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COINCIDENCE OF LYAPUNOV EXPONENTS FOR RANDOM
WALKS IN WEAK RANDOM POTENTIALS'

BY MARKUS FLURY
University of Ziirich

We investigate the free energy of nearest-neighbor random walks on 74,
endowed with a drift along the first axis and evolving in a nonnegative ran-
dom potential given by i.i.d. random variables. Our main result concerns the
ballistic regime in dimensions d > 4, at which we show that quenched and an-
nealed Lyapunov exponents are equal as soon as the strength of the potential
is small enough.

1. Introduction and main results.

1.1. Random walk in random potential. Let 8 = (S(n)),en, be a nearest-
neighbor random walk on the lattice Z¢, with start at the origin and drift A in
the direction of the first axis. We suppose 4 to be defined on a probability space
(2, F, Py) and we denote by Ej the associated expectation. Such a random
process is characterized by the distributions of its finite-step subpaths

S s, ..., 5m), neN.

In the nondrifting case h = 0, these distributions are uniform on the nearest-
neighbor paths in Z¢. That is, for n € N and xq the origin, we have

1 n
Py[8[n] = (x0, ..., xn)] = (ﬁ)

for all xq,...,x, € Z% such that lxi —xi—1|l=1fori =1,...,n, the probabil-
ity being zero elsewhere. The case of a nonvanishing drift is related back to the
nondrifting case by means of the density function
dPy8n]~"  exp(h-Si1(n))
dPy8[n]~"  Eolexp(h - S1(n))]’

with S7 denoting the first component of S.

(1.1 neN,
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The random walk 4§ is a Markov chain with independent growths, which means
the following. Suppose m, n € Ny and set

S[m. n] & Ssm). ... sm)).

When x, . .., x, € Z2 fulfill P,[8[n]= (xo,...,xn)] > 0, we have

Py[8[m,n] = (xpm, ..., xn) | S[m] = (x0, ..., Xm)]
= Pp[8[n —ml= (X — Xy, . X — Xm) |-

We will constantly make use of this property and will simply refer to it as the
Markov property (committing a slight abuse of standard terminology).

In addition to the influence of the drift, we want & to underlie the influence of
a random potential on the lattice. To this end, let V = (V), .z« be a family of
independent, identically distributed random variables, independent of the random
walk itself, with essinf V,, = 0 and IEde < 00. To avoid trivialities, we also assume
P[V,=0] < 1.

Using the random potential V, we are now able to introduce path measures for
the random walk. Thereby, we distinguish between the so-called quenched setting,
where the path measure depends on the concrete realization of the potential V,
and the annealed setting, where the measure depends on averaged values of the
potential only.

The quenched path potential is given by

N
def
oY (NEBY Vswy,  NeN,

n=1

where the so-called inverted temperature B > 0 is a parameter for the strength
of the potential. The guenched path measure is defined by means of the density
function

A0V g x der XP(—PY ()

dp, z&M&N ’

N eN,

where the normalization

u def u

Zy gy = Enlexp(=@5 5 (N)],  NeN,

is called the quenched partition function. The quenched setting defines a discrete-
time model for a particle moving in a random medium. Here, the path measure
is itself random, the randomness coming from the random environment V. Under
a concrete realization of the path measure, the walker jumps from site to site,
thereby trying to stay in regions where the potential takes on small values. The
drift, however, implies a restriction in the search for such an “optimal strategy” by
imposing a particular direction on the walk.
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The annealed path measure is defined by means of the density function

d Q)5 n der EeXp(=®Y 5 (N)

dp, IEZQ,‘fh, BN

, N e N,

and Ezg;’lh’ BN is called the annealed partition function. While our main interest
lies in the quenched setting, the annealed model no longer depends on the realiza-
tions of the environment and is thus easier to handle. A walker under the annealed
measure finds himself in a similar situation as in the quenched setting. To see this,
observe that the quenched potential can be expressed by

Y (N =B Y L(N)Vy,

xezd

where
def
(&}
£ (N) = Z Lism)=x)
n=1

denotes the number of visits to the site x € Z¢ by the N-step random walk 8[1, N].
An annealed path potential is given by

oFNE Y ¢ (N),  NeN,
xezd
where
(1.2) ¢ () —logEexp(—18Vy), 1 eRY,

is a nonnegative function which is concave increasing by the Holder inequality.
Now, by the independence assumption on V, it is easily seen that

dQj'sn _ exp(=Py (N))
apy,

’

an
Z h,B,N
where the normalizing constant

def
Zy' s n = Enlexp(— @y (N))]

equals the annealed partition function EZ%uh .- By the concavity of (p%“, the

more often the random walk intersects its own path, the smaller the potential @Zn.
Therefore, on the one hand, it is convenient for the walker to return to places he
has already visited, while on the other hand, he is urged to proceed in the direction
of the drift.

In a similar model in a continuous setting, namely Brownian motion in a Pois-
sonian potential, the contrary influence of drift and potential on the long-time be-
havior of the walk was first studied by A. S. Sznitman. By means of the pow-
erful method of enlargement of obstacles, he established a precise picture in both
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quenched and annealed settings (see Chapter 5 of his book [12]). Among his results
there is an accurate description of a phase transition from localization for large 8
(or small #) to delocalization for small 8 (or large /). In the delocalized phase, the
random walk is ballistic, that is, the displacement of S(N) from the origin grows
of order O (N), while in the localized phase, the walk behaves sub-ballistic, that
is, the displacement is of order o(/N). The analogous results for the discrete setting
have been established by Zerner in [15] and Flury in [7].

1.2. Lyapunov exponents. The above results on the transition from sub-
ballistic to ballistic behavior are based on large deviation principles for the random
walk under the path measures and on phase transitions for the quenched and an-
nealed free energies

log Zg,lfh’ﬂ’N and log er,lﬂ,N'

The free energies are important values for the study of the path measures. The mo-
ments of the path potential under these measures, for instance, may be evaluated
by differentiating the free energies with respect to the inverted temperature. For a
more direct motivation in the context of random branching processes, and a thor-
ough study of the one-dimensional case, we refer to [8] by Greven and den Hol-
lander.

The main subject of the present article is the long-time behavior of the free
energies. We first deal with the phase transitions in this behavior, as established
in [7]. The associated phase diagrams coincide with the ones for the random walk
itself. They are characterized by values from the so-called point-to-hyperplane
setting. For 2 > 0, 8 > 0 and L € N, we set

ZYnpr E X Ealexp(—®F 5 (0); (S1 ) = L))
n=1
Zys 1 Y Enlexp(—~@% (n): (81 (n) = L],
n=1

THEOREM A. For any B > 0, there are continuous, nonnegative functions
maU(-, B) and m* (-, B) on R such that

. .1 =
mqu(h’ IH) = — Lll)moo Z ]Og Z%}}h,ﬁ,lﬂ
. . 1 —an

an _
m (h"B)__Lll)moozlogZh’ﬁvL

for all h > 0, as well as continuous, nonnegative functions m4“(-, 8) and m*"(-, 8)
on R, the so-called quenched and annealed Lyapunov exponents, such that

1
qu 1 qu
m(h, B) = ngrclxj I log ZV,h,ﬁ,N’
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: . 1 an
m*(h, B) = _Nh—l>noo N]Og Zh,,B,N

for all h > 0, where the convergence in the quenched setting is P-almost surely
and in L1(P), and where the limits no longer depend on the realizations of V.
Moreover, for all h, 8 > 0, we have

A if m(0, B) = h,

qu —
= :Ah — Mgy i mIN0, B) <h,
Ay if m*(0, B) = h,

an —
B = {/\h — A pys if m0, B) <h,

where h%(h, B) > 0 and h*(h, B) > 0 are determined by
m (Y (h, B), B) =h — hY(h, B),
m (k™ (h, B), B) = h — h*"(h, B)
and where Aj, déflog Eolexp(h - S1(1))].

Theorem A is proved in [7] for drifts in arbitrary directions and for a more
general annealed potential which we introduce at the beginning of Section 2. With
regard to the difference in notation, observe that, with e; being the first unit vector,

1
qu — — 1l — h-ey _
mT(h, B) = Ap nhm " logZ P-a.s.,

n,w?

1
an _ I F - h-eq
m*(h, B) = Aip nh_{go " logZ,

and that by Corollary C of [7],

- 1
m(h, ) = ———— —h,
Ol)%el (e1)

1 -

m*(h, B) = ———— —h,
m=(h, B) ﬁfg.el(el)

where the notation on the right-hand sides is from [7] (with potential Vg = {8V}
and ¢ = @y, ). For the latter equalities, observe also that the fact that the random
walk is already stopped at its first entrance into the hyperplane has no effect on the
limits in Corollary C of [7] (as will become clear in Section 2.1).

In accordance with the long-time behavior of the random walk itself, in Theo-
rem A, we have the following picture for the behavior of the free energies: in the
sub-ballistic regime, the walker remains near the origin in the annealed case and
in regions with small potential in the quenched case. Therefore, since

g (1)

lim —— =essinfV, =0,
t—oo0 t
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the contribution from the potential then vanishes when N becomes large. What
remains is the probability of staying in an only slow-growing region, contributing
the value

hy = lim ~ log Eofexp(h - S
n=lim —log Eolexp(h - S1(m))].

In the ballistic regime, on the other hand, the walk obeys the drift and dislocates
with a nonvanishing velocity. As a consequence, the path potential and the “spa-
tial part” of the density for the drift must not be neglected, as they contribute the
subtraction term Ajqu 8> respectively Ajan g tO the corresponding Lyapunov
exponent (see [7] for a rigorous interpretation of this last point).

1.3. Main results and preliminaries. Our first new result concerns the simpler
annealed setting. For i > 0, the critical parameter B¢ (h) for the phase transition
is given by

A 0, B2 () = h,

where existence and uniqueness of ,B? "(h) will be explained in Remark 2.10 of
Section 2.1.

THEOREM B. (a) Forany h, 8 >0, we have
Zy gy <exp(=m®(h, B)N),  NeN,
and m®™ is continuous on Rt x RY. Moreover, for any h > 0 and By < BS"(h),
there exists Ky g, < 00 such that for B < By, we have
exp(—m™(h, B)N)
K, po
(b) m™ is analytic on the open set {(h, B) € (0, 00)?: B # BE(h)}.

Zign = , NeN

Part (a) of Theorem B is established in Section 3.1, essentially by subadditivity
arguments. The sub-ballistic part in (b) is a straightforward consequence of The-
orem A. The more complicated ballistic part is proved in Section 3.2 by renewal
techniques.

The next theorem is the main result of this article. It concerns dimensions d > 4
and nonvanishing drifts 4 > 0. It states that quenched and annealed Lyapunov ex-
ponents coincide once the strength of the potential is chosen to be small enough.

THEOREM C. Suppose d > 4 and h > 0. There then exists Bo > 0 such that

m¥(h, ) =m™(h, B)

for all B < Bo. Moreover, when V, is essentially bounded, there exists K¢ o < 00
such that

Ellog Zy' 5 v =102 Z's 5| < Kive (14 BYN)
forall N e Nand B < .
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Coincidence of Lyapunov exponents has been conjectured by Sznitman in [12].
It emerged from the fact that a similar result is true for the much simpler case of
directed polymers in random potentials. There, the random walk (S(n)),cN is re-
placed by ((§(n), n))nenN, where (§(n)),en is a standard d-dimensional walk. The
coincidence of quenched and annealed Lyapunov exponents for d > 3 and small
disorder was first proven by Imbrie and Spencer in [10], using cluster expansion
techniques, and then by Bolthausen in [2] and Albeverio and Zhou in [1], using
martingale techniques. Martingale arguments have also been used in the more re-
cent work on directed polymers in [5] and [3].

The situation considered here is much more delicate and, unfortunately, it does
not seem possible to implement martingale techniques. We therefore take recourse
to different methods, mainly renewal techniques and arguments from Ornstein—
Zernike theory.

The crucial result for the proof of Theorem C is an estimate on the second
moment of the quenched partition function.

THEOREM D. Suppose d > 4 and h > 0. There are then By > 0 and
K¢ m. < 00 such that
E(Zy pn)” < Ksm. (Zy'g 3)°
forall N e Nand B < .

In order to achieve a heuristic understanding of Theorem D, we consider two in-
dependent copies sl =(s! (n))nen, and 82 = (Sz(n))”eN0 of the random walk 4.
For x € Z4, we set

N N
1 def 2 def
GNZD Nisim=n and GMNZ D sy

Recall that we have Z;" hBN = IEZV hB.N by the independence assumption on the

potential. In a similar way, and by the independence of 8! and 42, we obtain

IE(ZVhﬂN) =Eh|:exp( Z¢ (¢ (N)+€2(N)))i|

xez4

<EZ§/‘Th,,s,N>2=Eh[exp( 3 oW EL(V)) + ¢} (@%(N)))},

xeZ4

where Ej denotes the expectation with respect to the product measure P, ® Pj.
With the further notation

(13)  Wen 2 S ol (V) + o (V) — g3 (ELN) + E2(N)
xeZ4
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and with Eznﬁ  the expectation with respect to the annealed product path measure
QZI’Iﬁ’N ® QZI’Iﬁ’N, we thus have

qu 2
E(Zy . p.n)

(1.4) VRN
BZy) 50>

= E), g ylexp(¥p n)].

