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APPROXIMATION OF ABSTRACT QUASILINEAR
EVOLUTION EQUATIONS IN THE SENSE OF HADAMARD

Naoki Tanaka

Abstract. An approximation theorem is given for abstract quasilinear evo-
lution equations in the sense of Hadamard. A stability condition is proposed
under which a sequence of approximate solutions converges to the solution.
The result obtained in this paper is a generalization of an approximation the-
orem of regularized semigroups and is applied to an approximation problem
for a degenerate Kirchhoff equation.

1. INTRODUCTION

This paper is devoted to an approximation theorem for the Cauchy problem of
the quasilinear evolution equation

(QE; u0)
{

u′(t) = A(u(t))u(t) for t ∈ [0, T ]
u(0) = u0 ∈ D0

in a real Banach space X equipped with norm ‖ · ‖X . Here {A(w); w ∈ D} is a
family of closed linear operators in X such that

(1.1) D(A(w)) ⊃ Y for w ∈ D,

(1.2) A is strongly continuous on D in B(Y, E),

and D is a closed subset of Y which is continuously embedded in E . The spaces
E and X0 are real Banach spaces continuously embedded in X and D0 is a subset
of X0 satisfying the following relation.
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(1.3)
D ⊂ Y ⊂ E ⊂ X

∪ ∪
D0 ⊂ X0

According to the device due to Kato [13], let Z be another Banach space and S an
operator in B(Y, Z) such that there exists cS > 0 satisfying the inequality

(1.4) ‖u‖X + ‖Su‖Z ≤ cS‖u‖Y for u ∈ Y .

The Cauchy problem (QE; u0) is said to be well-posed in the sense of Hadamard
if for each u0 ∈ D0 there exists a unique solution u in the class C([0, T ]; D) ∩
C1([0, T ]; E) satisfying the following continuous dependence of solutions on their
initial data:

‖u(t) − v(t)‖X ≤ M‖u(0)− v(0)‖X0 for t ∈ [0, T ].

For the autonomous case, there exists a vast literature on Hadamard well-posed
problems, which are closely related with the theory of distribution semigroups. For
instance, see Krein and Khazan [15] and Fattorini [8]. Recently, Hadamard well-
posed problems were studied using the theory of integrated semigroups ([1, 2, 14,
22]) or regularized semigroups ([4-6, 18, 25]). The theory of regularized semigroups
was also used to deal with generation theorems for various classes of semigroups
and distribution semigroups in a unified way ([20, 25]). To extend the theory of
regularized semigroups so that it may be applied to quasilinear equations, the well-
posedness of the Cauchy problem (QE; u0) in the sense of Hadamard was studied
in [26], and the Kato theorem [12, 13] in the special case where X 0 = E = X was
also generalized.

It is natural to try to compute solutions numerically and to discuss the question
of convergence which arises in that case. We are interested in studying such a
problem in an operator-theoretical fashion. In the autonomous case, such a problem
has been studied by interpreting as the problem of strong convergence of the semi-
groups generated by a given sequence of infinitesimal generators or the problem of
approximation of a semigroup of operators by a sequence of discrete semigroups.
The former is applied to the method of lines for concrete problems and the latter is
closely related with finite difference approximations.

Both problems were discussed by Trotter [27], Chernoff [3], Kurtz [16] and
Kato [11] for semigroups of class (C0). These results were extended to the cases
of several classes of semigroups ([7, 9, 24]). Although the case of integrated
semigroups or regularized semigroups was discussed and the problem of strong
convergence of the integrated semigroups or regularized semigroups generated by a
given sequence of generators was studied intensively ([17, 21, 29]), a few attempt
has been made to study the problem of approximation of an integrated semigroups
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or regularized semigroup by a sequence of discrete semigroups. To our knowledge,
the case of local regularized semigroups was studied by Piskarev et. al. [23] to in-
vestigate an ill-posed problem. (See also Guidetti et. al. [10] and Melnikova et. al.
[19].)

The purpose of this paper is to extend the above-mentioned results, by discussing
an approximation theorem for the Cauchy problem of the quasilinear evolution equa-
tion (QE; u0) in the sense of Hadamard. In fact, the final part of Section 2 contains
an application of the main theorem (Theorem 1) to an approximation of local regu-
larized semigroups.

To attain our objective, we consider an approximation of the solution of (QE; u0)
by the sequence {un} of solutions of the problems

(un(t + hn)− un(t))/hn = An(un(t))un(t),

where An(w) is an appropriate approximation to A(w) and {hn} is a null sequence
of positive numbers as n → ∞. If a family {Cn(w); w ∈ Dn} is defined by
Cn(w) = I + hnAn(w) for w ∈ Dn, then the solution un is given by un(t) = ui,n

for t ∈ [ihn, (i+1)hn)∩ [0, T ] and i = 0, 1, . . . , Kn, where {ui,n}Kn
i=0 is a sequence

in Dn such that
ui,n = Cn(ui−1,n)ui−1,n

for i = 1, 2, . . . , Kn andKn is the greatest integer such that hnKn ≤ T . The feature
of this paper is to propose the stability condition (H4) for the family {Cn(w); w ∈
Dn} under which the sequence {un} converges to the solution of (QE;u0) as n →
∞.

