∑
r=m+1

|βr |
)2

(2.6)

and hence

∣∣E[h(S)] − E
[
h
(
S(m)

)]∣∣ ≤ K

∞∑
r=m+1

|βr |.(2.7)

Actually, the constantK can be chosen to be

K = 2C2

(
1+

∞∑
r=1

|βr |
)2p−1

(1+ E[X2
1] + E[|X1|2p]).

Recall that � denotes the set of all injective functions from{1, . . . ,m}
to {1, . . . , n}. The random variables

Si =
m∑

r=1

βrXi(r), i ∈ �,

have the same distribution asS(m). Hence an unbiased estimator ofE[h(S(m))] is
given by

κ̃ = (n − m)!
n!

∑
i∈�

h(Si).

The estimator can be written as aU -statistic,(
n

m

)−1 ∑
1≤i(1)<···<i(m)≤n

km

(
Xi(1), . . . ,Xi(m)

)
,
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with symmetric kernelkm defined by

km(x1, . . . , xm) = 1

m!
∑
i∈�

h
(
β1xi(1) + · · · + βmxi(m)

)
, x1, . . . , xm ∈ R,

with � the set of permutations of{1, . . . ,m}. Using standardU -statistic techniques
[see Serfling (1980), page 178, Lemma A and page 184, Lemma B], we obtain

κ̃ = κm + 1

n

n∑
j=1

mkm,1(Xj ) + R,

where

κm = E[km(X1, . . . ,Xm)] = E
[
h
(
S(m)

)]
,

km,1(x) = E[km(x,X2, . . . ,Xm)] − κm, x ∈ R,

and the remainder satisfies

E[R2] ≤
m∑

r=2

(
m

r

)2 (
n

r

)−1
E[k2

m(X1, . . . ,Xm)].

It is easy to check thatE[k2
m(X1, . . . ,Xm)] ≤ E[h2(S(m))]. Usingm!/(m − r)! ≤

mr andn!/(n − r)! ≥ (n − r)r , we obtain, forn − m > m2,

E[R2] ≤ E
[
h2(S(m))] m∑

r=2

1

r!
(

m2

n − m

)r

≤ E
[
h2(S(m)

)]( m2

n − m

)2

.

Note also that

mkm,1(x) =
m∑

r=1

(
E

[
h
(
S(m)

)|Xr = x
] − E

[
h
(
S(m)

)])
, x ∈ R.

Now let

hr(x) = E[h(S)|Xr = x] − E[h(S)], x ∈ R, r = 1,2, . . . .

With the help of (2.4) and the Cauchy–Schwarz inequality, we verify that∫
h2

r dP ≤ 4E
[(

h(S) − h(S − βrXr)
)2]

≤ 4C2
2E

[
(1+ |S − βrXr |p)2]E[

(|βrXr | + |βrXr |p)2].
This and the Minkowski inequality show that there exists a constantC such that,
for all sufficiently largem andk, m < k,

∫ (
k∑

r=m+1

hr

)2

dP ≤ C

(
k∑

r=m+1

|βr |
)2

.
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Thus the seriesh∗ = ∑∞
r=1hr is well defined inL2(P ) and is theL2(P )-limit

of
∑m

r=1hr : ∫ (
h∗ −

m∑
r=1

hr

)2

dP → 0 asm → ∞.(2.8)

It follows from the Cauchy–Schwarz inequality and (2.6) that
∫ (

mkm,1 −
m∑

r=1

hr

)2

dP ≤ 4mE
[∣∣h(S) − h

(
S(m)

)∣∣2]

≤ 4mK2

( ∞∑
r=m+1

|βr |
)2(2.9)

for largem. We arrive at the following result.

THEOREM 2.1. Suppose we can choosem = m(n) such that

m4/n → 0 and n1/2
∞∑

r=m+1

|βr | → 0.(2.10)

Leth satisfy(2.3)and(2.4).Then the estimator

κ̃ = (n − m)!
n!

∑
i∈�

h

(
m∑

r=1

βrXi(r)

)

is asymptotically linear forE[h(S)] with influence functionh∗ = ∑∞
r=1hr :

κ̃ = E[h(S)] + 1

n

n∑
j=1

h∗(Xj ) + op(n−1/2).

In particular, κ̃ is asymptotically normal with variance
∫

h2∗ dP .

We have phrased this and the following theorems about estimators as asymp-
totic linearity results. The reason is that asymptotic linearity is useful for obtaining
other, more familiar results about estimators: they are then seen to be asymptot-
ically normal, their asymptotic variances are easily calculated and we can check
whether they are regular and whether they are efficient in the sense of being least
dispersed among regular estimators.

REMARK 2.1. Let us briefly discuss the choice ofm in two special cases:

1. Suppose that the coefficientsβ1, β2, . . . decay exponentially, say

|βj | ≤ Cϑj , j = 1,2, . . . ,

for a finite constantC and a positive numberϑ , ϑ < 1. Then the require-
ment (2.10) is satisfied ifm4/n → 0 andn1/2ϑm → 0. The latter holds if
log(n)/m → ∞. If ϑ < e−1/2, it even holds form = log(n).
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2. Supposeβj = 0 for j > p. Then we can takem = p. We should point out that
in this caseh∗ = h1 + · · · + hp is a finite sum and (2.8) holds even thoughm

does not go to∞. This is the classical result for fixed-degreeU -statistics.

As it is very time consuming to calculatẽκ for largem, it is advantageous to
choosem as small as possible.

REMARK 2.2. If the coefficients do not decay fast enough, we may not be able
to satisfy (2.10). For example, ifβj = j−1−a , j = 1,2, . . . , for some positivea,
then m needs to satisfym4/n → 0 andn/m2a → 0. But this is only possible
if a > 2.

Let us now show that̃κ is efficient. For this it suffices to show thatE[h(S)]
is differentiable at the trueP with canonical gradient equal to the influence
function h∗ of our estimatorκ̃ . Since we will have to look at distributions near
to, but different from, the trueP , it will occasionally be convenient to express the
dependence of expectations on the underlying distribution by writingEP for E.
Note thatκ(P ) = EP [h(S)] defines a functional on the set of all distributions
with finite 2pth moments. We introduce a local model at the trueP as follows.
Let L∗(P ) denote the set of all measurable functionsg from R to R such
that

∫
g dP = 0 and

∫
g2 dP < ∞. To eachg in L∗(P ) associate a sequencegn

in L∗(P ) such that

|gn| ≤ n1/8 and
∫

(gn − g)2 dP → 0.(2.11)

A possible choice isgn = g1[2|g| ≤ n1/8] − ∫
g1[2|g| ≤ n1/8]dP . Let Pn,g de-

note the distribution withP -density 1+ n−1/2gn. Since 0≤ 1 + n−1/2gn and∫
(1+ n−1/2gn) dP = 1, the function 1+ n−1/2gn is indeed a probability density.