Observe further that the only nonvanishing summands in (1.3) are the ones associ-
ated to those x € Z¢ that are visited by both random walks up to time N. From the
concavity of (pgn, we therefore obtain

(1.5) Vv <@g () Y LN+ (N,
xeRY(N)NR2(N)

where R/ (N) & (Si(n):n=1,..., N} for j =1,2. This finally gives us the fol-
lowing picture of the situation: in the ballistic regime, the random walks $! and 2
under the annealed path measure obey the drift and evolve in the direction of the
first axis. While they do that, one expects them to move away from each other
in the (d — 1)-dimensional “vertical” direction as soon as the dimension of the
lattice is large enough. The condition d > 4 appears to be the right one since
the “vertical distance” is then transient. As a consequence, the paths of 8! and
42 are supposed to intersect only finitely many times. For B small enough, the
right-hand side of (1.4) should then stay bounded as N — oo because of (1.5) and
limﬂu) gogn(l) =0.

The equality of the Lyapunov exponents, knowing that the quenched free en-
ergy is deterministic, is obtained from Theorem D by rather elementary meth-
ods. On the other hand, the estimate of the speed of convergence for the free
energy has a more complicated derivation, requiring a concentration inequal-
ity for the quenched free energy. In this particular model, the usual concen-
tration estimate is not sharp enough. For this reason, we replace Zg,l’lh’ BN by
a modified partition function. For A > 0, 8 >0, k € Rt and N € N, we de-
fine

Z¥ san = En |:e_ﬂ Ziezd LNV (@) 3™ g (N)? < kN]

xeZ4

The justification for such a replacement is given in the following lemma, which is
proved in Section 3.3.

LEMMA E.  Suppose h > 0 and By < B&"(h), and let K} g, be chosen accord-
ing to Theorem B. For any ¢ < 1/Kj,_ g,, there then exists k; < o0 such that

qu an
EZyyprenZ€Zppn
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forall N e Nand B < Bo.

By Theorem A, Theorem D and Lemma E, we now have the means to prove the
coincidence of the Lyapunov exponents and to estimate the speed of convergence
for the free energy.

PROOF OF THEOREM C. By the quenched part of Theorem A, we have

1
. qu
lim NIElog Zynpn= —m¥(h, B)

N—o00

and thus m9"(h, B) > m*"(h, B), by Jensen’s inequality. In order to obtain the in-
verted estimate, observe that

1 1
. qu . qu qu
IP|:]VII_I;DOO N log Z‘\/’h,lg’N > _man(h’ 'B)i| > lj{jnilélofpl:zv’h’ﬂ’]v > EEZV,I’L/&N]

and that the left-hand side is either one or zero since the limit is deterministic
(again by Theorem A). The Schwarz inequality now implies

qu I ~qu qu 24172 qu 11 ~qu 1/2
EZg v =282y pp v + E(Zy ) g 5)7) / PlZy s pn = 3BZy ppn]"
which leads to the Paley—Zigmund inequality

qu 2
] - 1 (Ezv,h,;},/\/)

(1.6) P|zd > lIEZ‘*“ SR AL
. V,h,ﬁ,N - 2 V,h,ﬁ,N — 4 E(Z%uh 5 N)2 .

The lower estimate for m9"(h, B) thus follows from Theorem D.
We proceed to the estimate for the speed of convergence. Assume that

def
V S esssup Vi < o0o.

We first investigate the modified partition function zg,“h pkN- For N € N, let
M,cll’uﬁ’k’N be a median of log Zg/l,lh,ﬁ,k,N’ that is, a real number M}?’uﬂ’k’N with

Pllog Zy'y pan < Mpgsnl= 3 and Pllog Z§, o = Myl (1> 3.

Also, let By & ix € Z¢: |lx|l; < N} and let £:[—1, 1]8¥ — R be given by

fie)E log By [eﬂVerBN Gee S g (N)? < kN}

XeByN

for v = (vy)xeBy € [—1, 1187 . We then obviously have

log Zg’lfh,ﬂ,k,N = fi o (Vx/V)xeBy-
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Since the function f is convex by the Holder inequality, the sets ! ((—o0, a])
for a € R are also convex. In addition, for any v, w € [—1, 118~ , we have

| fe() = fi(w)

Ssup{ﬂV Z Exlvx—wx|:€eNgN with Z EigkN}

XEBN XGBN

1/2
< ﬁvm( 3 v — wx|2>

xGBN

by the Cauchy—Schwarz inequality for sums. This means that f; is Lipschitz con-
tinuous with Lipschitz constant at most 8V +/kN. We can thus apply Theorem 6.6
of [13] to obtain the concentration inequality

2
—t
qu qu
(1.7 PlllogZy gy v = My prnl =11 = 4exp(m)v reR.

Next, we will find an estimate for
qu qu
E|log ZV,h,ﬂ,k,N — logIEZV’h,ﬁ’k’m

by adding and subtracting M ,?’uﬂ’ kv~ To this end, observe that (1.7) implies that

o)
Ellog Zy 'y v = My pin| = /o Plllog Zy ) g .n = M psn| > 1141

00 —12
1.8 <4 T\
(1.8) = /0 eXp(16ﬂ2kV2N>
— 8VBVATN.

It remains to find an estimate for | log EZ%;’]h’ AN~ Mﬁj}ﬂ’ kv |- By the definition
of the median and an application of the Markov inequality, we have

1 qu qu qu -mY

3 <PlogZyy g1 n =My pi Nl SEZy ) i ne "N
and therefore
(1.9) Mg o n —10gBZS, o)y <log2.

Now, let # n def log(%EZg,lfh,ﬁ’k’N) — M;l"uﬂ’k’N. Since we are looking for an upper
bound, we can suppose #x y > 0. Again from (1.7), we obtain

1
qu qu _ qu qu
P[ZV,h,ﬁ,k,N = EEZV,h,ﬁ,k,N} =PllogZy ; gx. v — Mhpin =N

—t N
<4 — = ).
=P (16ﬂ2v2kN>

(1.10)
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Moreover, analogously to (1.6), we know that

1 (EZ%,“h Bk, N)2
(1.11) ]P’[Zg,“h kN Z EZV h.B.k Ni| Zam M
4 PENITARET g

For Bo < Bc(h) chosen according to Theorem D, and ¢ > 0 and k., according to
Theorem E, we further have

EZy ) pxn)° > g2 S EZy ), 58 _ &
E(ZVh ,Boke N) E(ZV h,B, N) ~ Ksm.

for all 8 < By and N € N. A combination of (1.10), (1.11) and (1.12) then implies
that

(1.12)

.. v < BKIVN

for all B < Bp and N € N, where the constant K is given by

/ 16K
K, def 4V . k¢ log qu
€

By the definition of #, v, we therefore have

(1.13) 10gBZ 50 v — My g v < BKIVN +log2
and thus, as consequence of (1.8), (1.9) and (1.13),

(1.14)  E[logEZY, 4, n—10gZy), 4 I < BK2v/N +log2

for all B < Bp and N € N, where K, def 8V ks + K.
It remains to transfer (1.14) to the unmodified partition functions. By the trian-
gle inequality, |log EZ%;}h,ﬂ’N —log Zg/l’lhﬁm is bounded by
qu qu qu qu
log ]EZV,h,ﬁ,N — log EZV,h,ﬁ,kS,N + |log EZV,h,ﬁ,kS,N — log ZV,h,/ﬁ,kg,N|
qu qu qu qu
—log ZV,h,ﬁ,kg,N + log EZV,h,ﬁ,kg,N — logEZV,h,ﬂ,ks,N + log ZV,h,ﬂ,N‘
In order to handle the last summand in the above formula, recall also that
Elog Zg,lfh’ﬁ’N < logEZ%l’lh,ﬁ’N,
by Jensen’s inequality. From (1.14) and Lemma E, we thus obtain
qu qu
E|logEZV,h BN~ logZV,h,ﬁ,N|

EZVhﬂN

< 210g( ) + 2E| 10gEZg/lTh,f5,kg,N —log Zg/l?h,ﬁ,kg,N|

Vh Bk, N
< —2loge +2BK2v/N + 2log?2
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for all B < By and N € N. By setting Kpe. &ef 2max{K>, log2 — log e}, the proof
of Theorem C is completed. [

For the proof of Theorem B, Theorem D and Lemma E, it remains to consider
the annealed setting only. In Section 2, we deal with the “point-to-hyperplane” set-
ting. That is, under the annealed path measure, we analyze finite paths $[n] with
S1(n) = L for fixed L € N. In the first two subsections, such paths are approxi-
mated by more specific paths, the so-called bridges, and a renewal formalism is
found by introducing irreducibility for bridges. In Section 2.3, we then prove the
existence of a gap between the exponential decay rates of arbitrary and irreducible
bridges.

In Section 3.1, we introduce an analogous renewal formalism for the “fixed-
number-of-steps” setting. In Section 3.2, the exponential gap from Section 2.3 is
transferred to that setting, implying the crucial part of Theorem B, namely analyt-
icity of the Lyapunov exponent in the ballistic regime. With the renewal formalism
and the exponential gap, we then also have the means to prove Lemma E, which is
done in Section 3.3.

Finally, Section 4 is devoted to the proof of the second-moment estimate in
Theorem D. It is based on a local decay estimate for sums of independent random
variables and again on the gap between the exponential behaviors of arbitrary and
irreducible bridges.

2. Endpoint in given hyperplane. As in the previous section, we consider a
nearest-neighbor random walk § = (S(n)),en, on 74, with start at the origin and
drift £ in the direction of the first axis, defined on a probability space (2, ¥, Py).

In this section, we investigate the behavior of finite random paths with start at
the origin and endpoint in a hyperplane

def
HUZA G E) €205 = L),
exponentially weighted by a nonrandom path potential ®z. We therefore allow a
more general setting for @4 than for the annealed path potential CID%n from Sec-
tion 1. More precisely, we assume that ¢ : RT — R™ is a nonconstant, concave
increasing function with

(2.1) lin(l)fp(t)=<0(0)=0
and

(2.2) tl_i)nolo @(1) = o0,
2.3) lim @ =0.

t—o00 t
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For B > 0, we define g : RT — RT by

s oB), 1R

The function g plays the role of the annealed potential gogn from Section 1, with
coincidence in the case

2.4) o(t) = —logEexp(—tVy).

Assumption (2.3) is needed for Theorem A only. Under (2.4), it corresponds to
the assumption essinf V, = 0 from the quenched setting, and (2.2) is equivalent to
Ph[Vx = O] < 1.

The path potential is now defined as in the annealed setting from the previous
section: for 5 > 0 and N, M € Ny with M < N, set

5N L 3 st (V)),

xezd
def
DM, N)= Y ¢p(Lx(M, N)),
xezd
where
def o def o
(& (&
£x(N) = Z L(s(m)=x} y(M,N) = Z L{s(n)=x}
n=1 n=M+1

denote the number of visits to the site x € Z¢ by the random walk [1, N1, respec-
tively 4[M + 1, N].

We derive some elementary properties of the path potential ®g arising from the
assumptions on ¢g. For N, M € Ng with M < N, let

RN Y xezd:0.(N) > 1),

RM,N)®E (x ez ¢, (M, N) > 1)
denote the sets of sites visited by 4[1, N], respectively §[M + 1, N].

LEMMA 2.1. (a) Forany B >0 and N € Ny, we have
eg(DER(N) < Pp(N) < pg(1)N.

(b) Forany B >0and M, N € Ng with M < N, we have
Dp(N) < Dp(M) + Ds(M, N).
Moreover, if o € {R(M) N R(M, N) = &}, we have
DPp(N,w) =Pg(M,w) + Pg(M, N, w).
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(c) Forany B >0 and M, My, N € Nog with M| < My < N, we have
Dg(N) = Dg(My, M3).
Moreover, if w € {R(M1) N R(M3, N) = @}, we have
Dp(N,w) > Pg(My, w) + Pg(M2, N, w).