In Section 3, we give a key estimate (Lemma 1) on the difference between
the solution of the Euler forward difference equation governed by a “quasilinear
generator” B with time scale h and the solution of the quasilinear evolution equa-
tion governed by B. Section 4 presents an application of the main theorem to an
approximation problem of a degenerate Kirchhoff equation.

2. BASIC HYPOTHESES AND THE MAIN THEOREM

In this section we make basic hypotheses with some comments and state the
main theorem. The purpose of this paper is to discuss an approximation problem
which arises when the solution of concrete problem is computed numerically. To
do this, without discussing the solvability of the problem (QE;u0) we concentrate
on studying an approximation problem under the following hypothesis.

(H1) For each u0 ∈ D0, the (QE;u0) has a unique solution u ∈ C([0, T ]; D) ∩
C1([0, T ]; E).
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The well-posedness of the Cauchy problem (QE;u0) in the sense of Hadamard
was studied in [26]. The special case where X 0 = X = E corresponds to the
Kato theory [12, 13]. An approximation theorem for Kato’s quasilinear evolution
equations may be derived from the main theorem (Theorem 1) by considering the
special case where X0,n = Xn = En for n ≥ 1 in the following setting.

The following hypothesis is an abstract version of the fact that a finite difference
approximation to a differential operator in a space of functions defined on a domain
in R

N acts on a different space like a space of discrete functions defined only at
certain grid points. This idea is due to Trotter [27] and Kurtz [16].

(H2) For each n ≥ 1, there exist three Banach spaces En, Xn and X0,n and two
subsets Dn and D0,n of Xn satisfying the relation

Dn ⊂ En ⊂ Xn

∪ ∪
D0,n ⊂ X0,n,

and another Banach space Zn such that the following four conditions are
satisfied:

(H2-i) There exists a sequence {PXn} of operators such that PXn ∈ B(X, Xn) for
n ≥ 1 and limn→∞ ‖PXnu‖Xn = ‖u‖X for u ∈ X .

(H2-ii) There exists a sequence {PEn} of operators such that PEn ∈ B(E, En) for
n ≥ 1 and limn→∞ ‖PEnu‖En = ‖u‖E for u ∈ E .

(H2-iii) There exists a sequence {PX0,n} of operators such that PX0,n ∈ B(X0, X0,n)
for n ≥ 1 and limn→∞ ‖PX0,nu‖X0,n = ‖u‖X0 for u ∈ X0.

(H2-iv) There exists a sequence {PZn} of operators such that PZn ∈ B(Z, Zn) for
n ≥ 1 and limn→∞ ‖PZnu‖Zn = ‖u‖Z for u ∈ Z.

In applications, the sets D0 and D are taken as the set of initial data and the
union of all positive orbits of solutions corresponding to the initial data, respectively.
These sets need to be approximated in the following sense.

(H3) There exists a sequence {Sn} of operators such that Sn ∈ B(En, Zn) for
n ≥ 1 and the following conditions are satisfied:

(H3-i) For each u ∈ D, there exists a sequence {un} such that un ∈ Dn for n ≥ 1,
limn→∞ ‖PXnu − un‖Xn = 0 and limn→∞ ‖PZnSu− Snun‖Zn = 0.

(H3-ii) For each u ∈ D0, there exists a sequence {un} such that un ∈ D0,n for
n ≥ 1, limn→∞ ‖PX0,nu − un‖X0,n = 0, limn→∞ ‖PXnu − un‖Xn = 0 and
limn→∞ ‖PZnSu− Snun‖Zn = 0.
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The following is a stability condition proposed in this paper.

(H4) Let {hn} be a null sequence of positive numbers as n → ∞. For each
n ≥ 1, let {Cn(w); w ∈ Dn} be a family in B(Xn) satisfying the following
conditions:

(H4-i) If x0 ∈ D0,n, then there exists a sequence {xi}Kn
i=1 in Dn such that

xi = Cn(xi−1)xi−1 for 1 ≤ i ≤ Kn, where Kn is the greatest integer
such that hnKn ≤ T .

(H4-ii) There exist M ≥ 1 and p ≥ 1, independent of n, such that if x 0 ∈
D0,n, {xi}Kn

i=1 is a sequence in Dn satisfying xi = Cn(xi−1)xi−1 for
1 ≤ i ≤ Kn, w0 ∈ X0,n, {wi}Kn

i=1 is a sequence in Xn satisfying
wi = Cn(xi−1)wi−1 + hnfi for 1 ≤ i ≤ Kn and {fi}Kn

i=1 is a sequence
in En, then the inequality

‖wi‖p
Xn

≤ M

(
‖w0‖p

X0,n
+ hn

i∑
l=1

‖fl‖p
En

)

holds for 1 ≤ i ≤ Kn.
(H4-iii) Cn(w)(Dn) ⊂ En for w ∈ Dn.
(H4-iv) There exists L ≥ 0, independent of n, such that

‖Cn(w)u− Cn(z)u‖En ≤ hnL‖w − z‖Xn(‖u‖Xn + ‖Snu‖Zn)

for w, z, u ∈ Dn.

The following is a consistency condition.