THEOREM 2.2. Suppose we can choosem = m(n) such that(2.10) holds.
Leth satisfy(2.3)and(2.4).Then the functionalκ(P ) = EP [h(S)] is differentiable
at P with gradienth∗ = ∑∞

r=1hr :

n1/2(κ(Pn,g) − κ(P )
) →

∫
h∗g dP.

PROOF. Let m = m(n) satisfy (2.10). LetGn,0 = 1 and

Gn,k =
k∏

r=1

(
1+ n−1/2gn(Xr)

)
, k = 1,2, . . . .

Since

n1/2(Gn,k − 1) =
k∑

r=1

Gn,r−1gn(Xr) =
k∑

r=1

gn(Xr) +
k∑

r=2

gn(Xr)(Gn,r−1 − 1)
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and

E[(Gn,k − 1)2] = E[G2
n,k] − 1 = (

1+ n−1E[g2
n(X1)])k − 1

≤ k

n
E[g2

n(X1)](1+ n−1E[g2
n(X1)])k−1

,

we get by an application of the Cauchy–Schwarz inequality and the independence
of Xr andGn,r−1 that∣∣∣∣∣n1/2E[h(S)(Gn,m − 1)] − E

[
h(S)

m∑
r=1

gn(Xr)

]∣∣∣∣∣
≤

m∑
r=2

(
E[h2(S)]E[g2

n(Xr)]E[(Gn,r−1 − 1)2])1/2 → 0.

Since
∫

gn dP = 0, we find that

E[h(S)gn(Xr)] = E
[(

E[h(S)|Xr ] − E[h(S)])gn(Xr)
]

=
∫

gnhr dP .

Thus, in view of (2.8) and (2.11),

E

[
h(S)

m∑
r=1

gn(Xr)

]
=

∫
gn

m∑
r=1

hr dP →
∫

gh∗ dP.

This shows that

n1/2E[h(S)(Gn,m − 1)] →
∫

gh∗ dP.(2.12)

Note thatEPn,g [h(S(m))] = EP [h(S(m))Gn,m], so thatκ(Pn,g) − κ(P ) equals

EPn,g

[
h(S) − h

(
S(m))] + E

[(
h
(
S(m)) − h(S)

)
Gn,m

] + E[h(S)(Gn,m − 1)].
The desired result now follows from (2.12) and (2.10) because

n1/2∣∣EPn,g

[
h(S) − h

(
S(m))]∣∣ = O

(
n1/2

∞∑
r=m+1

|βr |
)

by the same argument that yields (2.7), and

n1/2∣∣E[(
h(S) − h

(
S(m)

))
Gn,m

]∣∣ = O

(
n1/2

∞∑
r=m+1

|βr |
)

by (2.6) andE[G2
n,m] → 1. �
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Theorems 2.1 and 2.2 imply thatκ̃ is least dispersed among regular estimators
of EP [h(S)] if nothing is known aboutP . For an appropriate version of the
convolution theorem, see Bickel, Klaassen, Ritov and Wellner [(1998), page 63,
Theorem 2, and page 65, Proposition 1].

3. Estimation with constraints. In the setting of Section 2, we can find better
estimators forE[h(S)] = E[h(

∑∞
r=1βrXr)] if additional information about the

distributionP is available. Suppose we know that∫
ψ dP = 0(3.1)

for some measurable functionψ from R to R such that
∫

ψ2 dP is finite and
positive. An important case is the choiceψ(x) = x. This just means thatP has
mean 0.

Under the constraint (3.1) we can consider the estimator

˜̃κ(a) = κ̃ − a
1

n

n∑
j=1

ψ(Xj )

for real a and verify that it has influence functionh∗ − aψ if m = m(n)

satisfies (2.10):

˜̃κ(a) = E[h(S)] + 1

n

n∑
j=1

(
h∗(Xj ) − aψ(Xj )

) + op(n−1/2).

Its asymptotic variance is minimized for the choice

a = a∗ =
∫

h∗ψ dP∫
ψ2 dP

,

which is the coefficient of the projection ofh∗ onto ψ . Let us now construct an
estimator ofa∗ that is consistent ifm = m(n) satisfies (2.10). Our candidate is

â∗ =
∑n

j=1ψ(Xj )
∑m

r=1 Hr,j∑n
j=1ψ2(Xj )

,

where

Hr,j = (n − m)!
(n − 1)!

∑
i∈�,i(r)=j

h(Si), r = 1, . . . ,m, j = 1, . . . , n.

Recall thatSi = ∑m
r=1βrXi(r) for i ∈ �. In view of the law of large numbers, we

need only show that

1

n

n∑
j=1

ψ(Xj )

m∑
r=1

Hr,j = 1

n

n∑
j=1

h∗(Xj )ψ(Xj ) + op(1).(3.2)
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GivenX1, the random variableHr,1 is aU -statistic (of degreem−1 in the variables
X2, . . . ,Xn). Thus we have, forr = 1, . . . ,m andn − m ≥ (m − 1)2,

E
[
(Hr,1 − E[Hr,1|X1])2]

≤ E
[
h2(S(m))]m−1∑

k=1

(
m − 1

k

)2 (
n − 1

k

)−1

≤ E
[
h2(S(m)

)]2(m − 1)2

n − m
.

From this and the Cauchy–Schwarz inequality, we get

E

[
1

n

n∑
j=1

(
m∑

r=1

(Hr,j − E[Hr,j |Xj ])
)2]

≤ m

m∑
r=1

E
[
(Hr,1 − E[Hr,1|X1])2]

= O
(
m4(n − m)−1)

.

Thusm4/n → 0 implies that

1

n

n∑
j=1

(
m∑

r=1

(Hr,j − E[Hr,j |Xj ])
)2

= op(1).(3.3)

From this and another application of the Cauchy–Schwarz inequality, we can now
conclude that

1

n

n∑
j=1

ψ(Xj )

m∑
r=1

Hr,j = 1

n

n∑
j=1

ψ(Xj )

m∑
r=1

E[Hr,j |Xj ] + op(1).

It is easy to check that

m∑
r=1

E[Hr,j |Xj ] = m
(
κm + km,1(Xj )

)
.(3.4)

As mκm = o(n1/2), we obtain from the central limit theorem that

1

n

n∑
j=1

ψ(Xj )mκm = op(1).