PROOF. (a) For the lower bound, we use the monotonicity of ¢g to obtain
Pp(N)= Y @plx(N) = D gp(1) =pp(DER(N).
x€R(N) XeR(N)
For the upper estimate, we inductively apply the concavity of ¢g to obtain
DN = 3 wple(N) < Y 9p(DE(N) = gp(DN.
xezd xezd
(b) By the concavity of ¢4 and (2.1), we have
p(N) = ) ¢p(tx(M) + L:(M. N))

xezd

< > @p(la (M) + @pEx(M, N))

xezd

= ®g(M) + Pg(M, N).
Forw e {R(M) N R(M, N) = @}, we have
Pp(N.w)= > @plu(N.o))+ Y ¢pls(N,w))

xeR(M,w) xeER(M,N,w)
= Y gppluM0)+ Y. @pl(M,N,w))
xeER(M,w) X€ER(M,N,w)

=Pg(M,w) + Pg(M,N, w).

(c) The monotony of ¢ implies that

Dp(N) = Z pp(Lx(N)) > Z pp(Lx (M1, M3)) = Pg(My, M>).

xezd xeZ4

For w € {R(M1) N R(M;,, N) = @}, we have
Os(N.w)= Y. gpla(N,o)+ Y gpti(N, w)

XeER(M,w) XER(M>,N,w)
> Y gpleMioN+ Y ¢p(x(Ma, N, w))
xeER(M;,w) X€ER(M»,N,w)

= Pg(M1, ) + Pg(M>, N, w). O]
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2.1. Masses for paths and bridges. We start with a few comments on the
process of the first components of 4, that is,

81 L (S1(0))nen,

The process 4 is itself a random walk on Z, again with independent increments
and drift in the positive direction. It can be expressed by

n

Si(n) =Y (S1(m) — Si(m — 1))

m=1

for n € N, where the random variables (S;(m) — S1(m — 1)),eN are independent
and identically distributed. Since Ej;S1(n) > 0 for & > 0, we then have

Py[Si(n) > oc0casn— ool =1,

by the strong law of large numbers. This convergence property, as we show next,
implies transience to the process 41, which is here equivalent to the fact that the
probability

(2.5) a(h) & P,[S1(n) > 0 for all n € N

is strictly greater than zero: for 4 > 0, and with m € Ny denoting the last time the
random walk 4 is in L € Ny, we have
o0
1= Py[Si(m)=L,Si(m~+n)> L forallneN]

m=0

M2

Py[S1(n) = L1Py[S1(n) > 0 for all n € N]

m=0

and therefore

(2.6) > PulSi(m)=L]=

m=0

) <0
Observe, in particular, that the left-hand side of (2.6) does not depend on L € Ny.
REMARK 2.2. Forevery h > 0 and L € N, we have
2.7) Py[H_p <o0o]=e LM
where the stopping time
Hop % inf{n e N: S (n) = —L)

denotes the time of the random walk’s first visit to the hyperplane #_| .
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PROOF. The Markov property implies that
PylH_p < o00]= Py[H_1 < oo]-.

We can thus restrict our attention to the case L = 1. Also by the Markov property,
we have

Py[H_1 <oo] = Py[S1(1) = =114 Pr[S1(1) =0]P,[H-1 < 0]
+ Py[S1(1) = 11Py[H-; < oo]?,

which is a quadratic equation in the variable P,[H_; < oo], with solutions 1 and
Pn[S1(1) = —1]/P[S1(1) = 1]. To find the correct one among these two solutions,
observe that

a(h) = Pp[S1(1) = 1]Py[H-1 = oa],
again by the Markov property. We thus have

a(h)

— <1
Pp[S1(1) =1]

PyH_{ <o0]=1-—

since a(h) > 0 by (2.6), and therefore

Pl < ooy PSID =11 _ o,
e T PISI()=1]

where, at the second step, the concrete definition of Py in Section 1 is used. [

’

We now return to random walks on Z<. In the present setting, for any & > 0,
B >0 and L € N, the counterpart of ZZ‘?ﬂ’ ;, from the point-to-hyperplane setting
of Section 1 is given by

(2.8) Gip(L)E Y Eplexp(—p(N)); (S1(N) = L}].
N=1

REMARK 2.3. The drift 2 > O ensures that (2.8) is finite. More exactly, for
any h >0, 8 > 0and L € N, we have

P[S(1) = 1]Le—<ﬂﬂ(1)L < 5}!,/3@) < e—?(DL

a(h)
PROOF. It is plain that
G.p(L) = Eplexp(—®g(L)); {S1(L) = L}],

which implies the lower estimate. For w € {S1(N) = L}, we obviously have L <
#R(N, w). From Lemma 2.1(a), we thus obtain

Eplexp(—®g(L)); {S1(N) = L}] < e DL p[S1(N) = L]
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for all L € N, from which the lower estimate now follows by (2.6). [

We are interested in the exponential behavior of 5;1, g(L) as L — oo. This be-
havior is easier to study when the expectations in (2.8) are restricted to so-called
bridges.

DEFINITION 2.4. Suppose w € Q and N, M € Ny with M < N. The finite
path 8[M, N](w) is called a bridge if
S1(M, w) < Si1(n,w) <S1(N, w)
is valid forn =M + 1, ..., N. In that case, the span of the bridge §[M, N](w) is
given by S| (N, w) — S1(M, w).

For L e Nand M, N € Ny with M < N, we define

br(L; N) def {8[N]is a bridge of span L},
br(L; M, N) def {8[M, N]is abridge of span L}.
For h, 8 > 0 and L € N, we further define

brp(L: N) E Ejlexp(—Dp(N)); br(L: N)],

0
B g(L) & Z bp,g(L).
N=1

REMARK 2.5. Forany h, 8> 0and L € N, we have
PylS(1) =11Fe Dt < By g(L) < e (D
PROOF. The lower estimate is proved as in Remark 2.3. For the upper esti-
mate, observe that
bhp(L: N) < bpo(L; Nye # (Dt
for L < N by Lemma 2.1(a). By the Markov property, we furthermore have
bpo(L; N)=Pr[0<S1(n) < Si(N)=L for0<n < N]

and thus

o0
Bup(L) < ) PulHp = Nle™# Dt = Py[H;, < cole DL,
N=1

where Hj, def minfn e N:S1(n) =L}. O
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The well-known subadditive limit lemma (see, e.g., page 9 of [11]) states the
following. Let (a,),eN be a sequence of real numbers with the subadditivity prop-

erty
Apym < ay + apy

for all m, n € N. We then have

lim 22 :inf{a—n:n eN}.

n—-oo n n

We want to apply the subadditive limit lemma to (—log B, g)LeN. The subad-
ditivity property is a consequence of the following lemma.

LEMMA 2.6. Forh,B>0and Ly, L € N, we have
Bpg(L1+ L2) > By g(L1)Bp g(L2).

Moreover, for nonvanishing drift h > 0, we have

_ 1 _
B L L)) <——B L{)B L»).
np(L1+ 2)_a(h) hg(L1)Bp,g(L2)

PROOF. In order to obtain the lower estimate, observe that
N-1
br(L1+La; N) D | br(Li; M) Nbr(La; M, N),
M=1
where the right-hand side is a union of disjoint sets and where M denotes the

time of the unique visit of 4[N] to the hyperplane #,. For w € br(Ly; M) N
br(Ly; M, N), we further have

DPg(N,w) =Pg(M, w) + Pg(M, N, )

by Lemma 2.1(b). By splitting over all possible values of M and using the Markov
property to renew the random walk 4 at that time, we obtain

oo N-—1

By g(Li+ L) > Z Z Enle” M1y ane PPN 10w
N=1 M=1

oo N—1
D> bup(Li; M)byg(Ly; N — M)
1| M=1

N=
= B p(L1)Bnp(L2),

which proves the lower estimate of the lemma.
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The upper estimate is shown in a similar way. The event br(L{ 4+ L3; N) is
contained in the union

N—-1 N-1
U U brLi; M) N {Si(M2) = Li}Nbr(La; Ma, N),
Mi=1 My=M,

in which My, for w € br(L| + L3; N), may be chosen as the time of the first
visit of 4[N](w) to the hyperplane #;,, and where M> stands for the time of
the last visit to 1, . By splitting over all possible values of M and M>, and using
Lemma 2.1(c) and the Markov property to renew the random walk at these times,
we obtain

B g(L1 + Lo)

oo N—-1 N-1

—bg(M
<Y > > Enle MV Lo s p=Ly)
N=1M=1 M=M,

x ePP MM T 1y ma )]
co N—-1 N-1
= Z Z b, g(L1; M) Pp[S1(My — My) =01bp,g(Lo; N — M>)
N=1M=1My=M;

=Bug(L1)Bjg(L2) Y PylS1(m)=0],

m=0

from which the upper estimate of the lemma follows by (2.6). [J

PROPOSITION 2.7. For any h, B > 0, the mass

—log By, g(L)

_ def ,.
mp(h, B)= Jim i

of Fh, g exists in [pg(1), 00), is continuous as function on RT x R and satisfies

(2.9) Eh,ﬁ(L) < e MBAL

for all L € N. Moreover, for nonvanishing h > 0, we have
(2.10) B p(L) > a(h)e msh-AL
forall L e N.

PROOF. The sequence (— log Eh, g(L))Len is subadditive by Lemma 2.6. The
subadditive limit lemma thus yields

{ —log By p(L)
L

mp(h, B) =inf :LeN; e[—o00,00),
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which includes the existence of the limit and implies the estimate in (2.9). The
lower bound @g (1) for the mass mg(h, B) follows from Remark 2.3.

By the above expression, as an infimum of continuous functions, the mass 7 p
is upper semicontinuous. In order to obtain lower semicontinuity, it is convenient
to consider

o0
= def
B, p(L)= ) Eolexp(—®g(N) — AN); br(L; N)]
N=1
for A > 0 and L € N. By the definition of P, in (1.1), we have

_ def . —logBy, p(L)
gy )& lim —SHLE . ) 4,

where A, = log Eg[exp(h - S1(1))]. Tt consequently suffices to show that /g is
lower semicontinuous.

To see this, observe that for any fixed N € N, the map B+ ®g(N) inherits the
concavity of ¢. By the Holder inequality, for any (1, B), (A, B/) € Rt x R* and
t € [0, 1], we thus have

E;x+(1—tw,zﬂ+(1—z)5’(L)

o0
< Z Eo[eftdﬂg(]\’)f(lft)CDﬂ/(N)ftkf(lft))L ;bI‘(L; N)]

N=1
o
< 3" Eole=® ™=V br(L; N)] Eo[e™ P ™=V br(L; Ny
N=1

< By g(L) By g (L)1,
B B

Therefore, for any fixed L € N, the negative logarithm of E;h g(L) is concave as a
function of (A, B). The mass i p inherits this concavity and, as a consequence, is
lower semicontinuous.

It remains to prove (2.10). To this end, we consider

BrpL) a(h) "Byy(l), LeN.

The sequence (log Eh, g(L))Len 1s subadditive by Lemma 2.6. As a consequence,
we have

a() " Bup(L) = By p(L) z e M8 "PE

for all L € N, by the subadditivity limit lemma. Thereby, /g (h, B) denotes the
mass of B, g and is given by
—1log By (L)

L
—log By g(L) 1
i —logBrp(l) |, logath) _

L—oo L L

~ def .
Aig(h, B) = Jim

mp(h, B). U
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By means of the following lemma, the results on By, p in Proposition 2.7 can be
transfered to G g.

LEMMA 2.8. Forany h > 0 and > 0, we have
a(h)*Gnp(L) < B p(L)
forall L e N.

PROOF. The event {S1(N) = L} is contained in the union

N—1 N
U U i) =0ynbr(L; My, My) N{S1(N) =L},
M{=0 M=M+1

in which M and M>, for w € {S1(N) = L}, may be chosen as the time of the last
return of [ N](w) to the hyperplane #, respectively the first visit of [ M1, N](w)
to the hyperplane #r. By splitting over all possible values of M| and M>, and
applying Lemma 2.1(c) and the Markov property to renew the random walk at
these times, we obtain that éh, g (L) is bounded by

—1 N
—dg(M, M
Yoo > Ex[lsiam=oe” PFY M 1oy Lisi v =]

oco N-1 N
=Y > > PulSi(M1) =01byp(L; My — My)
N=1M=0M>,=M+1

x Pp[S1(N — M) =0]

0 2
=§h,/3(L)<Z Py[S1(n) = O]) )

n=0
from which the lemma follows, by (2.6). [

COROLLARY 2.9. Forany h > 0and B > 0, we have

—log Gy, g(L
G, p) tim T8I D) gy
L—00 L
and
—inghBL — 77 _ L —mehpL
2.11) a(h)e ™G <Gnp(L) < oz(h)ze nG
forall L e N.

PROOF. The corollary follows from Proposition 2.7 and Lemma 2.8. [
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REMARK 2.10. For any & > 0, as anticipated in Section 1.3, there exists a
unique parameter B¢(h) > 0, such that

mG(0, Be(h)) = h.