(H5) If u ∈ D and {un} is a sequence such that un ∈ Dn for n ≥ 1,
lim

n→∞ ‖PXnu − un‖Xn = 0 and lim
n→∞ ‖PZnSu − Snun‖Zn = 0, then

lim
n→∞ ‖PEnu − un‖En = 0 and lim

n→∞ ‖PEnA(u)u− An(un)un‖En = 0,

where An(w) = (Cn(w) − I)/hn for w ∈ Dn and n ≥ 1.

The main theorem in this paper is given by

Theorem 1. Assume (1.1) through (1.4) and (H1) through (H5) to be satisfied.
Let u0 ∈ D0 and let {u0,n} be a sequence such that u0,n ∈ D0,n for each n ≥ 1
and limn→∞ ‖PX0,nu0 − u0,n‖X0,n = 0. Then the following assertions hold.

(i) For each n ≥ 1, there exists a sequence {ui,n}Kn
i=1 in Dn such that ui,n =

Cn(ui−1,n)ui−1,n for 1 ≤ i ≤ Kn.
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(ii) For each n ≥ 1, define a step function un : [0, T ] → Dn by

un(t) = ui,n for t ∈ [ihn, (i + 1)hn) ∩ [0, T ] and i = 0, 1, 2, . . . , Kn.

Then, it holds that

lim
n→∞ (sup{‖un(t) − PXnu(t)‖Xn ; t ∈ [0, T ]}) = 0.

Remark. The main theorem seems to be new, even if X0,n = Xn = En for all
n ≥ 1. This case gives an approximation theorem for Kato’s quasilinear evolution
equations.

We conclude this section by applying Theorem 1 to an approximation problem
of local regularized semigroups by a sequence of discrete semigroups.

Let C ∈ B(X) be injective and assume that C has the dense range R(C). Let
τ ∈ (0,∞]. A one parameter family {S(t); t ∈ [0, τ)} in B(X) is a local regular-
ized semigroup on X with regularizing operator C if the following conditions are
satisfied:

(S1) S(0) = C and S(t)S(s) = S(t + s)C for t, s ∈ [0, τ) and t + s ∈ [0, τ).

(S2) For each x ∈ X , S(·)x : [0, τ) → X is continuous.

Let {S(t); t ∈ [0, τ)} be a local regularized semigroup on X with regularizing
operator C. The operator A in X defined by{

Ax = C−1 (limh↓0(S(h)x− x)/h)) for x ∈ D(A)
D(A) = {x ∈ X ; limh↓0(S(h)x− x)/h exists in X and is in R(C)}

is called the generator of {S(t); t ∈ [0, τ)} and satisfies the following conditions:
(A1) A is a densely defined closed linear operator in X and C−1AC = A.

(A2) For u ∈ D(A), S(t)u ∈ D(A), AS(t)u = S(t)Au for t ∈ [0, τ) and
S(·)u ∈ C([0, τ); [D(A)])∩C1([0, τ); X), where [D(A)] is the Banach space
D(A) equipped with the graph norm of A.

The definition of generators of regularized semigroups was first given by Da
Prato [4]. Several types of characterizations of the generators of local regularized
semigroups were given by [25] and [28]. The following approximation theorem of
such regularized semigroups is a generalization of the Chernoff product formula [3].
Another type of approximation theorem is found in the paper due to Piskarev et. al.
[23].
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Theorem 2. Let A be the generator of a local regularized semigroup {S(t); t ∈
[0, τ)} on X with regularizing operator C. Assume that X is approximated by a
sequence {Xn} of Banach spaces in the following sense: There exists a sequence
{PXn} such that PXn ∈ B(X, Xn) for n ≥ 1 and

(2.1) lim
n→∞ ‖PXnu‖Xn = ‖u‖X for u ∈ X.

Assume that there exists a sequence {Cn} such that Cn ∈ B(Xn) is injective for
n ≥ 1 and

(2.2) lim
n→∞ ‖xn − PXnx‖Xn = 0 implies that lim

n→∞ ‖Cnxn − PXnCx‖Xn = 0.

For each n ≥ 1, let Fn ∈ B(Xn) satisfy the following conditions:

(F1) For each σ ∈ (0, τ) there exists Mσ > 0, independent of n, such that

‖F i
nCnu‖Xn ≤ Mσ‖u‖Xn for 1 ≤ i ≤ Kσ,n := [σ/hn] and u ∈ Xn,

where [a] is the integer part of a.

(F2) CnFn = FnCn.

Let An = (Fn − I)/hn for n ≥ 1. Assume that for each u ∈ D(A) there exists a
sequence {un} such that un ∈ Xn for n ≥ 1 and

(2.3) lim
n→∞(‖un − PXnu‖Xn + ‖Anun − PXnAu‖Xn) = 0.

Then, for each σ ∈ (0, τ) and u ∈ X ,

lim
n→∞

(
sup{‖F [t/hn]

n CnPXnu − PXnS(t)u‖Xn; t ∈ [0, σ]}
)

= 0.