In view of this, (2.8) and (2.9), we can now conclude the desired (3.2). Let us
summarize this in the following theorem.
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THEOREM 3.1. Suppose we can choosem = m(n) such that(2.10) holds.
Leth satisfy(2.3)and(2.4).Then the estimator

˜̃κ(â∗) = κ̃ − â∗
1

n

n∑
j=1

ψ(Xj )

is asymptotically linear forκ(P ) = EP [h(S)] with influence functionh∗ − a∗ψ :

˜̃κ(â∗) = κ(P ) + 1

n

n∑
j=1

[h∗(Xj ) − a∗ψ(Xj )] + op(n−1/2).

In particular, ˜̃κ(â∗) is asymptotically normal with variance

E
[(

h∗(X1) − a∗ψ(X1)
)2] =

∫
h2∗ dP − (

∫
h∗ψ dP )2∫
ψ2 dP

.

It is straightforward to check thath∗ − a∗ψ is the efficient influence function
for estimators ofEP [h(S)] under the constraint

∫
ψ dP = 0; see Levit (1975).

It follows from Theorem 3.1 that̃̃κ(â∗) is a least dispersed regular estimator
of EP [h(S)] whenP is unknown except for

∫
ψ dP = 0; see again the convolution

theorem in Bickel, Klaassen, Ritov and Wellner [(1998), pages 63 and 65].

4. Estimated coefficients and perturbed observations. Let X1, . . . ,Xn be
i.i.d. random variables with distributionP satisfying (2.1). We want to estimate
the expectationE[h(

∑∞
r=1βrXr)]. In the applications to time series we have in

mind, the coefficientsβ1 = α1(ϑ0), β2 = α2(ϑ0), . . . depend on an unknown para-
meterϑ0, and the random variablesX1, . . . ,Xn are the unobservable innovations
of a time series. In this case, both the coefficients and the innovations must be esti-
mated from the time series using estimators ofϑ0. This will be done in Section 5. In
preparation, the present section considers general estimatorsXn,1(ϑ̂), . . . ,Xn,n(ϑ̂)

of X1, . . . ,Xn. Theorem 4.1 shows asymptotic linearity of aU -statistic based on
observationsXn,1(ϑ̂), . . . ,Xn,n(ϑ̂); Theorem 4.2 treats the case with constraint∫

ψ dP = 0. As the underlying parameter space we take an open subset
 of R
d .

We assume thatα1, α2, . . . are continuously differentiable functions from
 to R

such that, for someη > 0,

∞∑
r=1

|αr(ϑ0)| < ∞ and
∞∑

r=1

sup
‖ϑ−ϑ0‖<η

‖α̇r (ϑ)‖ < ∞,(4.1)

whereα̇r denotes the gradient ofαr . Note that this implies that

∞∑
r=1

sup
‖ϑ−ϑ0‖<η

|αr(ϑ)| < ∞(4.2)
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for the sameη as in (4.1). We consider random variablesXn,1(ϑ), . . . ,Xn,n(ϑ)

such thatXn,j (ϑ) approximatesXj if ϑ is close toϑ0: there ared-dimensional
random vectorsξ1, ξ2, . . . such that

sup
j≥1

E[‖ξj‖2] < ∞,(4.3)

max
j≤n

n−1/2‖ξj‖ = op(1),(4.4)

sup
‖t‖≤T

n∑
j=1

(
Xn,j (ϑ0 + n−1/2t) − Xj − n−1/2t	ξj

)2 = op(1)(4.5)

for all finite T .

REMARK 4.1. Conditions (4.3) and (4.4) are implied by uniform integrability
of the variables‖ξ1‖2,‖ξ2‖2, . . . . The former is obvious; the latter follows as

P

(
max

1≤j≤n
n−1/2‖ξj‖ > η

)

≤ 1

nη2

n∑
j=1

E
[‖ξj‖21[‖ξj‖ > n1/2η]]

≤ 1

η2 max
1≤j≤n

E
[‖ξj‖21[‖ξj‖ > n1/2η]], η > 0.

Thus, if the random vectorsξ1, ξ2, . . . are identically distributed, then (4.3)
and (4.4) follow fromE[‖ξ1‖2] < ∞. Sufficient conditions for (4.5) are the
asymptotic differentiability ofXn,j atϑ0 in the sense that

sup
‖t‖≤T

n∑
j=1

(
Xn,j (ϑ0 + n−1/2t) − Xn,j (ϑ0) − n−1/2t	Ẋn,j (ϑ0)

)2 = op(1)(4.6)

for all finite T together with

1

n

n∑
j=1

‖Ẋn,j (ϑ0) − ξj‖2 = op(1),(4.7)

n∑
j=1

(
Xn,j (ϑ0) − Xj

)2 = op(1).(4.8)

In applications to time series,Xn,j (ϑ0) is a truncated series representation of
innovations; see (5.5).
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Forϑ ∈ 
 andi ∈ �, set now

S(ϑ) =
∞∑

r=1

αr(ϑ)Xr,

Si(ϑ) =
m∑

r=1

αr(ϑ)Xi(r),

Sn,i(ϑ) =
m∑

r=1

αr(ϑ)Xn,i(r)(ϑ).

SetS = S(ϑ0) andSi = Si(ϑ0). These are the series in Section 2. Think ofSn,i(ϑ)

as an approximation ofSi(ϑ). Next define

κ̂(ϑ) = (n − m)!
n!

∑
i∈�

h
(
Sn,i(ϑ)

)
, ϑ ∈ 
.

Thenκ̂(ϑ0) is an “estimator” ofE[h(S)] and defined as in Section 2, but now with
X1, . . . ,Xn replaced byXn,1(ϑ0), . . . ,Xn,n(ϑ0). Let ϑ̂ be an estimator ofϑ0. In
this section we calculate the influence function ofκ̂(ϑ̂). The result will be used in
Section 5.

ASSUMPTION H. The functionh satisfies (2.3) and (2.4) and is absolutely
continuous with an almost everywhere derivativeh′ that is almost surely continu-
ous with respect to the distribution ofS and satisfies the growth condition

|h′(x)| ≤ C3(1+ |x|)q, x ∈ R,

for some constantC3 and someq ∈ [0,p].

Examples of functionsh that satisfy Assumption H are again polynomials
in x or |x| of degree at mostp and Lipschitz continuous functions.

THEOREM 4.1. Suppose assumptions(4.1)–(4.5)hold, h satisfies Assump-
tion H and we can choosem = m(n) such that(2.10) holds withβr = αr(ϑ0).
If ϑ̂ is n1/2-consistent forϑ0, then

κ̂(ϑ̂) = κ̃ + 	
n (ϑ̂ − ϑ0) + op(n−1/2),(4.9)

where

n = (n − m)!
n!