PROOF. For any h > 0, by Corollary 2.9 and as shown in the proof of
Proposition 2.7, the mass mg(h, ) is continuous and concave increasing in
the variable B € R™. Furthermore, we have mg(h,0) = 0 by (2.6) and the
assumption ¢(0) = 0, and limg_, oo MG (h, B) = 0o by Remark 2.3 and the assump-
tion lim;_, o, ¢(t) = oo. This limiting behavior for 8 — oo, in combination with
the concavity of the mass shown above, moreover yields that the monotonicity of
mg(h, B) in B € RT is strict. This completes the proof of the remark. [

2.2. Irreducible bridges and renewal results. For the rest of the this section,
we fix an integer p € N and consider independent copies

89 = (S M)neng, J=1.....D,

of the random walk 4. We assume these copies to be defined on the product space
(QP, F®P), on which the p-fold product measure, in order to keep notation sim-
ple, is again denoted by Pj,. We compose from 4!, ..., 87 a random process (")
with values in (Z4)” by setting

SP )L (' (Y, ..., SP (")),
forn=(n',...,n?) e NP and
def
s (S(p)(n))neNg'

The process 87 inherits the Markov property from $!, ..., 87 in the following
way: for M = (M, ..., MP)and N = (N',...,NP) eNg,wewrite

M <N, ifandonlyif M/ <N’/  forj=1,...,p,
M <N, ifandonlyif M/ <N/  forj=1,...,p

and set
M,..., N1 eN":M<n<N).

The origin in Ng is denoted by 0. Suppose now that M, N € Ng with M < N, and
xp=x! . xh) e @) forn=(n',...,nP) €]0,..., N]. Then, if

Py[SP)(m) = x,, form €10, ..., M1] > 0O
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is valid, we have

P[SP (n) = x, forn e [M, ..., N1ISP (m) = x,, form € [0, ..., M]]

4 . . ) ) ; .
=1 P8 IM/ N T =)o X DI M T = (6 20, )]
j=1
p . . . . . . .
=[] Pu[8/IN/ =M/ 1= (), — x50 Xny — X0,0)]
j=1

= Pu[SP (n) = xpp4n — xp forn €0, ..., N — M]].

This means that, similarly to 4 in the previous subsection, the process 4”) can be
renewed at any time M.

In Definition 2.4, the denomination bridge was introduced in the context of a
single random walk. We want to generalize it to the present setting: for M, N € Ng
with M < N, we write

8P [N] def (S(P) (n))

neNg:an’
8P, NTE (SP ),y <nzn
for finite subpaths of 8(P) in (Zd)p .

DEFINITION 2.11. Suppose w € QP and M, N € Ng with M < N. The finite
path (P [M, N](w) is called a bridge if

SIM', ) = S{ (M7 w) < ${ (! w) < S{ (N, ) = S] (N, )

isvalid foralln/ = M/ +1,...,N/ and j =1, ..., p. Inthat case, the span of the
bridge 8P [M, N1(w) is given by S| (N!, w) — S| (M, w).

REMARK. By this definition, a finite path $”)[M, N] in (Z%)” is a bridge
if and only if SUM', NY,...,8P[MP, NP] are bridges in the sense of Defini-
tion 2.4, with start and endpoint each in a common hyperplane. Also, observe that
the definition includes the case M = N, in which 8”)[M, N] is a bridge of span
Zero.

At the beginning of this section, we introduced the path potential ®4 for the
random walk &. For any j € {l,..., p}, we denote the corresponding potential

associated with 8/ by Cng. For M, N € Ng with M < N, a path potential for the
process 8(P) is then given by

P
(p) def J i
L (N)E Y- dp(N),
j=1
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(2.12) )
def it A
o' (M, N)E Y ol (MI, N).
j=1
Forh,8>0,LeNpand M, N € Ng with M < N, we now define

def

br”(L; N) = {8P[N] s a bridge of span L},

br?(L; M, N) &

[8P)[M, N1is a bridge of span L}
and also let

bl 5(Li N)E Ep[exp(— @ (N)): brP (L; N)],

Y4 def
By g(L)S Y by g(L; N).
NeN/
REMARK 2.12. By the independence of 8!, ..., 87, we have
(2.13) Bj, 5(L) = (By p(L))"
for all L € N. As a consequence, the mass
—log B}, 4(L)
_ def .. gD
hB)E lim —— 2P 2
e )= I

of BY , exists and 1%, (h, B) = pmp(h, B). By Proposition 2.7, we further have
h,B B p y Frop

(2.14) EZ,/S(L) < o5 (AL

for all L € N. Moreover, for nonvanishing # > 0, we have
(2.15) Ei,ﬁ(L) > a(h)Pe—WZ(h,ﬂ)L
forall L e N.

Bridges allow a treatment using the tools of renewal theory. The decisive con-
cepts for this treatment are the following.

DEFINITION 2.13.  Suppose that L € N and » € br”(L; M, N) for M € N}
and N € N with M < N. An integer R with S{(M!,w) < R < S{(N!, w) is
called a breaking point of SP[M, N l(w) if there exists n € N” with M <n <N
such that

(i) 8P [M,n](w) is a bridge of span R — S| (M1),
(i) 8P [n, N](w) is a bridge of span S} (N!) — R.
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Moreover, the bridge 87 [M, N]() is called irreducible if S{(N', w) is its only
breaking point.

Forh,,BzO,LGN,MeNgandNeprithM<N,wenowset

irP(L; Ny &

P (L: M, N) &

{5(1’ )[N ] is an irreducible bridge of span L},

{8P[M, N1is an irreducible bridge of span L}
and
def .
A s(L.N) E Ey[exp(—@f (N)):ir? (L; N)],
def
Apg(L)S Y Ap (L, N).
NeN?

REMARK. In contrast to the definition of a bridge, the definition of the irre-
ducibility of a bridge cannot be reduced to subpaths of the single random walks
81, ..., 8P This is manifested by the fact that the analogue of equation (2.13),
which is a statement for bridges, becomes an inequality for irreducible bridges: for
all L e N, we have

Aj g(L) = (A (L))",

where A,5(L) € &), 4(L).

The following proposition states the so-called renewal equation, which provides
access to the tools of renewal theory.

PROPOSITION 2.14. Forall h, B >0 and L € N, we have

L
(2.16) B, 4(L) =" A} 4(k)B}, g(L — k).
k=1

PROOF. For w € br”(L; N), let k € {1, ..., L} denote the smallest breaking
point for 8”)[N](w). Then, there is a unique time n € N” with n < N such that

8(P)[n](w) is an irreducible bridge of span k and 8P n, Nl(w) is a bridge of span
L — k. We thus obtain

L
br?(L;N)=J |J ir’(ksn)Nbr? (L —k;n, N),
k=1neN’:n<N

where the union is of disjoint sets. For w € ir” (k; n) Nbr” (L — k; n, N), we further
have

o (N, w) = Y (n, ) + &Y (n. N, w),
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by Lemma 2.1(b) applied to d>}3, ey @g. By using the Markov property to renew
the process $P) at time 1, we thus have E,‘j, (L) equal to

L
_q)(li) (l’l) _(D(P) (n,N)

D2 D En[e T g ye Lot (L—kin. )

k=1 NeN” neNP:n<nN

_opW» _oP (N
YooY, Eu[e®s (n)lirp(k;n)]Eh[e P n)lbrp(L—k;N—n)]
1 NeN? neN’:n<N

Il
M~

k

Il
M=

Ay g(k)B, 4(L — k).
1 D

bond
I

REMARK. The subadditivity property of the sequence (—logB(L))zeN,
shown in Section 2.1 in a “straightforward” way, is also a consequence of the
renewal equation for p = 1.

For h, 8 >0, L € Ng and k € N, we set
af 4(L)E By g(L)e™sMPL and 7l (k) E A, 4(k)e "B PR,

LEMMA 2.15. Forany h > 0 and B > 0, we have

(2.17) > iy gk)=1 and an,ﬁﬁ(k) < o0.
keN keN

PROOF. For L e Ny, ke Nands € [0, 1], set

. .00
AOE Y al jL)st and P)E Y xf s(k)sh.
L=0 k=1

The renewal equation implies

0
AGs) =1+ af 4(L)s"
L=1

oo L
=1+ > mp sk)skay oL —k)s™*
L=1k=1

=1+ P(s)A(s).
By (2.14), we have afl”ﬁ(L) <1 for all L € Ny and therefore A(s) < oo for s €
[0, ). As a consequence,
A(s) —1 -

P(1)=1lim P(s) =i
o)) lim (5) e S
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We have thus shown that n,ﬁ ﬂ(k) is a (nonperiodic) subprobability sequence with
renewal sequence af’ ﬂ(L). The first equation in (2.17) states that n,ﬁ ﬁ(k) is re-

current, which is equivalent to A(1) = oco. If n,‘i (k) is now recurrent, then the
renewal theorem (see, e.g., Theorem 4.2.2 in [11]) yields

1
SR k) g (k)
The lemma thus follows from the estimate for Bf; ﬂ(L) in (2.15), which states that
a,’:ﬁ(L) > a(h)? istrue forall L e N. [

lim o (L) =
Lgréoah’ﬂ( )

By (2.14) and Lemma 2.15, we know that K,’; ﬁ(L) decays to zero faster than

Ef’ 5(L) when L — oo. In the next subsection, we will show that the difference in
the decay velocity is even exponential. For this purpose, we will need the following
result, stating that long intervals are unlikely to be free of breaking points. More
precisely, we suppose that A, L € N with L > 2A, M € Ng and N € N” with
M < N, and define

erP(L; M, N) def {5(p)[M, N]is a bridge of span k, of which
Sl(Ml) +A,..., Sl(Nl) — A are no breaking points}
and erP(L N) = def *p(L' 0, N). For h > 0 and 8 > 0, we further set
by (L N)E S Eylexp(=@” (N)): br (L; N)],

NeN?

- def
lefh’ﬁ(L) = > b*A’?h’ﬂ(L;N).
NeN?

LEMMA 2.16. For any h > 0 and B > 0, there exists a decreasing function
sf’ﬂ :RY — RY such that limr_ o s,’;’ﬂ(T) =0and
By (L) <ef (L —28)e M5 mPL
forall A, L e Nwith L >2A.
PROOF. By the Markov property and Lemma 2.1(b), with £ denoting the

largest breaking point smaller than A (or £ = 0 if there is no such point) and k
denoting the smallest breaking point greater than L — A, we have

A—1 L
BY,g)=>" Y By 40K} 4(k—0)B] 4(L—k)
=0 k=L—A+1

A L-A
=>" Y BugA—DA, gk + DB} 4(L—k—A)
=1k=T+1
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with T =L —2A,k=k — A and { = A — ¢. Now, we set
def e
C . .
(2.18) ehg(M= D jm s
j=T+2

From Lemma 2.15, we know that lim7_, o 85, P (T) = 0. Moreover, we have

0,¢] o0
—p J— ~ ~
emB(h’ﬂ)LBZIfh’ﬂ(L)SZ > gk +0)
I=1k=T+1

o0

0
=2 D> W)
i=1j=T+0+1

oo Jj—T-1

= 2 2 s

j=T+2 =1
o0
= Y G—=T—=Dm () <ep 4(T),
j=T+2

which completes the proof. [J

2.3. Separation of the masses. In this subsection, we investigate the decay ve-
locity of weighted irreducible bridges. In particular, we will show that they decay
exponentially faster than bridges without the irreducibility restriction.

LEMMA 2.17. Forall h, B > 0, the mass
—log A}, 5(L)

— def ..
A S lim

of Kﬁ, B exists in [pg (1), 00), is continuous as function on R* x R and satisfies
(2.19) AL (L) < L 2005 )2 -k . p)L

’ iz
forall L € N, where Aj, =log Eglexp(h - S1(1))].

PROOF. Forie{l,..., p},let E; déf(&-], .., 0ip) € Ng. Then, for every N €
N”, the union

)4
U U ir’ (Li; M)N{S{(M' +1) =Ly + 1}
i=1 N=2E;>MeN”

N{SI(M' 4+2) = L1} Nir’(Ly; M +2E;, N)
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consists of disjoint sets and is a subset of ir” (L1 + Ly; N). For any w in that union,
a double application of Lemma 2.1(b) to the potentials ®', ..., ®7 yields

(N, w) < @ (M, ) +20p(1) + @ (M +2E;, N, )

for the corresponding i € {1,..., p} and M € N”. By splitting over all possible
values of i and M, and renewing the process 8P) at the times M and M + 2E;,
we therefore have

A g(L1+ L)

P (p)
=P (M) —2¢p()1 .
>y > Enle™™" "l ane Y Vs i s 1y=1,41)
i=1 NeN” N—2E;>MeN”

(p)
o — P (M42E;,N)
X Lisimio=ry¢ *

X lirp(Lz;M+2E,-,N)]

=X > @i MV LS (1) =1]

i=1 NeN? N—2E;>MeN?
X PyS1(1) = —11x; g(Ls N — M —2E;)

p

_ AP AP
- 62(('0/9(1)+)Lh) Ah,ﬂ(Ll)Ah"B(Lz)a

where, at the last step, the concrete definition of Pj, is used. The existence of
ma(h, B) in [—00, 00), as well as the estimate in (2.19), now follows from the
subadditive limit lemma applied to

P &
_log(m‘/\h,ﬁ@)>, L eN.