Proof. Let Y be the Banach space C(D(A)) equipped with the norm ‖ · ‖Y

defined by ‖u‖Y = ‖u‖X + ‖C−1u‖X + ‖AC−1u‖X for u ∈ Y . Let Z be the
Banach space X × X equipped with the norm ‖(u, v)‖Z = ‖u‖X + ‖v‖X for
(u, v) ∈ Z, and define S ∈ B(Y, Z) by Su = (C−1u, AC−1u) for u ∈ Y . Then,
the inequality (1.4) holds for cS = 1. Let E be the Banach space R(C) equipped
with the norm ‖ · ‖E defined by ‖u‖E = ‖u‖X + ‖C−1u‖X for u ∈ E , and let
X0 = E . Clearly, A ∈ B(Y, E) by the definition of the spaces Y and E . Let
D = C(D(A)) and D0 = C2(D(A)). Then, the relation (1.3) is satisfied and
it is seen by (A2) that the abstract Cauchy problem for A has a unique solution
u ∈ C([0, τ); D) ∩ C1([0, τ); E) given by u(t) = S(t)C−1u0 for t ∈ [0, τ), for
each initial data u0 ∈ D0. This means that condition (H1) is satisfied.
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For each n ≥ 1, let Zn be the Banach space Xn × Xn equipped with the
norm ‖(u, v)‖Zn = ‖u‖Xn + ‖v‖Xn for (u, v) ∈ Zn, and define PZn ∈ B(Z, Zn)
by PZn(u, v) = (PXnu, PXnv) for (u, v) ∈ Z. Then, hypothesis (H2-iv) is clearly
checked by (2.1). For each n ≥ 1, letEn be the Banach space R(Cn) equipped with
the norm ‖u‖En = ‖u‖Xn + ‖C−1

n u‖Xn for u ∈ En, and define PEn ∈ B(E, En)
by PEnu = CnPXnC−1u for u ∈ E . By (2.2) we have

(2.4) lim
n→∞ ‖CnPXnC−1u − PXnu‖Xn = 0

for u ∈ E . This fact together with (2.1) shows that (H2-ii) is satisfied. All the
other hypotheses in (H2) are checked by taking X0,n = En, Dn = R(Cn) and
D0,n = R(Cn) for each n ≥ 1.

For each n ≥ 1 we consider the operator Sn ∈ B(En, Zn) defined by Snu =
(C−1

n u, AnC−1
n u) for u ∈ En. For every u ∈ C(D(A)) and every sequence {un}

such that un ∈ R(Cn) for n ≥ 1, we have
(2.5)
‖PZnSu−Snun‖Zn = ‖PXnC−1u−C−1

n un‖Xn + ‖PXnAC−1u−AnC−1
n un‖Xn .

Let u ∈ D = C(D(A)). Then, by (2.3) there exists a sequence {vn} such that vn ∈
Xn for n ≥ 1 and limn→∞(‖vn−PXnC−1u‖Xn +‖Anvn −PXnAC−1u‖Xn) = 0.
The sequence {un}n=1,2,..., defined by un = Cnvn ∈ R(Cn) = Dn for n ≥ 1,
satisfies hypothesis (H3-i) by (2.2) and (2.5). To check (H3-ii), notice that

(2.6) ‖PX0,nu − un‖X0,n = ‖CnPXnC−1u − un‖Xn + ‖PXnC−1u − C−1
n un‖Xn

for every u ∈ R(C) and every sequence {un} such that un ∈ R(Cn) for n ≥ 1,
and let u ∈ D0 = C2(D(A)). Then, by (2.3) there exists a sequence {vn} such
that vn ∈ Xn for n ≥ 1 and

(2.7) lim
n→∞(‖vn − PXnC−2u‖Xn + ‖Anvn − PXnAC−2u‖Xn) = 0.

Consider the sequence {un} defined by un = C2
nvn ∈ D0,n for n ≥ 1. Then, by

(2.5) and (2.6) we have ‖PX0,nu − un‖X0,n ≤ (‖Cn‖Xn→Xn + 1)‖PXnC−1u −
Cnvn‖Xn and ‖PZnSu − Snun‖Zn = ‖PXnC−1u − Cnvn‖Xn + ‖PXnAC−1u −
AnCnvn‖Xn for n ≥ 1. Notice that by (2.2) that the sequence {‖Cn‖Xn→Xn}n≥1

is bounded in a way similar to that in [8, Theorem 5.7.1]. Thus, by (2.2), (H3-ii)
follows from (2.7), since C−1AC = A (by (A1)) and AnCn = CnAn for n ≥ 1
(by (F2)).

To check hypothesis (H4), let n ≥ 1 and σ ∈ (0, τ). Let x0 ∈ D0,n and set xi =
F i

nx0 for i = 1, 2, . . . , Kσ,n. By condition (F2) we have xi = CnF i
n(C−1

n x0) ∈
R(Cn) = Dn and xi = Fnxi−1 for 1 ≤ i ≤ Kσ,n. This implies that hypothesis
(H4-i) is satisfied. Let w0 ∈ X0,n and {fi}Kσ,n

i=1 be a sequence in R(Cn). If
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{wi}Kσ,n

i=1 is a sequence satisfying wi = Fnwi−1 + hnfi for 1 ≤ i ≤ Kσ,n, then
wi = F i

nw0 + hn
∑i

l=1 F i−l
n fl for 1 ≤ i ≤ Kσ,n. We use condition (F1) to find the

inequality

‖wi‖Xn ≤ Mσ‖C−1
n w0‖Xn + hn

i∑
l=1

Mσ‖C−1
n fl‖Xn

for 1 ≤ i ≤ Kσ,n. This inequality means that hypothesis (H4-ii) is satisfied. Hy-
pothesis (H4-iii) is checked by condition (F2). Since for every u ∈ C(D(A)) and
un ∈ R(Cn), ‖PEnu − un‖En ≤ (‖Cn‖Xn→Xn + 1)‖PXnC−1u − C−1