∑
i∈�

h′(Si)Di,

Di =
m∑

r=1

[
α̇r (ϑ0)Xi(r) + αr(ϑ0)ξi(r)

]
, i ∈ �.
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PROOF. For i ∈ � set

Dn,i = Sn,i(ϑ̂) − Si =
m∑

r=1

[
αr(ϑ̂)Xn,i(r)(ϑ̂) − αr(ϑ0)Xi(r)

]
.

Sinceh is absolutely continuous, we see that

κ̂(ϑ̂) − κ̃ = (n − m)!
n!

∑
i∈�

Dn,i

∫ 1

0
h′(Si + zDn,i) dz.

The desired result can now be written as

(n − m)!
n!

∑
i∈�

(
Dn,i

∫ 1

0
h′(Si + zDn,i) dz − D	

i (ϑ̂ − ϑ0)h
′(Si)

)
= op(n−1/2).

But this is a consequence of the following statements:

(n − m)!
n!

∑
i∈�

(
h′(Si)

)2 = Op(1),(4.10)

(n − m)!
n!

∑
i∈�

‖Di‖2 = Op(1),(4.11)

(n − m)!
n!

∑
i∈�

(
Dn,i − D	

i (ϑ̂ − ϑ0)
)2 = op(n−1),(4.12)

(n − m)!
n!

∑
i∈�

∫ 1

0

(
h′(Si + zDn,i) − h′(Si)

)2
dz = op(1).(4.13)

Of course, (4.10) holds because its left-hand side has an expectation that converges
to that ofE[h′(S)2] by the properties ofh′. Next, we have

E[‖Di‖2] ≤ 2

(
m∑

r=1

‖α̇r (ϑ0)‖
)2

E[X2
1]

(4.14)

+ 2

(
m∑

r=1

|αr(ϑ0)|
)2

max
1≤j≤n

E[‖ξj‖2]

by the following version of the Cauchy–Schwarz inequality:(∑
r

arbr

)2

≤ ∑
r

|ar |
∑
r

|ar |b2
r .

Relation (4.11) follows from (4.14) and assumptions (4.1)–(4.3). To obtain
relation (4.12) use the formula

(n − m)!
n!

∑
i∈�

(
m∑

r=1

∣∣arbi(r)

∣∣)2

≤
(

m∑
r=1

|ar |
)2

1

n

n∑
j=1

b2
j
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to bound the left-hand side of (4.12) by

3

(
m∑

r=1

|αr(ϑ̂) − αr(ϑ0)|
)2

1

n

n∑
j=1

‖ξj‖2‖ϑ̂ − ϑ0‖2

+ 3

(
m∑

r=1

|αr(ϑ̂)|
)2

1

n

n∑
j=1

(
Xn,j (ϑ̂) − Xj − ξ	

j (ϑ̂ − ϑ0)
)2

+ 3

(
m∑

r=1

∫ 1

0

∥∥α̇r

(
ϑ0 + z(ϑ̂ − ϑ0)

) − α̇r (ϑ0)
∥∥dz

)2
1

n

n∑
j=1

|Xj |2‖ϑ̂ − ϑ0‖2.

The desired (4.12) is now immediate in view of (4.1)–(4.5) and then1/2-consis-
tency ofϑ̂ . Note that then1/2-consistency of̂ϑ , the continuity ofα̇r and (4.1) yield

m∑
r=1

∫ 1

0

∥∥α̇r

(
ϑ0 + z(ϑ̂ − ϑ0)

) − α̇r (ϑ0)
∥∥dz = op(1).

We also have

Dn = max
i∈�

|Dn,i | = op(1).(4.15)

This is a consequence of (4.12) and the fact that

max
i∈�

n−1/2‖Di‖ ≤
∞∑

r=1

‖α̇r (ϑ0)‖ max
1≤j≤n

n−1/2|Xj |

+
∞∑

r=1

|αr(ϑ0)| max
1≤j≤n

n−1/2‖ξj‖

= op(1).

Thus it suffices to prove (4.13) withDn,i replaced byD∗
n,i = Dn,i1[|Dn,i | ≤ 1]. It

follows from Assumption H that

Zn,i =
∫ 1

0

(
h′(Si + zD∗

n,i) − h′(Si)
)2

dz ≤ 4C2
3(2+ |Si |)2p, i ∈ �.

Since Si has the same distribution asS(m)(ϑ0) = ∑m
r=1αr(ϑ0)Xj and S(m)

converges inL2p to S, we see that the random variables{Zn,i : i ∈ �,n ≥ 1} are
uniformly integrable. Thus (4.13) will follow if we can show that, for everyL,

(n − m)!
n!

∑
i∈�

∫ 1

0
L ∧ (

h′(Si + zD∗
n,i) − h′(Si)

)2
dz = op(1).(4.16)

Fix L. Define a mapH from Q, the set of all probability measures on the Borel
σ -field of R

2, into [0,L] by

H(Q) =
∫

L ∧ (
h′(x) − h′(y)

)2
Q(dx, dy), Q ∈ Q.
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With the aid of this map, we can write the expected value of the left-hand side
of (4.16) as

(n − m)!
n!

∑
i∈�

∫ 1

0
H(Qz

n,i) dz,

whereQz
n,i is the distribution of the bivariate random vector

Y z
n,i = (Si + zD∗

n,i, Si)
	.

Endow Q with the topology of weak convergence. This topology is generated
by the Prohorov metricρ. By the properties ofh′, the mapH is bounded and
continuous atQ0, the distribution of(S, S)	. Note also thatH(Q0) = 0. Hence
for ε > 0 there existsδ > 0 such thatρ(Q,Q0) < δ implies |H(Q)| < ε. It thus
suffices to show that

sup
{
ρ(Qz

n,i ,Q0) : i ∈ �,z ∈ [0,1]} → 0.(4.17)

For this we use the following simple property of the Prohorov metric. IfX andY

are two bivariate random vectors with distributionsQ and R, thenρ(Q,R) ≤
η + P (‖X − Y‖ ≥ η) for eachη > 0. Now letYi = (S∗

i , S∗
i )	 with

S∗
i = Si +

∞∑
r=1

αm+r (ϑ0)Xn+r .