The lower bound ¢g(1) for the mass goes back to Remark 2.3. Finally, the conti-
nuity of m 5 is derived by the same arguments that were used in Proposition 2.7 to
show the continuity of mp. [

The main result of this section is the derivation of a gap between the exponential
decay rates of bridges and irreducible bridges.

THEOREM 2.18. Forany h > 0 and B > 0, we have
7 (h, ) > mly(h. B).

The strategy for the proof of Theorem 2.18 was introduced in [4] (or see the
more polished version of it in Chapter 4 of [11]) in the case of a single random



COINCIDENCE OF LYAPUNOV EXPONENTS 1557

walk in absence of a potential. It was then extended in [14] to single random walks
evolving under the “trap” potential

cI>trap(N) defﬂﬁR(N)

Before we present the strategy for the proof, we introduce the essential concept
of backtracks of bridges.

DEFINITION 2.19. Suppose that L € N and w € br” (L; M, N) for M € Ng
and N € N” with M < N. Assume, furthermore, that jef{l,...,p} and MJ <

m<n<Njf0rmeN0andneN. o
The subpath 8/ [m, n](w) of 8/[M/, N/](w) is called a j-backtrack (or simply
backtrack) of the bridge 8P [M, N](w) if

@) SJ(ul,w)<Sj(m w)foruy =M/ +1,...,m;
(ii) S](n a))<SJ(v a))<SJ(m w) forv_m+1
(iii) SJ(n a))<SJ(u2,a)) foruo=n+1,...,NJ.

If this is the case, then the span of the backtrack 4/[m,n](w) is given by
Sj (m, w) — S] (n, w). A backtrack 8/[m,n](w) is said to cover an integer k if
S] (n,w) <k< S{(m, w) is valid.

REMARKS. (a) Condition (ii) says that a backtrack is itself a bridge in
74, except that it goes “right-to-left” instead of “left-to-right.” Conditions (i)
and (iii) are maximality conditions. For two different j-backtracks, §/[m1, n1](w)

and 8/[ma, na](w), they guarantee that the time intervals {my,...,n;} and
{mo,...,n2} do not intersect and that n; < my is equivalent to S{ (n1,w) <
S (n2, w).

(b) A bridge 4 (P[M, N](w) is irreducible if and only if every integer k with
St M, w) <k < SY(N, w) is covered by a backtrack of S [M, Nl(w). An in-
teger k may of course be covered by several backtracks.

We now present the strategy for the proof of Theorem 2.18. The aim is to find
an upper bound for Kf’ g(L). To this end, we fix a large integer Q and split the
interval [0, L] for L > Q into blocks (subintervals) of size Q. For an irreducible
bridge of span L, we then look at the backtracks that cover the endpoints of these
blocks and distinguish between the two following situations.

In the first situation, many of these endpoints are covered by only small back-
tracks (of span not larger than A < Q). Between such endpoints, the path consists
of subbridges with large intervals being free of breaking points. This will allow a
multiple application of Lemma 2.16.

In the other situation, some of the endpoints are covered by large backtracks.
In that situation, the random walk must go “backward” often, which it does with
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small probability because of the drift. It is going to be important that the “total
span” of these backtracks remains large enough with respect to the reduced number
of points considered (i.e., the number of endpoints).

More precisely, we proceed as follows. Let T and A be positive integers (to

be specified) and set Q LhHa + T. For large L € N, let k = k(L) be the greatest

integer less than or equal to é — 1 and set

def

A={0,20,...,k0}.
Now, let B =1{by, ..., b} with b| < --- < b; be a subset of A and observe that
bi—bi_1>=0 fori=1,...,t+1,

where by ng and b4 défL. We introduce two further items of notation for par-
ticular N-step bridges of span L:

o for A >0, let
ir} g(L;N) e F€P

denote the set of all w € Q7 for which 8”)[N](w) is an irreducible bridge of
span L such that no point of B is covered by a backtrack of 8”)[N](w) with a
span larger than A;

e for 0 € N8, any pairwise disjoint decomposition Bl,..., B? of B (possibly
with some of the B/ being empty) and each j € {1,..., p}, let

by ) (L N) € FOF

denote the set of all w € QP for which 8/[NJ l(w) is a bridge of span L such
that each b € B/ is covered by a backtrack of 4/[N/](w) with span o (b) which
is not covering any other a € B/\{b}, and let

P
p .y def p.J N
by g (LiN)= () bryi o (L3 NY).
j=1
The following lemma realizes the aforementioned distinction on how the points
of A={0,20,...,kQ} are covered by backtracks.

LEMMA 2.20. The event it? (L; N) is contained in the union of
U ik i)
BCA:#B>k/2
and

U U U bh L @i,

BCAB=1  oeNB: B...BPCB
Y bep 0 (b)>kA /2 pairwise disjoint
decomposition
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PROOF. Suppose that w is in ir” (L; N), but not in

U ik s@:N).
BCA,tB>k/2

There then exists a collection of backtracks of 8P N](w), each of them of a span
greater than A, which cover at least k/2 of the points in A. Although some of them
may cover several points in A, the sum of their spans is still greater than Ak/2,
since the distance between two points is at least Q =T + 2A.

We now inductively construct the sets B!, ..., BP. For j € {1, ..., p}, assume
that B!, ..., B/~L are already constructed. For each j-backtrack from our collec-
tion, we then add to B/ a single point from the complement of B! U ... U B/~!
which is covered by this j-backtrack, but not covered by any other j-backtrack
(regardless of whether it is covered by i-backtracks for i #£ j). If there is no such
point, we remove this particular j-backtrack from the collection. The remaining
backtracks still cover the same points in A, so the sum of their spans is still larger
than Ak/2.

By this construction, the sets Bl,... BP are pairwise disjoint. Moreover,
for any j € {1,..., p}, the set B/ has the property, that each of its points is

covered by exactly one of the remaining j-backtracks. Consequently, if we set

BB U...UBP, then there is a o € NB with 2 bepo(b) > Ak/2 and w €

oo LiN). D

.....

For B={by,...,b;} C Awithb; < --- < b;, we set
- . def .
Ap glitk p(LiNIE Y Eplexp(— @ (N):irk p(Li N)].
NeNF

LEMMA 2.21. Forany h > 0 and B > 0, we have
A lirh 5 (Ls N)) < e ™8 ®PLel (Tya(n)™P)
where a(h) is defined in (2.5) and s;:’ﬁ(T) is defined in (2.18).

PROOF. Suppose that w € ir’& g(L; N) and recall that bg =0 and b,y =
L. Foreachief{l,...,t +1}, let mj_; = (m}_l,...,mf’_l) € Ng and n; =
(n!,...,n?) e N” be given by

m{_l défmin{u elo,..., Nj}:S{(;L/,a)) > by for p < ' < N/},

n{défmax{ve{1,...,Nj}:S{(v/,a))§bl- for0 <v' < v}

. . . f
for j =1,..., p.Itis also convenient to choose m ;1 &y



1560 M. FLURY

Since by, ..., b; are not covered by backtracks of a span greater than A and
because the distance between these points is at least Q =2A + T, it is clear that

S{(.w) <bi_1+A<bi—A<S(v.)

fori=1,...,t+1,j=1,...,pandlfufmf_l<n{ < v < N/. Therefore,

since 8P [N](w) is irreducible, we know that the sub-bridges 8P [m;_1, n;](w)
already contain backtracks that cover the points b;_; + A, ..., b; — A. That is, we
have

T+1
k
we () bry (bi —bi—1:mi_1,n)),
i=1

where brzp was introduced at the end of Section 2.2. An inductive application of
Lemma 2.1(c) to the potentials ®', ..., ®” further yields

T+1
o (N, w) = Y o (mi_y.ni, w).

i=l

és a consequence, by the Markov property and Lemma 2.16, an upper bound for
A} glir}_p(L: N)]is given by

T+1 cD(”)( )
- mi—1,n;
Z Z Ep 1_[ e F lbrzp(bi*bi—ﬁmi—l,ni)

NeN” n1,mn2,...,ng,meN’: i=1
O=mo<n|<--<m¢<ngi1=mry1=N

x 1

T+1

=Y 3 I1 b*A[?h’ﬁ(bi —bi_1;n —m;_y)
i=1

NeN? niy,mi,na,..., nr,mreNp
O=mo<n)<--<mr<npyi=mpy1=N

x Py[SI(m! —nly=0for j=1,..., p]

T+l p . . .
- (H By p(bi _bi—1)>< > T PulS]m?) :0])
i=1

meN? j=1

T+1
=P 1
< (H eh (bi — bi1 — 2A>)e syt
i=1

where, at the last step, (2.6) is used to identify «(4). The lemma now follows from
the facts that o(h) <land b; —b; 1> Q=T +2Afori=1,...,t+1. O
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For B=1{by,...,b;} C Awithb| <--- < b, and a pairwise disjoint decompo-
sition B!, ..., BP of B, we define

- def

A glbrl, o, (Ls NI Y Exfexp(—@f (N);br, o (Ls N)].

..........

NeN?

LEMMA 2.22. Foranyh >0,8>0ando € N8, we have

S Aok (LN =Yl e P s o ®),

Bl,.,BPCB
pairwise disjoint
decomposition

where a(h) is defined in (2.5) and WP (h) % p Ja(h)2h.

PROOF. We first restrict to the case p = 1. For L € Ny and M, N € Ny with
M < N, we define

&ef {—4&[N]1is a bridge of span L},

def {—48[M, N]is abridge of span L}.

br'(L; N)

br'(L; M, N)
By the Markov property of 4, it is easily seen that
Py[br'(L; N)] = P,[—L = S1(N) < S1(n) <0for0<n < NJ.
By Remark 2.2, we thus have

o
2200 By o(L)E Y Pulbr(L; N)] < PhlH-_p, < 00l = e,

N=I1
where H_; =inf{fn e N: §1(n) = —L}.
Suppose now that w € br}?,a (L; N) and recall that bo = 0 and b,y = L. For
eachi € {1, ..., t}, by the definition of br}_g’ o (L; N), there is at least one backtrack
&[si, ti](w) of S[N](w) of span o (b;) satisfying

(2.21) bi—1 < S1(ti,w) <b; < S1(s5i,w) <bjy1.

. . def def def .
It is also convenient to choose s;41 = fr+1 = L and Or+1 =0, in order to have

Py[br' (0415 Se41, tr+1)] =0.
Fori e{l,...,t + 1}, we now define

mi_1 d=efmin{,u €{0,....,N}:Si (', w) > b for p < u’ <N},

n; défmax{v e{mi—1+1,....,N}: 51V, w) <b; for p <v' <v},

such that 8[m;_1, n;](w) is a bridge of span b; — b; _1. By (2.21) and the maximal-
ity conditions for backtracks, we have #; < 5,41 and thus

i =m; <nj41 = Si+1



1562 M. FLURY

fori =1,..., 1, by the definition of n;4| and (2.21) again. Moreover, since

T+1
Dp(N, @) =Y Pg(mi_1,ni, w)

i=l

by Lemma 2.1(c), the Markov property of the random walk yields
—1
Ay glbry o (L; N)]

<> > )

NeN O=mg<ni<si<ti<m|<-- Glseees q:€N,qr+1=0.41,..., gr€Np:
<N =Sep1=tep1=Mep1=N g1 +G1=0(b1),....qr +Gr =0 (b7)

T+1
En |:1_[ e~ Pplmiztn) lbr(bi_bilemifl,ni) 1{51 (s1)=S81(n;)+qi}
i=1

X 1br/(a(b,—);s,-,r,-)1{Sl(mi)=51 (ti)+cii}]

=2 2

NeN  O=mo<ni<s)<ti<m|<--<ngy1=N

T+1 T
(H bng(L;ni — mi—l)) (H Py[br' (o (bi); t; — Si)])

i=1 i=1

x (l_[ > Pp[S1(si — ni) = qil Pp[S1(m; — 1;) =51i]>

i=1qeN,geNp:g+G=o(b;)

T+1
< (1‘[ Eh,ﬁ(m) (1‘[ E;,,0<L>>

i=1 i=1

< (1‘[ > > PulSi(k) =q1>_ PulSi (k) = é])
k=1

i=1geN,GeNy:q+G=0(b;) k=0

T+1 T T
=a(h)~ (1‘[ Bp(bi — bi_o) (1‘[ E;,o(cf(b,-))) (H o(bi)>,

i=1 i=1 i=1

where, in the last step, equation (2.6) is used to identify «(%). From Proposition 2.7
and (2.20), we then obtain

T
Ay plbrh o (L: N)] < a(h) "7 8 BPL T o (by)e 2o ®0
i=1

< (a(h)Zh)—re—mB(h,ﬂ)Le—h > o'(bi),
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where, in the second estimate, the elementary inequality xe™ < 1 for x > 0 is
used.