n un‖Xn (by
(2.6) withX0,n = En) and ‖PEnAu−Anun‖En ≤ (‖Cn‖Xn→Xn+1)‖PXnAC−1u−
AnC−1

n un‖Xn (by the definition of PEn and the norm of En), we verify (H5) by
(2.5). Therefore, we apply Theorem 1 to prove that

lim
n→∞

(
sup{‖F [t/hn]

n CnPXnC−1u0 − PXnS(t)C−1u0‖Xn ; t ∈ [0, σ]}
)

= 0

for every u0 ∈ C2(D(A)). Since C(D(A)) is dense in X , the theorem is proved
by a standard density argument.

3. KEY ESTIMATE AND THE PROOF OF THE MAIN THEOREM

Throughout the following lemma, let E, X and X0 be three real Banach spaces
and let D and D0 be two subsets of X such that they satisfy the following relation:

D ⊂ E ⊂ X

∪ ∪
D0 ⊂ X0

Let h > 0 and let {C(w); w ∈ D} be a family in B(X) satisfying the following
conditions:

(C1) If x0 ∈ D0, then there exists a sequence {xi}K
i=1 in D such that xi =

C(xi−1)xi−1 for 1 ≤ i ≤ K , where K is the greatest integer such that
Kh ≤ T .

(C2) There exist M ≥ 1 and p ≥ 1 such that if x0 ∈ D0, {xi}K
i=1 is a sequence

in D satisfying xi = C(xi−1)xi−1 for 1 ≤ i ≤ K, w0 ∈ X0, {wi}K
i=1 is

a sequence in X satisfying w i = C(xi−1)wi−1 + hfi for 1 ≤ i ≤ K and
{fi}K

i=1 is a sequence in E , then the inequality

‖wi‖p
X ≤ M

(
‖w0‖p

X0
+ h

i∑
l=1

‖fl‖p
E

)

holds for 1 ≤ i ≤ K.
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Lemma 1. Let u0 ∈ D0 and let {ui}K
i=1 be a sequence in D such that

ui = C(ui−1)ui−1 for 1 ≤ i ≤ K .

Define a step function u : [0, T ] → D by

u(t) = ui for t ∈ [ih, (i + 1)h) ∩ [0, T ] and i = 0, 1, 2, . . . , K.

Let {0 = t0 < t1 < · · · < tN = T} be a partition of [0, T ] such that

(3.1) h ≤ min
1≤j≤N

(tj − tj−1).

Set B(w) = (C(w)−I)/h for w ∈ D. Let v0 ∈ D0 and let {vj}N
j=1 be a sequence

in D such that

(3.2) (vj − vj−1)/(tj − tj−1) = B(vj−1)vj−1 + zj for 1 ≤ j ≤ N,

where {zj}N
j=1 is a sequence in E . Define a step function v : [0, T ] → D by

v(t) =
{

vj−1 for t ∈ [tj−1, tj) and j = 1, 2, . . . , N

vN for t = tN .

Assume that the following conditions are satisfied:
(C3) C(w)(D) ⊂ E for w ∈ D.
(C4) There exists L0 ≥ 0 such that

max
0≤j≤N

‖(C(w) − C(z))vj‖E ≤ hL0‖w − z‖X for w, z ∈ D.

Then there exists c > 0, depending only on M, p and T , such that

(3.3) ‖u(t)− v(t)‖p
X ≤ c exp(cLp

0t)(‖u0 − v0‖p
X0

+ αp + βp + (1 + Lp
0)γ

p)

for t ∈ [0, T ]. Here the symbols α, β and γ are defined by

α = max
1≤j≤N

‖B(vj)vj − B(vj−1)vj−1‖E,

β = max
1≤j≤N

‖zj‖E, γ = max
1≤j≤N

‖vj − vj−1‖X .

Proof. We use the function w : [0, T ] → co(D) defined by

w(t) = vj−1 + (t − tj−1)(vj − vj−1)/(tj − tj−1)

for t ∈ [tj−1, tj] and j = 1, 2, . . . , N , where co(D) is the convex hull of D. Notice
that Kh ≤ T and define

fi = (w(ih)− w((i− 1)h))/h− B(ui−1)w((i− 1)h)
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for i = 1, 2, . . . , K. Then, by the definition of B(w) we have

(3.4) w(ih) = C(ui−1)w((i− 1)h) + hfi

for i = 1, 2, . . . , K. Since w(t) ∈ co(D) ⊂ E for t ∈ [0, T ], we have {fi}K
i=1 ⊂ E

by condition (C3). Since ui = C(ui−1)ui−1, we have by (3.4)

(3.5) ui − w(ih) = C(ui−1)(ui−1 − w((i− 1)h))− hfi

for 1 ≤ i ≤ K. Since u0 − w(0) = u0 − v0 ∈ D0 − D0 ⊂ X0, we apply condition
(C2) to the equality (3.5), so that

(3.6) ‖ui − w(ih)‖p
X ≤ M

(
‖u0 − v0‖p

X0
+ h

i∑
l=1

‖fl‖p
E

)

for 0 ≤ i ≤ K.
We want to estimate

∑i
l=1 ‖fl‖p

E in (3.6), for 1 ≤ i ≤ K. For this purpose, let
1 ≤ l ≤ K and r ∈ ((l − 1)h, lh). Then we have

(3.7) u(r) = ul−1.