ThenYi has distributionQ0 and‖Y z
n,i − Yi‖ ≤ √

2|Si − S∗
i | + |D∗

n,i| for all z ∈
[0,1] and alli ∈ �. The desired (4.17) is now immediate.�

REMARK 4.2. Fori ∈ � set

Ṡi =
m∑

r=1

α̇r (ϑ0)Xi(r) and Ti =
m∑

r=1

αr(ϑ0)ξi(r),

so thatDi = Ṡi + Ti . Under the assumptions of Theorem 4.1, one can show that

(n − m)!
n!

∑
i∈�

h′(Si)Ṡi = µ + op(1),(4.18)

whereµ = E[h′(S)Ṡ] with Ṡ = ∑∞
r=1 α̇r (ϑ0)Xr .

One also expects that under mild additional assumptions,

(n − m)!
n!

∑
i∈�

h′(Si)Ti = ν + op(1)(4.19)

for some vectorν ∈ R
d . Then (4.9) simplifies to

κ̂(ϑ̂) = κ̃ + (µ + ν)	(ϑ̂ − ϑ0) + op(n−1/2).
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In the following lemma we formulate a set of sufficient conditions for (4.19)
that is useful for the applications we have in mind.

LEMMA 4.1. Suppose AssumptionH holds, m4/n → 0, the random vec-
tors ξ1, ξ2, . . . are stationary withE[‖ξ1‖2] < ∞ and

sup
r>s

E
[‖ξr − E[ξr |Xr−s , . . . ,Xr−1]‖2] → 0 ass → ∞.(4.20)

Then(4.19)holds with

ν = E[h′(S)]
∞∑

r=1

αr(ϑ0)E[ξ1].

PROOF. Without loss of generality, we may assume thatd = 1. Let s denote
the integer part of 1+ log(n). Let �s denote the set of alli in � such
that i(q) > s and |i(q) − i(r)| > s for all q, r = 1, . . . ,m andq = r . Setξr,s =
E[ξr |Xr−s, . . . ,Xr−1] for r > s and

Ti,s =
m∑

r=1

αr(ϑ0)ξi(r),s, i ∈ �.

Since m4/n → 0, we have thatnm/(n − ms)m → 1. This shows that the
cardinality of�s is of the same order as that of�. Hence the cardinality of the
complement�\�s of �s with respect to� is of ordero(n!/(n − m)!). We now
use this and (4.20) to show that the left-hand side of (4.19) differs from

D = (n − m)!
n!

∑
i∈�s

h′(Si)Ti,s

by a term of orderop(1). Indeed, the expected value of the absolute value of this
term is bounded by

(n − m)!
n!

( ∑
i∈�\�s

E[|h′(Si)Ti |] + ∑
i∈�s

E[|h′(Si)(Ti,s − Ti)|]
)
.

Now use the fact that the expected valuesE[h′(Si)
2] andE[T 2

i ] are uniformly
bounded and thatE[(Ti,s − Ti)

2]1/2 ≤ ∑∞
j=1 |αj (ϑ0)|supr>s(E[‖ξr − ξr,s‖2])1/2,

to conclude that this bound tends to 0.
It is easy to check that two summandsh′(Si)Ti,s and h′(Sj )Tj,s of D are

independent if their indicesi andj satisfy|i(r) − j (r)| > s for all r = 1, . . . ,m.
This shows that the variance ofD goes to 0, so thatD = E[D] + op(1). Since
Si and Ti,s are independent fori ∈ �s , and Si has the same distribution as
S(m) = ∑m

r=1αr(ϑ0)Xr , we have

E[D] = E
[
h′(S(m)

)](n − m)!
n!

∑
i∈�s

E[Ti,s].
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The properties ofh′ imply E[h′(S(m))] → E[h′(S)]. From (4.20) and (4.1), we get

sup
i∈�s

∣∣∣∣∣E[Ti,s] −
∞∑

r=1

αr(ϑ0)E[ξ1]
∣∣∣∣∣ → 0.

We can now conclude thatE[D] → ν. This completes the proof.�

Let us now turn to the constrained setting of Section 3, withψ a function such
that

∫
ψ dP = 0 and

∫
ψ2 dP finite and positive. Forϑ ∈ 
 consider

ˆ̂κ(
ϑ, â∗(ϑ)

) = κ̂(ϑ) − â∗(ϑ)
1

n

n∑
j=1

ψ
(
Xn,j (ϑ)

)
,

where

â∗(ϑ) =
∑n

j=1ψ(Xn,j (ϑ))
∑m

r=1 Hr,j (ϑ)∑n
j=1ψ2(Xn,j (ϑ))

,

Hr,j (ϑ) = (n − m)!
(n − 1)!

∑
i∈�,i(r)=j

h
(
Si(ϑ)

)
, r = 1, . . . ,m, j = 1, . . . , n.

We now writea∗(ϑ0) for the a∗ of Section 3 to stress the dependence on the
parameter.

THEOREM 4.2. Suppose the assumptions of Theorem4.1hold. Suppose also
that ψ is Lipschitz with an almost everywhere derivativeψ ′ that is continuous
P -almost surely. If ϑ̂ is n1/2-consistent forϑ0, then

1

n

n∑
j=1

â∗(ϑ̂)ψ
(
Xn,j (ϑ̂)

)

= a∗(ϑ0)
1

n

n∑
j=1

ψ(Xj ) + a∗(ϑ0)�
	
n (ϑ̂ − ϑ0) + op(n−1/2),

with

�n = 1

n

n∑
j=1

ψ ′(Xj )ξj .

If, in addition, the random vectorsξ1, ξ2, . . . are stationary and satisfy(4.20),then

�n = E[ψ ′(X1)]E[ξ1] + op(1),(4.21)

and hence ˆ̂κ∗
n = ˆ̂κ(ϑ̂, â∗(ϑ̂)) equals

ˆ̂κ∗
n = κ̂(ϑ̂) − a∗(ϑ0)

1

n

n∑
j=1

ψ(Xj )

− a∗(ϑ0)E[ψ ′(X1)]E[ξ	
1 ](ϑ̂ − ϑ0) + op(n−1/2).
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PROOF. Since (4.21) is easy, we prove only the first conclusion. It suffices to
show that

â∗(ϑ̂) = a∗(ϑ0) + op(1),(4.22)

1

n

n∑
j=1

(
ψ

(
Xn,j (ϑ̂)

) − ψ(Xj )
) = 1

n

n∑
j=1

ψ ′(Xj )ξ
	
j (ϑ̂ − ϑ0) + op(n−1/2).(4.23)

The latter is a special case of Theorem 4.1 withh replaced byψ andα1(ϑ) = 1
and αr(ϑ) = 0 for r ≥ 2. As ψ is Lipschitz, we obtain from (4.4), (4.5) and
then1/2-consistency of̂ϑ that

�n = max
1≤j≤n

∣∣ψ(
Xn,j (ϑ̂)

) − ψ(Xj )
∣∣ = op(1).(4.24)

In view of (3.2) and (4.24), the desired statement (4.22) will follow from

1

n

n∑
j=1

(
ψ

(
Xn,j (ϑ̂)

) − ψ(Xj )
) m∑
r=1

Hr,j (ϑ0) = op(1),(4.25)

1

n

n∑
j=1

ψ
(
Xn,j (ϑ̂)

) m∑
r=1

(
Hr,j (ϑ̂) − Hr,j (ϑ0)

) = op(1).(4.26)

It follows from (2.9), (3.3) and (3.4) that

1

n

n∑
j=1

(
mκm −

m∑
r=1

Hr,j (ϑ0)

)2

= Op(1).