We now proceed to the case of arbitrary p € N. We consider a pairwise disjoint
decomposition Bl,... BPof B= {b1, ..., b:}. By the independence of the walks
S ..., 8P, we then have

p .
Ahplbrp g (Li M= 3 [] Enlexp(=®/ (N)))sbr! | (L; N)]
NeN? j=1

J

)4
—1

[T 45 p0brgs o, (L5 N1

j=1

< (a(h)Zh)te—PﬁB(h,ﬁ)Le—h Yhen o'(b)’

where, in the last step, the estimate for a single random walk is used. Since there
are p* pairwise disjoint decompositions B!, ..., B? of B, the lemma now follows
from mk (h, B) = pmp(h, B) in Remark 2.12. O

PROOF OF THEOREM 2.18. By means of Lemma 2.20 and Lemma 2.22, we
finally have the necessary tools to prove the mass gap for irreducible bridges. We
first fix 7 € N and A € N large enough such that we have

1 P(h 1

and we set Q LA + T Since there are 2¥ subsets of A = {0, ..., kQ}, we have

> R lirk (L N)] < e BALA (n)Pef (7)) HH2
BCA:#iB>k/2
< e—mg(h,ﬁ)Lz—k

by Lemma 2.21. Moreover, since there are (]TC) subsets B C A with B = 1, we
obtain from Lemma 2.22 that

2 2 2 Ahplbrg o (L))
BCA:gB>1 oeNB: Bl,...BPCB
> bep 0 (b)>kA /2 pairwise disjoint
decomposition

k
= k
< e_mps(h,ﬂ)L 2 : <r> 1pl’(h)f 2 : e h@1++tor)
=1

o14For>kA /2

k
= k
< p—mph,B)L ,—kAh/4 ( ) P(h)* (=h/2)(o1+~+07)
=¢€ ¢ ;:1 . v r(h) E e

o1,...,00 €N
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k
i _ k yP(h) '
(h,B)L ,—kAh/4
<e Ms e El(‘[)<71—€_h/2>
=

_ P(h) \*
—il (h.B)L ,—kAh/4 Yr(
<e "B e <1+71—e—h/2>

< e—mg(h,ﬂ)L2fk.

Finally, we apply Lemma 2.20 and the estimate k > é — 2 to obtain

R) (L) < 2e ™5 0PILY~k < gp=mp(hpILy=L/0

and therefore

—logX,Il)’ﬂ(L) g2

i ) = fim S i, )+ i . ),

which proves the theorem. [l

3. Fixed number of steps. In this section, we consider finite random walks
4[N] for fixed N € N, again evolving under the influence of the path potential

Dg(N)= > ¢px(N)), NeN.

xezd

As introduced at the beginning of Section 2, we assume ¢g to be given by
pp(t) =@(Br),  1E€RT,
where ¢ : RT — R™ is a concave increasing function satisfying
lim ¢ () = ¢(0) =0,
t—0
as well as lim;_, oo @ (f) = 00 and lim;— o ¢ (¢)/t = 0.

3.1. Masses for paths and bridges. In the present setting, for 4, 8 > 0, the
generalization of the annealed partition function Z 2nﬁ from Section 1 is given by

Grp(N) Y Eplexp(—Dg(N))],  NeN.

REMARK 3.1. Forany &, 8> 0and N € N, we have
e N < G, 5(N) <1,

where the lower estimate follows from Lemma 2.1(a).

We are interested in the limiting exponential behavior of G, g(N). The exis-
tence of an associated mass was part of Theorem A (which, in the original pa-
per [7], is shown in the present, more general setting). As we show next, it can
also be obtained in a straightforward way by the subadditive limit lemma, which
additionally delivers a bound for the speed of convergence.
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PROPOSITION 3.2. For any h, B > 0, the mass
—log Gh"g (N)
N
of Gy, p exists in [0, g(1)] and is continuous as a function on R*T x R*, and

Gh,ﬂ(N) < e MG (LHN

me(h, B) < lim_

is valid for all N € N.

PrROOF. By Lemma 2.1(b), for any N, N € N, we have

an Gpp(N1 + No) = Ej[e PpN1HN2)]
' > Ep[e” ®p VD= NLNIFND] — G 0(N1)G g (N2),

where, in the last step, the Markov property is used to renew the random
walk at time N;. Therefore, the existence of the mass m and the estimate in
(3.2) are consequences of the subadditive limit lemma applied to the sequence
(—log G g(N))nen and the bounds for the mass follow from Remark 3.1. Fi-
nally, the continuity of m ¢ is obtained by similar (but slightly simpler) arguments
as used to prove the continuity of 7 5 in Proposition 2.7. [J

As in the point-to-hyperplane setting of Section 2, it is convenient to introduce
N -step bridges. For M, N € Ng with M < N, we define

Br(N) & (8[N] is a bridge},

Br(M, N) & [8[M, N]is a bridge).

For h, B > 0 and N € Ny, we further set
def
Bu,p(N) = Ejlexp(—®g(N)); Br(N)].
Observe that we have

Br(N)= | br(L; N) and By g(N)= > bpg(L;N),
LeNy LeNy

where the union is of disjoint sets and where
br(L; N) = {4[N] is a bridge of span L},
bp,g(L; N) = Eplexp(—®g(N)); br(L; N)]

were introduced in Section 2.1.

REMARK 3.3. Forany %, 8>0and N € N, we have
e DN By o(N) < By p(N) < Gpp(N),

where the lower estimate follows from Lemma 2.1(a).
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Our interest lies with the ballistic regime {(%, 8) € (0, 00)?: B < Bc.(h)}, where
the critical parameter B:(h), as introduced in Remark 2.10, is determined by
m (0, Bc(h)) = h. In our first result on N-step bridges, however, it is not neces-
sary to restrict to the ballistic phase.

LEMMA 3.4. Forany h, B >0 and N1, N> € N, we have

(3.2) By, g(N1+ N2) > By g(N1)Bp, g (N>),
(3.3) B g(N1+ N2) < Kn,gBp,g(N1) By, g(N2),
where
o 2
def Pp[S1(n) =0]
(3.4) Knp [y 2= 00
" (go By p(n) )

PROOF. By the definition of a bridge, it is plain that
Br(Nj + N2) D Br(Ny) NBr(Ny, Ny + Na).
From Lemma 2.1(b), we thus obtain
By g(N1 + N2) = Ep[e” PPN 1g, e PFNENIFND 15 0 viv ]

= B, p(N1)Bn,g(N2),

where, in the second step, the Markov property is used to renew the random walk
at time Nj.
For the upper estimate, observe that we have

N1 Ni+Ny
Br(Ni+ Ny | | Brmi) N{S1(N) = S1(m1)}
mi=1my=N;
N {S1(m2) = S1(N1)} N Br(mz, N1 + N2),
where m| and mj are the times of the first and last visits, respectively, of [N +
N>] to the hyperplane #s, (n,). By splitting over all possible values of m and m2,

and by applying Lemma 2.1(c) and the Markov property to renew the walk at these
times, we obtain

B g(N1 + N2)

Ny Ni+N
—d
<Y > En[em PP gy Lisy (v =1 m1))
m1=1my=N;
- ,N1+N-
< Lisyamp=sivpye” TP NN g 60 My ]
N1 Ni+N,

= Z Z B, g(my) Pp[S1(Ny —my) =0]

mi=1my=N,
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x Pp[S1(m2 — N1) =0]Bjy,g(Ny + N2 —m3)

Ni—1 N
— PulSi(n) =0] A PulSi(n2) =0]
=m0 3 HEEISE)(3) AEEESY)

n;=0
where n replaces N1 — m and n replaces my — Np, and where, in the last step,
(3.2)isused. O

ny=0

PROPOSITION 3.5. Forany h, B > 0, the mass

def .. —logBp g(N)

of By g exists in [0, pg(1)] and is continuous as function on R x R*, and
3.5) By g(N) < e~ mB(h.pN

is valid for all N € N. For h > 0 and B < B.(h), we further have

(3.6) mp(h, B) =mg(h, p).

Moreover, for h > 0 and By < B.(h), we also have

e—mBLAN

1
(3.7 B g(N) = X

h,Bo

forall N € N and B < Bo, where Ky, g, < 00 is defined in (3.4).

PROOF. By (3.2) in Lemma 3.4, the existence of mp in RU {—o00} and the
estimate in (3.5) are consequences of the subadditive limit lemma applied to the
sequence (—log By g(N)) yen. The lower bound for m g is obvious and continuity
is obtained by similar arguments as in the proof of Proposition 2.7. The upper
bound ¢g (1) for mp follows from the lower estimate in Remark 3.3 once we have
shown (3.6).

Now, suppose that # > 0 and 8 < B.(h). For the proof of (3.6), recall that The-
orem A states that

(3.8) mg(h, B) = Aip — Aj,

where Ajy = log Eo[exp(h’ - S1(1)] for h’ > 0 and where i = h(h, B) > 0 is deter-
mined by

(3.9) mg(h, B)=h—h,

with m g having been introduced in Section 2.1. By the definition of Py, in (1.1),
we consequently have

bh,ﬁ(L; N)emc(h,ﬁ)N _ bO,ﬁ(L; N)e_)‘EN+hL
(3.10) o
= by, 4(L; N)e™6 AL



1568 M. FLURY

and therefore, since g (h, B)=mp (h, B) by Corollary 2.9,
00 © o
Z Bh,ﬁ(N)emG(h’ﬁ)N — Z B;l’ﬁ(L)emB(h’ﬂ)L = 00,

where the second equality follows from the lower estimate for Eﬁ, (L) in Propo-
sition 2.7. As a consequence, the mass m g (4, 8) cannot be greater than mg (h, B).
Since the inverted estimate is obvious, this proves (3.6).

It remains to show (3.7). By the definition of Py, it is plain that

Py[S1(N) =0] < e 7.
In the sub-ballistic regime, by (3.6) and (3.8), we further have that
mpg(h, B) =mg(h, B) < Ap.
Therefore, and by obvious monotonicity, we get
Knp < Kn,p, <00
for all 8 < Bp so that (3.7) now follows from (3.3) and the subadditive limit lemma
applied to log(Ky gBj,g(N))yen. U

COROLLARY 3.6. Forany h > 0 and By < B.(h), we have

G p(N) > ——e~mathN
Kn,po

forall N € Nand B < Bo, where Ky, g, < o0 is defined in (3.4).
PROOF. The corollary follows from (3.6) and (3.7). O

3.2. Exponential gap and analyticity. As in Section 2.2, for fixed p € N, we
consider independent copies

8 = (8 (Mneng, J=1..0s P

of the random walk 4§, defined on the probability space (27, F®P, P,). The ran-
dom process () = (§P) (n)), eN? with values in (Z%)? is given by

SPm)y=(S'n"),....870"), n=@'....n")eN{.
The potential CIngp ) for 8P was introduced as
(p) N o) v 1
o (N)=) dp(N/),  N=(N',...,N’)eN,
j=1

where <I>}3, e, CIDf; are the corresponding potentials associated with the single ran-
dom walks 81, ..., 8P.
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Forw e QP and M, N € Ng with M < N componentwise, recall that the path
SV, Nl@) = (SP (0. ) yenigimr<n=n
is called a bridge if and only if the paths
8/ M/, N(w), j=1,....p,
are bridges as single random walks, starting in the hyperplane F# S1(M1 ) and end-
ing in the hyperplane ‘%Sl' (N1.)- Moreover, for M < N, a bridge 8P [M, N](w)

is called irreducible if and only if § 11 (N, w) is its only (common) breaking point.
Forh,8>0,m € Ng and n € N? with m < n, we now define

Ir? (n) def {8 (P)[n] is an irreducible bridge},
Ir? (m, n) def {8P)[m, n] is an irreducible bridge}
and
p def & TP
Ay () = Ey [exp( Dy (n)); Ir” (n)].
Observe that we have

Ir? (n) = U ir’(L;n) and Afvﬂ(n) = Z )‘ﬁ,ﬂ(L; n),
LeN LeN

where the union is of disjoint sets and where
ir’(L;n) = {5(”) [1] is an irreducible bridge of span L},
M g(Lin) = Ep[exp(®f (n));ir? (Li m)]

were introduced in Section 2.2.