Since (l − 1)h ≤ (K − 1)h < T , there exists j ∈ {1, 2, . . . , N} such that
(3.8) (l − 1)h ∈ [tj−1, tj).

By the definition of w we have

(3.9)
w((l − 1)h) = ((tj − (l − 1)h)/(tj − tj−1))vj−1

+(((l − 1)h− tj−1)/(tj − tj−1))vj.

Since B(vj−1)vj−1 − B(ul−1)w((l− 1)h) is written as

B(vj−1)vj−1 − B(ul−1)w((l − 1)h)

= ((tj − (l − 1)h)/(tj − tj−1))(B(vj−1)vj−1 − B(ul−1)vj−1)

+(((l − 1)h− tj−1)/(tj − tj−1))(B(vj−1)vj−1 − B(ul−1)vj)

by (3.9), and since

B(vj−1)vj−1 − B(ul−1)vj = (B(vj−1)vj−1 − B(vj)vj) + (B(vj) − B(ul−1))vj,

we have by (3.7) and condition (C4)

(3.10)
‖B(vj−1)vj−1 − B(ul−1)w((l − 1)h)‖E

≤ α + L0 max{‖vj−1 − u(r)‖X , ‖vj − u(r)‖X}.
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By (3.1) and (3.8), we need to consider the following two cases:

(a) lh ∈ [tj−1, tj], (b) lh ∈ [tj , tj+1] and 1 ≤ j ≤ N − 1.

We start with the case (b). Notice that

(3.11) tj−1 ≤ (l − 1)h < tj ≤ lh ≤ tj+1.

By (3.11) we have r ∈ (tj−1, tj+1); hence v(r) = vj−1 or vj . Since

(vj+1 − vj)/(tj+1 − tj) − B(ul−1)w((l− 1)h)

= (B(vj)vj − B(vj−1)vj−1) + (B(vj−1)vj−1 − B(ul−1)w((l − 1)h)) + zj+1

by (3.2), we use (3.10) to get

(3.12)
‖(vj+1 − vj)/(tj+1 − tj) − B(ul−1)w((l − 1)h)‖E

≤ 2α + β + L0(‖v(r)− u(r)‖X + γ).

Since
(vj − vj−1)/(tj − tj−1) − B(ul−1)w((l− 1)h)

= B(vj−1)vj−1 + zj − B(ul−1)w((l− 1)h),

we have by (3.10)

(3.13)
‖(vj − vj−1)/(tj − tj−1) − B(ul−1)w((l − 1)h)‖E

≤ α + β + L0(‖v(r)− u(r)‖X + γ).

We apply (3.12) and (3.13) to fl which is written as

fl = ((w(lh)− w(tj)) + (w(tj) − w((l − 1)h)))/h− B(ul−1)w((l − 1)h)

= {(lh− tj)((vj+1 − vj)/(tj+1 − tj) − B(ul−1)w((l− 1)h))

+(tj − (l − 1)h)((vj − vj−1)/(tj − tj−1) − B(ul−1)w((l− 1)h))}/h

by the definition of w and (3.11). This yields

(3.14) ‖fl‖E ≤ 2α + β + L0γ + L0‖v(r)− u(r)‖X.

In the case of (a), we have tj−1 ≤ (l − 1)h < r < lh ≤ tj by (3.8), so that
(w(lh) − w((l − 1)h))/h = (vj − vj−1)/(tj − tj−1). This together with (3.13)
implies that (3.14) is also valid in the case of (a). It is thus shown that (3.14) holds
for r ∈ ((l − 1)h, lh) and 1 ≤ l ≤ K . It follows that

h‖fl‖p
E ≤ c

(
(αp + βp)h + Lp

0γ
ph + Lp

0

∫ lh

(l−1)h
‖u(r)− v(r)‖p

X dr

)
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for 1 ≤ l ≤ K. Substituting this inequality into (3.6), we find

(3.15)
‖ui − w(ih)‖p

X

≤c

(
‖u0−v0‖p

X0
+(αp+βp)T +Lp

0γ
pT +Lp

0

∫ ih

0
‖u(r)−v(r)‖p

X dr

)

for 0 ≤ i ≤ K.
Now, we turn to the proof of (3.3). Let t ∈ [0, T ]. There exists i ∈ {0, 1, . . . , K}

such that t ∈ [ih, (i + 1)h), and then u(t) = ui. Since ih ≤ t ≤ T , there exists
j ∈ {1, 2, . . . , N} such that ih ∈ [tj−1, tj], and then

(3.16) w(ih) = vj−1 + (ih − tj−1)(vj − vj−1)/(tj − tj−1).