It follows from (4.23) that

1

n

n∑
j=1

(
ψ

(
Xn,j (ϑ̂)

) − ψ(Xj )
)
mκm = op(1).

Together with (4.24), these statements yield (4.25). Next bound the absolute value
of the left-hand side of (4.26) by

m∑
r=1

(n − m)!
n!

n∑
j=1

∑
i∈�,i(r)=j

∣∣ψ(
Xn,j (ϑ̂)

)∣∣C3(1+ |Si | + |Dn,i |)q |Dn,i |

≤ C4

m∑
r=1

(n − m)!
n!

n∑
j=1

∑
i∈�,i(r)=j

(1+ |Xj | + �n)(1+ |Si | + Dn)
q |Dn,i |,

whereDn,i andDn are as in the proof of Theorem 4.1 andC4 is a constant. An
application of the Cauchy–Schwarz inequality now shows that the square of the
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left-hand side of (4.26) is bounded bym2C2UnVn, where

Un = (n − m)!
n!

∑
i∈�

D2
n,i ,

Vn = 1

m

m∑
r=1

(n − m)!
n!

n∑
j=1

∑
i∈�,i(r)=j

(1+ |Xj | + �n)
2(1+ |Si | + Dn)

2q.

It follows from (4.11) and (4.12) thatnUn = Op(1). It follows from (4.24), (4.15)
andq ≤ p − 1 thatVn = Op(1). As m2/n → 0, we obtain the desired (4.26).�

5. Application to semiparametric linear processes. Now we apply Sec-
tions 2–4 to real-valued causal invertible processesYt , t ∈ Z, with infinite-order
moving average and autoregressive representations

Yt = Xt +
∞∑

s=1

δs(ϑ)Xt−s , t ∈ Z,(5.1)

Yt = Xt −
∞∑

s=1

γs(ϑ)Yt−s , t ∈ Z,(5.2)

where the innovations{Xt, t ∈ Z} are i.i.d. with distributionP which has mean 0
and finite variance, and the parameterϑ varies in an open subset
 of R

d . We
assume thatδ1, δ2, . . . and γ1, γ2, . . . are continuously differentiable functions
from 
 into R with the following growth conditions at the true parameterϑ = ϑ0:
for a finite constantC and positive numbersη anda < 1,

sup
‖ϑ−ϑ0‖<η

[|δr (ϑ)| + ‖δ̇r (ϑ)‖] ≤ Car, r = 1,2, . . . ,(5.3)

sup
‖ϑ−ϑ0‖<η

[|γr(ϑ)| + ‖γ̇r (ϑ)‖] ≤ Car, r = 1,2, . . . .(5.4)

Hereδ̇r is the gradient ofδr , andγ̇r the gradient ofγr .

EXAMPLE 5.1. For the AR(1) processYt = Xt + ϑYt−1, take
 = (−1,1)

and setγ1(ϑ) = −ϑ andγs(ϑ) = 0 for s ≥ 2. The infinite-order moving average
representation holds withδs(ϑ) = ϑs .

EXAMPLE 5.2. For the MA(1) processYt = Xt + ϑXt−1, take
 = (−1,1)

and setδ1(ϑ) = ϑ and δs(ϑ) = 0 for s ≥ 2. The infinite-order autoregressive
representation holds withγs(ϑ) = (−ϑ)s .

EXAMPLE 5.3. For the ARMA(1,1) processYt − ϑ1Yt−1 = Xt − ϑ2Xt−1,
take
 = {(ϑ1, ϑ2) :ϑ1, ϑ2 ∈ (−1,1),ϑ1 = ϑ2}. The infinite-order moving aver-
age representation holds withδs(ϑ) = (ϑ1 − ϑ2)ϑ

s−1
1 , and the infinite-order au-

toregressive representation holds withγs(ϑ) = (ϑ2 − ϑ1)ϑ
s−1
2 .
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In the following, we will occasionally writeYt (ϑ) for representation (5.1) ofYt ,
andEP for expectation whenP is true. We want to estimate the functional

κ(ϑ,P ) = EP

[
h
(
Y1(ϑ)

)]
from observationsY0, . . . , Yn. Since the true innovation distributionP has mean 0,
we have the linear constraint

∫
x P (dx) = 0, that is,EP [ψ(X1)] = 0 for ψ(x) = x.

Note that if we observe onlyY1, . . . , Yn, we cannot estimate the first few
innovations so well that (4.5) holds. However, (4.5) can be achieved if we also
observeY−r(n), . . . , Y0 for a properly chosen sequencer(n) of integers. For
example,r(n) = p−1 works for AR(p). In general, we must have Assumption 3 in
Schick and Wefelmeyer (2002a), which under our assumption (5.4) holds withr(n)

proportional to(logn)1+ε for someε > 0. We will assume in this section that those
additional observations are available. Otherwise, renumber the observations.

We apply Section 4 withαr = δr−1, r = 1,2, . . . , where δ0 = 1, and
takeXn,1(ϑ), . . . ,Xn,n(ϑ) to be truncated versions of the representation (5.2) of
the innovationsX1, . . . ,Xn in terms of the observations:

Xn,j (ϑ) = Yj +
r(n)+j∑

s=1

γs(ϑ)Yj−s, j = 1, . . . , n, ϑ ∈ 
.(5.5)

It is easy to see that assumption (5.3) implies assumptions (4.1) and (4.2). Let us
now show that (5.3) and (5.4) imply (4.3)–(4.5) with

ξj =
∞∑

s=1

γ̇s(ϑ0)Yj−s, j = 1,2, . . . .