By means of Theorem A, we are able to transfer the mass gap for irreducible
bridges from Section 2.3 to the present N-step setting, detecting an exponential
gap between the long-time behavior of irreducible bridges and arbitrary bridges.

THEOREM 3.7. Suppose h > 0 and By < Bc.(h). There is then some y > 0
such that

(311) Agﬁ(n)emB(hyﬂ)Zlenj S le—}/z_?zlnj
’ 14
orall n = (nl, ...,nP)e N? and B < Bo. Moreover, we have
Jf
(312) Z Ag’ﬂ(n)emB(h,ﬁ)Zlenj :1
neN”

forall B < B:(h).
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PROOF. We first deal with (3.12). From (3.8) and (3.9), and by letting
Nd:efzle n’, we obtain
)»,pl’ﬁ(L;n)emG(h’ﬁ)N :)\g’ﬂ(L;n)ef)‘ﬁNerhL

(3.13) )
__ P . pmg(h,B)L
= )‘ﬁ,ﬂ(L’ n)ef™c

by an analogous argument as for (3.10). In the ballistic regime, since m ¢ (h, B) =

mp(h, B) and pmp(h, B) =mh(h, B), we have

J— —P 1
> A;’:,ﬁ(n)emc(h’ﬂw = Ag,ﬁ(L)emB(h’ﬁ)L =1,
neN? LeN

where the second equality is part of Lemma 2.15.
In order to achieve an exponential gap, observe that for any § > 0, again by
(3.13), we have

Af e ON = 3708 (LS BPN 4 3oL (L, mye™s P

L<8N L>8N
I —P /i
< D0 Mo@Lsmyeme TN 1 N RT (L) a L,
L<8N L>8N
From the independence of S ..., 82, the definition of Py, and (3.8) again, we

obtain

P o .
Z Aﬁ,o(l‘; n)emc(h,ﬁ)N < l_[ Ph[S{(nJ) < 5N]emc(h,ﬂ)nj < eP—ApN
L<5N j=1

Moreover, by Lemma 2.17, we have

3 K}z_laﬂ(L)emg(ﬁ,,a)L < L 2wpeap 3 oG
L>5N L>6N

sl (. p)—nly (b, BHN
< L apyany e MBI
= | — o~ (i )=y (. )

Since Aj > 0 by Theorem A and % (h, B) > m% (i, B) by Theorem 2.18, this
proves (3.11) for a single 8 < B.(h).
In order to find an uniform estimate, observe that
—log(Xyen Eole™ ®#MN) =N (81 (N) = L}])
L

is increasing in both variables. Since h=hh, B) fulfills mp (h, B) + h=h, we
thus have Aj, 8 = Min.po) for 8 < Bo. The existence of a uniform bound now

mg(h,B)+h = lim
L—o00
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follows from the continuity of m’; and WZ on RT x RT, which we established in
Section 2. [

By known arguments using the analytic implicit function theorem (see page 329
of [9]), we obtain the following first consequence of Theorem 3.7.

COROLLARY 3.8. Suppose that the function ¢, introduced at the beginning
of Section 2, is analytic on (0, 00). The mass mg is then analytic on the open set

{(h, B) €(0,00): B < Bc(h)}.
REMARK. By dominated convergence, it is obvious that the function
o(t) = —logEexp(—tVy)
is analytic on (0, 0o). Therefore, by Proposition 3.2, Corollary 3.6 and now Corol-

lary 3.8, we have completed the proof of Theorem B in Section 1.

3.3. Restricted path intersections. In this section, we investigate finite random
walks [ N] with restricting assumptions on

1/2
||z(zv>||2déf(z ez(mz) .,  NeN.

zeZ4

More precisely, for 4, 8 >0, N € N and k € RT, we define

Gk (N) & Eplexp(—®5(N)): {[[E(N)]3 < kN}]

and we want to show that in the ballistic regime, such restrictions have no crucial
effect on the long-time behavior.

To this end, we first investigate restricted bridges. For A, 8 > 0, N € N and
k € RT, we define

B 5 (N) & By fexp(—@p(N); (16N 13 > KN} A BR(V)].

PROPOSITION 3.9. Forany h > 0 and By < B.(h), we have

lim sup sup B;]/‘S(N)emG(h’ﬁ)N =0.
k=00 p<py NeN

PROOF. Let (75, &)ien, be a sequence of independent, identically distributed
random vectors with distribution

P pl(zi, &) = (n, )] & " TP By [e= P8O {|le(n) |3 = x} N Ir(n) ]

for n,x € N and B < Bc(h). In fact, P, g is a probability distribution by (3.12).
The expectation with respect to Py, g will be denoted by Ej, g.
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Now, assume that w € Br(N) and let m € N be the number of breaking points
for 8[N](w). There then exist unique times 0 =ng < --- < n,, = N such that
$[ng, n1l(w), ..., 8[nn—_1, nm](w) are irreducible bridges. We thus have

N

Br(N) = | J U Nkeu-1,n,

m=10=ng<---<n,=Ni=1

where the union is of disjoint sets. For every w € (/L Ir(n;—1, n;), we further
have

m
IeN, 3= Lo (nim1, ni, ),

i=12zeZ4
m

Pp(N,w) =) Dg(ni_1,ni,w),
i=1

where the second equation goes back to Lemma 2.1(b). As a consequence, by the
Markov property of 4, we obtain that B, %(N )G AN equals

N
2. X 2
m=1x1++x,>kN O=ng<---<np=N

m
1_[ emG(h,,B)(ni_ni—l)Eh [6—43/3 (ni—ni-1)q
i=1

trni—ni—) L en—ni_ D) B=x;)]

forall k e RT.
Next, observe that for any n € N, we have

1£(n) |, < Z L,(n)=n

zeZd

such that, by the exponential gap in Theorem 3.7, the moments

Englel"1 <Y n®" Ap gy ™Pm meN,
neN

are finite and continuous in 8 < B¢(h). For any k > Ej, g[&1], by the Chebyshev
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inequality and the independence of (§;);cN, we moreover have

BZj,(N)e"e PN < NPh,,{ > 1& — Enplé&1]l > NIk — Eh,5[§1]|i|

1<i<N

2
1
< E i — E
= NGB E) h,ﬂ[( > h,,s[a])) }

1<i<N
1

- E — Ep gl
E— Brpler])? npl (1 — Enpl&1])7]

The proposition now follows from the continuity of the first and second moments
of &1in B < Bc(h). O

By means of Proposition 3.9, we are now able to prove Lemma E from Sec-
tion 1, formulated in the present setting of a generalized potential.

COROLLARY 3.10. Forany h >0, By < Bc(h) and € < 1/Ky_ g, there exists
ke < 0o such that
(3.14) G5 (N) = eGpp(N)
forall N e Nand B < fy.

PROOF. Forany k € Rt and N € N, we obviously have
Gilg(N) = By g(N) — By h(N).
Moreover, by Proposition 3.2 and Corollary 3.6, we know that
Gpp(N) < e mcAN < K gy Bh,g(N)

for all N € N and 8 < Bo. The corollary thus follows from Lemma 3.9. [

4. Coupled path potential. We consider two independent copies §' and §2
of the random walk 4 with drift # > 0 and starting condition

Py 1 ,2[81(0) = (0,31, $?(0) = (0, )] =1

for y!, y? € Z4~!. Expectations with respect to Py y1,y2 are denoted by Ej, 11 \2,

where the indices y!, y? are left off when 8! and 4 start at the origin.
As in Section 2.2, we compose from the two random walks the random process

52 — (S(Z) (n))

neN(z)
on Z4 x 74, where S@ (n), for n = (n', n?), is given by

SP ) = (S'(n'), $2(n?)).
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For any parameter 8 > 0, motivated by the heuristic picture of Theorem D in
Section 1, we introduce a coupled path potential 5/(82) for the process 8. For
M=M" M?* and N = (N',N?) e Ng with M <N componentwise, we define

PN E Y gl (VY +2(NY),

xezd

=2 def

P MN)E Y gp(ehM!, N + 2(M*, N?)),
xezd

where ¢g was introduced at the beginning of Section 2 and where

N/ N/
N =) sigeyyp GM N = Y lgig=ny
n=1 n=MJ+1

denote the number of visits to the site x € Z¢ by the random walk $7[1, N1, respec-
tively 8/[M + 1, N]. Observe that in contrast to the path potential d>(2) the dis-
tribution of this coupled potential CI> depends on the starting sites y!, y? € Z4~!

of the random walks 8! and §2 (1.e., on |y — y'|.
Forh, >0, y',y> € Z9~! and N € N2, we define

G2 5 2N EE, 1 ofexp(—8 (V)]

The aim of this section is to prove the following “second moment”-type estimate

~2
onGhﬂy

THEOREM 4.1. Suppose that d > 4 and h > 0. There then exist By > 0 and
K m. < oo such that

Ghr oyt 2 (N) = Ksm G g (NG p(N?)

forall N =(N',N*) e N2, y!' y2 e 79" and B < Bo.

REMARK. In the particular case (1) = — logEe™""x, we have
~2 _m7qu qu
Ghﬁy yZ(N)_ ZVhﬁNl ZVh,BN2 2
where Zg/ hBNI yi denotes the quenched partition function from Section 1, but

here with starting condition P,[S7(0) = (0, yJ)] =1 for j =1, 2. Theorem D is
thus a special case of Theorem 4.1.

In order to establish Theorem 4.1, we investigate bridges under e g - ). For h,B>
O,y , ¥ 2741 andM,NeN2w1thM§N,weset

def {

Br*(N) = {8P[N1]is a bridge},

def {

Br*(M, N) = {8@[M, N]is a bridge}
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and

|5y def ~
B2, 1 o EE, i a[exp(—® (V)): BE(V)].

We want to divide the bridges into irreducible “strips” which may then
be treated by renewal techniques. To this end, for 2z > 0 and B8 < B.(h), let
(ril, riz, 77,-1» niz, ¢i)ieN, be a Markov chain with transition probabilities

1 2 1 2
Ph,ﬂ[(fi_,_l, T Miv Mg Cit+1)
="' n* 'y 0l e nd o]

14,2 _o®
Lematpetnip, | e M

il

120m) L1 )=(s! 1) y1))

1

X g2y =(s2(n2). 320 ML (ny=2)]

forn = (n',n?) e N2, y!, y2 € 7471 and z € Ny, and with

def
L= Y e+ 6w,
xeR!(nHNRZ(n2)

where R/ (nj)déf{x ezl :Ei(nj) > 0} for j =1,2. In fact, P, g is a probability

distribution by (3.12). We will write P, 4,1\ to indicate the starting condition

Ph’ﬁ,y17y2[n(1) = yl, 77% = yz] =1,

and expectations with respect to Py, g 1 \» are denoted by Ej, g 1 2. Again, if the
start is at the origin, the indices are omitted.
In order to bound ®4 within an irreducible strip, observe that

@.1) TP 0 E o () — B () = (DL (@)

for all n = (n', n?) € N2, It is thus convenient to define o &0 and

akdéfmin{i>ak_1:§‘,- >2-1 1 keN,

{nf_y=nf_1} {’71'1?&’71'2}}’

as well as pg défl{né: and

2
7)0}
_dﬁf{{i‘f‘z-l{ni]:mz}, if 3k e Nwithoy =i,i € N,
' 0, otherwise.

That means that we want to know in which strips we have path intersections of 4!
and 42, o} denoting the kth of these strips. However, if 8! and 42 enter a strip from
a common site, then they must go “forward” at the first step and they consequently
intersect for a first time. If this strip does not contain any further intersections (and
does not consist of only one step), then it is not considered in the definition of oy.
For such a strip, the contribution to Elﬁ is anticipated in the previous strip by the
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summand 1 2) in the definition of p;. This special treatment of such strips is

{n}=n;
necessary to have Py gloy > 1] > 0.

For m € Ny, let T (m) = (T (m), Tz(m)) now be given by
1<i<m

for j =1, 2. The conclusion of the above comments on the definitions of o} and
pi is the following.

LEMMA 4.2. Forany h > 0 and B < Bc(h), we have

B2 (N)em(;(h BNEN Z

[ewﬁ(l)Z, Lopi]
h.B.yg.

hBoydyd Lrem=n)]

meN

forall N = (N', N?) e N? andyé, yg e 741,

PROOF. By similar arguments as in the proof of Lemma 3.9, we obtain

Br*(N) = | J U (I (i1, m),

meN no,...,nmeNgz i=1
O=ng<--<np=N
where the union is of disjoint sets and where m € N represents the number of
breaking points for the corresponding N-step bridge. For w € (. 1Ir2 (ni=1,ni),
we further have

m

2 2 2

L (n,w) =Y @ (ni—1,ni, ) — U (ni_1.ni, o).
i=1

Therefore, by renewing the random walk 8® at times ny, ..., n,,_1, we obtain
that Bizl By (N)e’”G(h BNEN equal to

Z Z Z Z l_[emG(h B)(n; —111 1+n —n D)

n0,.tm€N:  yly2 yL YR eZd 7,z eNg i=1
O_n0< -<nyu=N

()
—®g" (ni—n; DATP (ni—ni_1)
[e i i— B i i— llr

X Eh,yil,l,yiz,l 2(ni—ni_1)

XLl )=t d =l )57 for =12 MLm=z

o
Z eWﬁ( )Z—Opll{Tj:”j for j:l,Z}]’

where we assume n; = (ni , nl.z) for i € N and where (4.1) isused. [
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The value of this renewal formalism is substantiated by the following estimate.