To estimate ‖u(t)− v(t)‖X , by (3.15) it suffices to estimate ‖v(t)− w(ih)‖X . By
(3.1) we need to consider the following three cases:

(i) t ∈ [tj−1, tj), (ii) t ∈ [tj , tj+1) and j ≤ N − 1, (iii) t = tj and j = N .

In the case of (i), we have v(t) = vj−1 and ‖v(t)−w(ih)‖X ≤ ‖vj−vj−1‖X ≤ γ by
(3.16). Next, we consider the cases (ii) and (iii). In both cases, we have v(t) = vj .
By (3.16) we have

v(t) − w(ih) = ((vj − vj−1)/(tj − tj−1))((tj − tj−1) − (ih − tj−1));

hence ‖v(t)−w(ih)‖X ≤ ‖vj−vj−1‖X ≤ γ . Combining these estimates and (3.15)
and using the fact that ih ≤ t, we have

‖u(t)−v(t)‖p
X ≤ c

(
‖u0−v0‖p

X0
+αp+βp+γp+Lp

0γ
p+Lp

0

∫ t

0
‖u(r)−v(r)‖p

X dr

)

for t ∈ [0, T ]. An application of Gronwall’s inequality gives the desired inequality
(3.3).

Proof of Theorem 1. Assertion (i) is a direct consequence of hypothesis (H4-i).
To prove that assertion (ii) is true, let ε > 0. Since u ∈ C([0, T ]; D) and A is
strongly continuous on D in B(Y, E) (by (1.2)), there exists a partition {0 = tε0 <
tε1 < · · · < tεNε

= T} of [0, T ] such that

tεj − tεj−1 ≤ ε for j = 1, 2, . . . , Nε,

(3.17) ‖u(t) − u(tεj−1)‖X ≤ ε for t ∈ [tεj−1, t
ε
j] and j = 1, 2, . . . , Nε,

(3.18)
‖A(u(t))u(t)− A(u(tεj−1))u(tεj−1)‖E ≤ ε

for t ∈ [tεj−1, t
ε
j] and j = 1, 2, . . . , Nε.
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Set vε
j = u(tεj) for j = 0, 1, . . . , Nε. Since vε

0 = u0 ∈ D0, there exists a sequence
{vε

0,n}n=1,2,... such that vε
0,n ∈ D0,n for n ≥ 1 and

(3.19)
lim

n→∞(‖PX0,nvε
0 − vε

0,n‖X0,n + ‖PXnvε
0 − vε

0,n‖Xn

+‖PZnSvε
0 − Snvε

0,n‖Zn) = 0,

by hypothesis (H3-ii). Since vε
j ∈ D for 1 ≤ j ≤ Nε, hypothesis (H3-i) ensures that

for each j = 1, 2, . . . , Nε there exists a sequence {vε
j,n}n=1,2,... such that vε

j,n ∈ Dn

for n ≥ 1 and

(3.20) lim
n→∞(‖PXnvε

j − vε
j,n‖Xn + ‖PZnSvε

j − Snvε
j,n‖Zn) = 0.

By (3.19) and (3.20), the consistency condition (H5) implies that limn→∞ ‖PEnvε
j −

vε
j,n‖En = 0 and limn→∞ ‖PEnA(vε

j)v
ε
j−An(vε

j,n)vε
j,n‖En = 0 for j = 0, 1, . . . , Nε.

For each n ≥ 1, the sequence {zε
j,n}Nε

j=1, defined by

zε
j,n = (vε

j,n − vε
j−1,n)/(tεj − tεj−1)− An(vε

j−1,n)vε
j−1,n

for j = 1, 2, . . . , Nε, satisfies that zε
j,n ∈ En and

(3.21) lim
n→∞ ‖zε

j,n‖En = ‖(vε
j − vε

j−1)/(tεj − tεj−1) − A(vε
j−1)v

ε
j−1‖E

for 1 ≤ j ≤ Nε. We shall apply Lemma 1 to estimate the difference between un

and the step function vε
n : [0, T ] → Dn defined by

vε
n(t) =

{
vε
j−1,n for t ∈ [tεj−1, t

ε
j) and j = 1, 2, . . . , Nε,

vε
Nε,n for t = T .

Let n0 ≥ 1 be an integer such that hn ≤ min1≤j≤Nε (tεj − tεj−1) for all n ≥ n0. By
condition (H4-iv) we have

‖Cn(w)vε
j,n − Cn(z)vε

j,n‖En ≤ hnL(‖vε
j,n‖Xn + ‖Snvε

j,n‖Zn)‖w − z‖Xn

for w, z ∈ Dn and 0 ≤ j ≤ Nε. Since limn→∞ ‖An(vε
j,n)vε

j,n − An(vε
j−1,n)vε

j−1,n

‖En = ‖A(vε
j)v

ε
j −A(vε

j−1)v
ε
j−1‖E ≤ ε (by 3.18) and limn→∞ ‖vε

j,n−vε
j−1,n‖Xn =

‖vε
j − vε

j−1‖X ≤ ε (by 3.17) for 1 ≤ j ≤ Nε, we apply Lemma 1 to find

(3.22)
‖un(t) − vε

n(t)‖p
Xn

≤ c exp(cLp(aε
n)pT ){‖u0,n − vε

0,n‖p
X0,n

+εp + (bε
n)p + (1 + Lp(aε

n)p)εp}
for t ∈ [0, T ] and n ≥ n0, where the symbols aε

n and bε
n are defined by

aε
n = max

0≤j≤Nε

(‖vε
j,n‖Xn + ‖Snvε

j,n‖Zn), bε
n = max

1≤j≤Nε

‖zε
j,n‖En .
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By (3.19) and (3.20) we have

(3.23) lim
n→∞ aε

n = max
0≤j≤Nε

(‖vε
j‖X + ‖Svε

j‖Z) ≤ cS max
0≤j≤Nε

‖u(tεj)‖Y ,

where we have used (1.4) to obtain the last inequality. By (3.18) and (3.21) we
have

(3.24) lim
n→∞ bε

n ≤ ε.