As ξ1, ξ2, . . . are stationary and square integrable by (5.4), we obtain (4.3) and (4.4)
from Remark 4.1. To prove relation (4.5), we verify the sufficient conditions
(4.6)–(4.8) with Ẋn,j (ϑ) = ∑r(n)+j

s=1 γ̇s (ϑ)Yj−s . Conditions (4.7) and (4.8) are
easy consequences of the choice ofr(n) and assumption (5.4). We bound the
expectation of the left-hand side of (4.6) by

n∑
j=1

E

(
r(n)+j∑

s=1

sup
‖t‖≤T

∣∣γs(ϑ0 + n−1/2t) − γs(ϑ0) − n−1/2t	γ̇s(ϑ0)
∣∣|Yj−s |

)2

≤ E(Y 2
1 )

( ∞∑
s=1

sup
‖t‖≤T

∣∣γs(ϑ0 + n−1/2t) − γs(ϑ0) − n−1/2t	γ̇s(ϑ0)
∣∣)2

.

We have used the Minkowski inequality here. Sinceγ1, γ2, . . . are continuously
differentiable, each term in the last series converges to 0 asn tends to∞. Hence
the sequence of series converges to 0 since the dominated convergence theorem
applies by (5.4). This proves (4.6) and completes the proof of (4.5). Finally,
assumptions (5.3) and (5.4) imply relation (4.20).
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Now set

Sn,i(ϑ) =
m∑

r=1

δr−1(ϑ)Xn,i(r)(ϑ),

Hr,j (ϑ) = (n − m)!
(n − 1)!

∑
i∈�,i(r)=j

h
(
Sn,i(ϑ)

)
,

â∗(ϑ) =
∑n

j=1(Yj − ϑYj−1)
∑m

r=1Hr,j (ϑ)∑n
j=1(Yj − ϑYj−1)2

,

ˆ̂κ(ϑ, a) = (n − m)!
n!

∑
i∈�

h
(
Sn,i(ϑ)

) − a
1

n

n∑
j=1

(Yj − ϑYj−1).

Since the random vectorsξ1, ξ2, . . . are stationary withEP [ξ1] = 0, Theorem 4.2
implies

ˆ̂κ(
ϑ̂, â∗(ϑ̂)

) = κ̂(ϑ̂) − a∗(ϑ0)
1

n

n∑
j=1

Xj + op(n−1/2),

and Theorem 4.1, Remark 4.2 and Lemma 4.1 imply

κ̂(ϑ̂) = κ̃ + EP

[
h′(Y1(ϑ0)

)
Ẏ1(ϑ0)

	]
(ϑ̂ − ϑ0) + op(n−1/2),

with Ẏ1(ϑ0) = ∑∞
r=1 δ̇r (ϑ0)X1−r . By Theorem 2.1 we have

κ̃ = κ(ϑ0,P ) + 1

n

n∑
j=1

h∗(Xj ).

We arrive at the following result.

THEOREM 5.1. Suppose assumptions(5.3) and (5.4) hold and h satisfies
AssumptionH [with Y1(ϑ0) playing the role ofS(ϑ0)]. Choosem = m(n) such
thatm4/n → 0 and log(n)/m → 0. If ϑ̂ is n1/2-consistent forϑ0, then

ˆ̂κ(
ϑ̂, â∗(ϑ̂)

) = κ(ϑ0,P ) + EP

[
h′(Y1(ϑ0)

)
Ẏ1(ϑ0)

	 ]
(ϑ̂ − ϑ0)

+ 1

n

n∑
j=1

[h∗(Xj ) − a∗(ϑ0)Xj ] + op(n−1/2).

Computations are faster ifm is small. We may choosem proportional
to (logn)1+ε with ε > 0.

Let us now show that̂̂κ(ϑ̂, â∗(ϑ̂)) is efficient forEP [h(Y1(ϑ0))] if ϑ̂ is efficient
for ϑ0. Schick and Wefelmeyer (2002a) give conditions for local asymptotic
normality and characterize efficient estimators for differentiable functionals in
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causal and invertible linear processes. We need only check that the functional
κ(ϑ0,P ) = EP [h(Y1(ϑ0))] is differentiable in an appropriate sense, with efficient
influence function equal to the influence function ofˆ̂κ(ϑ̂, â∗(ϑ̂)).

We assume from now on thatP has finite Fisher informationI (P ) for location;
that is, P has an absolutely continuous densityf and I (P ) = ∫

�2dP < ∞,
where� = f ′/f . We also assume that the matrixV (ϑ0) = EP [ξ1ξ

	
1 ] is positive

definite.
Local asymptotic normality and differentiability require a local model. It is

introduced in Schick and Wefelmeyer (2002a) as follows. Set

G =
{
g ∈ L∗(P ) :

∫
g dP =

∫
xg(x)P (dx) = 0

}
.

Forg in G definePn,g by its P -density 1+ n−1/2gn with

gn = gn −
∫

gnγ
	
n dP

(∫
γnγ

	 dP

)−1

γn,

whereγ (x) = (1, x)	 andγn(x) = (1,−n1/8 ∨ x ∧ n1/8)	, and

gn =
∫

g1[|g| ≤ n1/8](x − n−1/8y)ϕ(y) dy,

with ϕ the standard normal density. Setϑn,t = ϑ0 + n−1/2t for t ∈ R
d . The

arguments of Theorems 2.2 and 4.1 yield the following result.

THEOREM 5.2. Suppose assumptions(5.3) and (5.4) hold and h satisfies
AssumptionH [with Y1(ϑ0) playing the role ofS(ϑ0)]. Then, for each(t, g) ∈
R

d × G,

n1/2(κ(ϑn,t ,Pn,g) − κ(ϑ0,P )
) → EP

[
h′(Y1(ϑ0)

)
Ẏ1(ϑ0)

	]
t +

∫
h∗g dP.

Schick and Wefelmeyer [(2002a), Section 5], construct a least dispersed regular
estimatorϑ̂∗ for ϑ0. It is asymptotically linear,

ϑ̂∗ = ϑ0 + 1

n

n∑
j=1

(
V (ϑ0)I (P )

)−1
ξj �(Xj ) + op(n−1/2).

By Theorem 5.1, the substitution estimatorˆ̂κ(ϑ̂∗, â∗(ϑ̂∗)) is also asymptotically
linear,

ˆ̂κ(
ϑ̂∗, â∗(ϑ̂∗)

)
= κ(ϑ0,P ) + 1

n

n∑
j=1

[
EP

[
h′(Y1(ϑ0)

)
Ẏ1(ϑ0)

	]

× (
V (ϑ0)I (P )

)−1
ξj�(Xj ) + h∗(Xj ) − a∗(ϑ0)Xj

]
+ op(n−1/2).
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By the characterization in Schick and Wefelmeyer [(2002a), Section 2], Theo-
rem 5.2 shows that the efficient influence function ofκ(ϑ,P ) equals the influence
function of the substitution estimatorˆ̂κ(ϑ̂∗, â∗(ϑ̂∗)), so that the latter is least dis-
persed and regular forκ(ϑ0,P ) = EP [h(Y1(ϑ0))].