PROPOSITION 4.3.  Forany h > 0 and By < Bc(h), and with Kj, g, < 00 being
defined in (3 4), we have

hﬂy y2( )
Gng(NYGpp(N?) —

1 .
<4Kj 5 sup ZEM [e%()Z—oﬂ i (o <00}]
)o yOk 0

forall N = (N',N?) e N2, y! y2 € 74! and B < Bo.

PROOF. For j €{1,2}, by the definition of 535 and the monotonicity of ¢g,
we obviously have
B (N) = O4(NY),
where @é is the single path potential associated with the random walk /. From
the independence of 8! and 7 thus follows

&2
Ey 1 y2[e P M sI(NY) <0 or STN?) < 0}]

Y5,y
< Ep[e™ M) (S2(N?) < 0)] + En[e” PN (51 (V1) < 0)]
=G p(NYPLS*(N?) <01+ G s(N*) P, [S (N < 0]
< 2K p,Gn.p (NG g(N?)

for all N', N2 € N and B < Bo, where the last step goes back to (3.8) and Corol-
lary 3.6.
We now consider the more complicated case of positive first components.
Since 8! and 42 are exchangeable, it suffices to consider
we {0 < SHNY) < S3(NP)).

In that case, w is also an element of the union

U U U

0<N2<N2 0§m1<m%§N20§m2<m2§]\72
(S} (m}) = ST (m]) =0} NBr*(my1, my) N{S{(N") = 5] (m}))
N{ST(N?) = ST(m3)) N {S3(N?) < §?(v) for N*> <v < N?},

where m dzef(m{ , m%) and m déf(m%, m%) and where m{ and mé may be chosen as
the times of the last visit of 8/[N/](w) to the hyperplane #,, respectively the first

visit of $/ [m{, NJ](w) to the hyperplane ,%’511 (N! and where N2 is the last-visit

)’

time of 52[N2](a)) to ]fsll(Nl )" Moreover, we have

(N w) = ) (m1, mp, w) + PN, N?, w)
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for the corresponding 1, my and N2. Therefore, with the notation
Gl L E ™M (0 < ST forv=1,....K)], ke,

and by renewing 8@ at times m1, m> and N2, we obtain

&2
—3

Eh,yl,yZ[e {0<Sll(N1)§S12(N2)}]

<
= X > > X
0<NZ2<N? 05m}<m%§N1 05m%<m%§N2 yé,y&eZd*I

1 6—515,(92)(%,”12)

Epyt 32 [istonhy=0y L s2md)=0.92))

X Ip2mymay List vty =st b Lis? (92 =s2md))
2 A2 2
e_d)ﬁ(N ,N )1

x {S2(N2)<S2(v) for N2<u51v2}]

= > > > Yo PulS'mp) = (0.y5 — y"]

\/ 1 1 2 2 N 1.2 —
0<N2§N20§ml<mz§N1O§m1<m2§N2yO,y0€Z‘1 1

x Py[$3(m3) = (0, y3 — y*)1B 2 (may —my)

2
h.B.3:Y
X Py[S{(N' —my) =01P,[ST(N? — m3) = 01G} (N> — N?)

Py[S{ (m}) = 0] Po[S{(N' —m;) =0]
Gh.p(mj) Ghp(N' —mj)

<GpgN) >

0§m{<m£§N1

Py[SF(m7) = 0] Py[SF(N* — m3) =0]

x Gppg(N?) ).

2 2 =2
OSm%<rfl%§Nz Ghsﬂ(ml) Ghsﬁ(N mZ)

M2

2 52 + 2 2 h, 14 m?

x sup  Kpg Y Bl ()G (M* —n?)emo A MY,
1 a2 ’ ,ﬂ,yo,yo )
n',M+eN, n2=1
o, y3ezd-1

_ = - def
where m% replaces m% + N2 — N2, M? stands for m% + m%, nl < mé — m%, n?

replaces m% + m% and n déf(nl, n?), and where (3.1) and Corollary 3.6 were used

to split, respectively bound, G g (N 1) and G, g(N 2.
It remains to bound the supremum in the above formula. By Lemma 4.2,

32 mg (h,B)(n'+n?)
Bh,ﬂ,yé,yé (l’l)e

DY* oo
< D 2 By [V E P oy <oy 17 (=]
keNgmeNy
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=2 2 X X

keN iieNZ:ii<n meNy 0<m<m

E [e‘”ﬂ( )Z’ 0 Poj 1{ ,;Z}I{T(,;Z):ﬁ}]Ph,ﬂ[T(m — I’Fl) =n— I7l]

h.B.y

=ZZZ

keNp ieNZ:fi<n meNy

k ~ ~
[e(/’ﬂ(l)zizop“i l{akzr;l}l{T(rh)Zfl}] Z thﬂ[T(m) =n— l’l]

meNy

_ Z Z Eh Bl [e¢ﬂ(1)z —0 Po; 1{O‘k<00}1{T(ak):r~l}]

keNy neNO n<n

Ehﬂl

2
»Ps Yo Yo

« B}%,ﬂ(n _ ﬁ)emc(h,ﬂ)(nl—fz'—f—nz—ﬁz)’

where B} 4(7) < Eplexp(—® (2)); Br*(#)] for /i € Nj. We thus have

M
~2 + 2 2\ _mg(h.B)(n'+M?)
Zl Bh’ﬁ’y(l)’yg(n)Gh’ﬂ(M n*)e

<> > Ej gy [e‘”ﬂ( VX075 1 <o) L7 )]
keNg ieN3:ii<(n!,M?)
MZ
N 1 2
x sup > Bj 4(A)G 4(M? —i?)eme P +M2)
M?eNj j2—1

~2 1 def ~
where M? stands for M2 —7i%, 7! = n' — !, 72? stands for n? — it andn—(n1 n?).

By the independence of 8! and 8!, we moreover have
Bj s()G s(M* — %)

252 2 72
—ZEh —<I>/3(n) @3 (%) — 3 (A M)l{gl
L=1

[1] is a bridge of span L}
x 1{52[ﬁ2] is a bridge of span L}I{L<S12(u) for ﬁ2<u§M2}]
- B
—d,(n
= Z Eh[e b 1{51[ﬁ1] is a bridge of span L}]

—®Z(M?)
x Eple”"" 1{O<Slz(v)5512(ﬁ2):L<S12(v) for 0<ugﬁ2<v51f42}]-
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Therefore, and by Proposition 3.2, we obtain
e
A ~ A A ~ _ Al ar2
> Bipg()G] g(M? — i) < B g(i) Gl (M) < 76D,
n?=1

which completes the proof of the Proposition 4.3. [

The next lemma gives a bound for the decay rate of the probability for large
values of o;. It goes back to an estimate for the concentration of sums of inde-
pendent, identically distributed random vectors with values in Z?~! and to the fact
that p,,41 is zero when

1 2 1 2
Tm+1 + Tm+1 = ”nm - nmlll'

Here, the dimension d of the lattice comes into play explicitly for the first time.

LEMMA 4.4. Suppose that h > 0 and By < Bc(h). Then, for any ¢ > 0, there

exists mg € N such that
sup Py g 2lor=m4 1] <m @D/
1 y2ezd-1

forallm >mg and B < By.

PROOF. We distinguish whether the distance between the two random walks
at the end of the mth strip is smaller or lager than a,, déf(log m)?. For every pair of
starting sites y!, y?> € Z4~!, we have

Py g1 y2lor=m+1]
< Pygyellmy, —mlly Saml+  sup Py g5 5200 > 0.
191 =521 >am
Now, with y being chosen according to Theorem 3.7, we have
(4.2) K1 % sup Eh,,g[e(”/z)(rlh”lz)] < 00,
B=ho

by continuity going back to the exponential gap for irreducible bridges. For any
v, 3> € 241 with ||y — 2|1 > a,, the exponential Markov inequality thus im-
plies that

Py g5t 5[t > 01 < Pyglt] + 7 > 15" — 521111
< Ej p[e¥/DEHFT ]/ Da
< Klm(—y/Z)logm

forall m e N and g8 < fo.
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It remains to find an estimate for
1 2 1 2 2 1
Py gyt 2l = mplly < aml < P glling, —m, — 7 =y )l < aml.

Since the random sequence (771-1 — 77,'2)ieN is a Markov process with independent
increments, the corollary to Theorem 6.2 in [6] yields

s Puglling, —n2 — % = yHll, < am]
yi,yeess

—-(d-1/2
m (d—
§K2<a—2) x1(am) @ 1)/2,

m

where K3 is a constant depending only on the dimension d — 1 and where

def .
xS inf o Epp[(X = Y0 Lgx-yiy=a].
teRI~1:|t],=1

X, Y being independent copies of n} — n%. A direct calculation and symmetry
properties imply that

inf  Eppl(X —Y.0)2=2d — DEngl(n) — 0D,

teRI=1:|t],=1

where (n} - n%)l denotes the first component of the vector n% - n%. By the
Cauchy—Schwarz inequality for sums and the exponential Markov inequality ap-
plied to || X — Y5, we also have

Engl(X =Y, 02 1x—vip=u)] < lltl5e™ 72 Ep I X = Y|[37/P1XV]]
32
2,—uy/4 )IX-Y
< B 22 B p[er/DIXT 1]
%
Cuya32
< litlize ”V/“ﬁEh,ﬁ[e(V/zwxul]Eh’ﬁ[ew/zwnl]‘

By continuity coming from the exponential gap in Theorem 3.7, there conse-
quently exists a further constant K3 < oo such that

~@d-1/2
1 2 m
sup Py ollnh, — il < an) < Ks( )
ylyrezd! as,

for all m € N and 8 < By, which completes the proof. [J

PROOF OF THEOREM 4.1. By renewing the Markov chain at times pq,, ...,
Po; » We obtain
k
E DTl )] < sup By 2 [P g o]

1 2[
h.B.3o:% y1,y2ezd-1
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Theorem 4.1 thus follows from Proposition 4.3 once we show that

(4.3) sup  sup Ej g 12 [e72DPo1 11 o] < 1
yhy2eZd=1 g<py

for d > 4 and By > 0 small enough.
To this end, we choose 0 < ¢ < % and p,q > 1 with é(% —¢)>1and % +

% = 1. By Lemma 4.4, there exists m, € N such that the Holder inequality implies

e?8)om+1 1{61

Eh,ﬂ,y',yz[ =m—|—l}]

= Eh,ﬂ,yl,yz [el](ﬂﬁ(l)ﬂm+1]I/PPh’ﬂvyl’yz[o_l =m+ 1]1/(1
4.4)

<E, ﬁ[epfpﬁ(l)(fll+112+2)]I/Pm(—l/q)((a’—l)/Z—s)

< (K1 + XM /P (1) (@=D/2=2)

for all m > m, and B < By, where K is defined in (4.2) and By needs to be chosen
small enough. The exponential Holder inequality moreover yields

Py gyryelor=m+11< P, g 1 2[Ent1 > 0]
< PuplT m+ D+ T2 m+ 1) = [Iy' =yl
< K v/ =
forallm € Nand 8 < By, where y is chosen according to (4.2). Since %(% —g)>1
for d > 4, we thus obtain

(4.5) Am sup sup Ej, g 1 2[e?# VP11 0] =0
yLy2lly!'=y2 >k B<Bo

for By small enough.
Now, for any k € N and y! # y2, we have

Py oyt y2lor =001 = Py g 1 ,2[61 =0, lnt — il = k]

X inf Ph 0.5! —2[01 = OO]
S U005,y
5! =521l =k

and similarly

Pyolor =00l = Ppols1 =2.lInj —nil, = k] _inf Py 51 52000 = ool.
7' =521 =k

Therefore, and by (4.5), we obtain

(4.6) sup Ph,()’yl’yZ[O'l <oo] < 1.
yl,yZEZd_l

Finally, for any y1 , y2 € 74-1 observe that

Ej, gyt 32 [€72 P91 15, <o0)]
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is continuous in 8 = 0, the continuity going back to (4.4) and the exponential gap
in Theorem 3.7. Consequently, (4.5) and (4.6) now imply (4.3), completing the
proof of the theorem. [
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