6. Variance reduction in a special case. We illustrate our results with
the autoregressive example considered in the Introduction. LetY0, . . . , Yn be
observations from the AR(1) modelYt = ϑ0Yt−1 + Xt with |ϑ0| < 1 and
independent and identically distributed innovationsXt with distribution P ,
density f , mean 0 and finite fourth momentµ4, where µk = ∫

xkP (dx),
k = 2,3,4. We also assume thatP has finite Fisher informationI (P ) = ∫

�2dP

for location, where� = f ′/f .
We want to estimate the stationary variance

σ 2 = κ(ϑ0,P ) = E[Y 2
1 ] = E

[( ∞∑
s=0

ϑs
0Xs

)2]
.

Hereh(x) = x2. The stationary variance reduces to

σ 2 = µ2

1− ϑ2
0

.

We consider the following estimators. The empirical estimator ofσ 2 is

σ̂ 2 = 1

n

n∑
j=1

Y 2
j

and has influence function
1

1− ϑ2
0

(y2 − ϑ2
0x2 − µ2).

The improvedempirical estimator ofσ 2 is

σ̂ 2∗ = 1

n

n∑
j=1

(
Y 2

j − µ̂3

(1+ ϑ̂∗)µ̂2
Yj

)
,

with µ̂k as defined in (1.1) and̂ϑ∗ the least squares estimator:

ϑ̂∗ =
∑n

j=1Yj−1Yj∑n
j=1Y 2

j−1

.

The improved empirical estimator has influence function

1

1− ϑ2
0

(
y2 − ϑ2

0x2 − µ2 − µ3

µ2
(y − ϑ0x)

)
.

For these results we refer to Example 2 in Müller, Schick and Wefelmeyer (2001b).
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Finally, we write σ̂ 2
# (ϑ̂) = ˆ̂κ(ϑ̂, â∗(ϑ̂)) for our estimator ofσ 2. Suppose

that ϑ̂ is asymptotically linear with influence functionw. Then by Theorem 5.1
our estimator is asymptotically linear with influence function

1

1− ϑ2
0

(
2ϑ0µ2

1− ϑ2
0

w(x, y) + (y − ϑ0x)2 − µ2 − µ3

µ2
(y − ϑ0x)

)
.

The least squares estimatorϑ̂∗ has influence function

w(x, y) = 1− ϑ2
0

µ2
x(y − ϑ0x).

An efficient estimator̂ϑ# has influence function

w(x, y) = − 1− ϑ2
0

µ2I (P )
x�(y − ϑ0x).

If we use an efficient estimator̂ϑ#, then the estimator̂σ 2
# (θ̂#) is efficient

by Section 5. In the particular case of estimating moments, simpler efficient
estimators are given in Section 6 of Schick and Wefelmeyer (2002a). In particular,
a simpler efficient estimator ofσ 2 is

µ̂∗
2

1− ϑ̂2
#

with µ̂∗
2 = µ̂2 − µ̂3

µ̂2
µ̂1.

The estimator is obtained by replacingµ2 andϑ0 in σ 2 = µ2/(1−ϑ2
0) by efficient

estimators. The efficient estimatorµ̂∗
2 of µ2 uses the constraintµ1 = 0. Of course,

both efficient estimators forσ 2 are stochastically equivalent. This can be seen
directly by simplifying σ̂ 2

# (ϑ̂#). More generally,µ̂∗
2/(1 − ϑ̂2) is stochastically

equivalent toσ̂ 2
# (ϑ̂) for anyn1/2-consistent estimator̂ϑ of ϑ0.

Next we determine the asymptotic variances of these estimators. The empirical
estimatorσ̂ 2 has asymptotic variance

1

(1− ϑ2
0)2

(
µ4 − µ2

2 + 4µ2
2

ϑ2
0

1− ϑ2
0

)
.

The improvedempirical estimator̂σ 2∗ has asymptotic variance

1

(1− ϑ2
0)2

(
µ4 − µ2

2 + 4µ2
2

ϑ2
0

1− ϑ2
0

− µ2
3

µ2

)
.

One calculates that the estimatorsσ̂ 2
# (θ̂∗) and µ̂∗

2/(1 − ϑ̂2∗ ) have the same as-
ymptotic variance. Finally, the efficient estimatorsσ̂ 2

# (θ̂#) andµ̂∗
2/(1 − ϑ̂2

#) have
asymptotic variance

1

(1− ϑ2
0)2

(
µ4 − µ2

2 + 4µ2ϑ
2
0

I (P )(1− ϑ2
0)

− µ2
3

µ2

)
.
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The relative asymptotic variance increase of the empirical estimatorσ̂ 2 over the
efficient estimator is

I (P )(1− ϑ2
0)µ2

3/µ2 + 4ϑ2
0µ2(µ2I (P ) − 1)

I (P )(1− ϑ2
0)(µ4 − µ2

2 − µ2
3/µ2) + 4ϑ2

0µ2
.

For the improved empirical estimator̂σ 2∗ , the relative asymptotic variance
increase is

4ϑ2
0µ2(µ2I (P ) − 1)

I (P )(1− ϑ2
0)(µ4 − µ2

2 − µ2
3/µ2) + 4ϑ2

0µ2
.

These estimators are efficient for values ofϑ0 andP for which the corresponding
ratios are 0. The second ratio is 0 if and only ifϑ0 = 0 or µ2I (P ) = 1. The latter
happens if and only ifP is normal. Thus the improved empirical estimator̂σ 2∗ is
efficient if and only ifϑ0 = 0 or P is normal. The first ratio is 0 if and only if
µ3 = 0 and alsoϑ0 = 0 andµ2I (P ) = 1. Thus the empirical estimator̂σ 2 is
efficient if P is the normal distribution. For other distributions, it is efficient if
and only ifϑ0 = 0 andµ3 = 0. The two ratios are the same if and only ifµ3 = 0,
which is the case for symmetricP .

If ϑ0 is close to 1, both ratios are close toµ2I (P )− 1. Note thatµ2I (P )− 1 is
the relative variance increase of the sample mean versus the efficient estimator in
the location model generated byP . It is well known thatµ2I (P ) − 1 can be large
if P is not normal.

Acknowledgments. We thank the referees for helpful comments and sugges-
tions.
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