We employ the step function vε : [0, T ] → D defined by

vε(t) =

{
vε
j−1 for t ∈ [tεj−1, t

ε
j) and j = 1, 2, . . . , Nε,

vε
Nε

for t = T .

By (3.19) and (3.20) we have

(3.25) lim
n→∞(sup{‖PXnvε(t) − vε

n(t)‖Xn ; t ∈ [0, T ]}) = 0.

By (3.17) we have

(3.26) sup{‖PXnu(t) − PXnvε(t)‖Xn ; t ∈ [0, T ]} ≤ (‖PXn‖X→Xn)ε.

We use (3.22) through (3.26) to obtain

lim sup
n→∞

(sup{‖un(t) − PXnu(t)‖p
Xn

; t ∈ [0, T ]})
≤ c{(sup{‖PXn‖X→Xn ; n ≥ 1})pεp

+ exp(cLp(cS sup{‖u(t)‖Y ; t ∈ [0, T ]})pT )

×(3 + Lp(cS sup{‖u(t)‖Y ; t ∈ [0, T ]})p)εp}.
Since ε > 0 is arbitrary, the desired claim is thus proved.

4. AN APPROXIMATION OF A DEGENERATE KIRCHHOFF EQUATION

This section is devoted to an approximation of the solution of the system

(4.1)

{
ut(x, t) = vx(x, t) for (x, t) ∈ R × [0,∞),

vt(x, t) = ‖u(·, t)‖2α
L2ux(x, t) for (x, t) ∈ R × [0,∞),

which is obtained by setting u = wx and v = wt in the Kirchhoff equation

wtt(x, t) = ‖wx(·, t)‖2α
L2wxx(x, t) for (x, t) ∈ R × [0,∞).
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Here α ≥ 1 and ‖u‖L2 denotes the usual norm in L2(R).
We are interested in the degenerate case where u(·, 0) = 0, which implies that

the right-hand side of the second equation of (4.1) is zero when t = 0.
Let {hn} and {kn} be two null sequences of positive numbers such that hn/kn =

r, where r is an appropriate positive constant to be determined later. Consider the
difference scheme of Lax-Friedrichs type

(4.2)

{
(ul,i−(ul+1,i−1+ul−1,i−1)/2)/hn=(vl+1,i−1−vl−1,i−1)/(2kn),

(vl,i−(vl+1,i−1+vl−1,i−1)/2)/hn =‖(ul,i−1)‖2α
n (ul+1,i−1−ul−1,i−1)/(2kn)

for l ∈ Z and i = 1, 2, . . .. Here the symbol ‖ · ‖n is the norm in l2(Z) defined by
‖u‖n =

(∑∞
l=−∞ |ul|2kn

)1/2 for u = (ul) ∈ l2(Z).

Theorem 3. Let v0 ∈ H3(R) and ∂xv0 �= 0. Then there exists T > 0 such
that the following assertions hold:

(i) The Cauchy problem for the system (4.1) with the initial condition u(x, 0) = 0
and v(x, 0) = v0(x) has a unique solution (u, v) in the classC([0, T ]; H 2(R)×
H2(R)) ∩ C1([0, T ]; H1(R)× H1(R)).

(ii) The solution (u, v) of (4.1) can be approximated by the solution (u i, vi) in
l2(Z) ×l2(Z) of the system (4.2) with the initial condition (u l,0) = 0 and
(vl,0) = pnv0 in the sense that

lim
n→∞(sup{‖u[t/hn] − pnu(t)‖n + ‖v[t/hn] − pnv(t)‖n; t ∈ [0, T ]}) = 0,

where ui = (ul,i), vi = (vl,i) and pn is the operator on L2(R) to l2(Z)
defined by

(4.3) pnu =

(
1
kn

∫ (l+1/2)kn

(l−1/2)kn

u(x) dx

)
for u ∈ L2(R).

LetX be the Banach space L2(R)×L2(R) equipped with the norm ‖(u, v)‖X =
(‖u‖2

L2+‖v‖2
L2)1/2 for (u, v) ∈ X . LetE = X0 = H1(R)×H1(R), Y = H2(R)×

H2(R) and Z = X × X . Here Z is equipped with the norm ‖((u, v), (û, v̂))‖Z =
(‖(u, v)‖2

X + ‖(û, v̂)‖2
X)1/2 and Hk(R) × Hk(R) is equipped with the norm ‖(u,

v)‖Hk×Hk = (‖u‖2
Hk + ‖v‖2

Hk)1/2, where ‖w‖Hk = (
∑k

l=0 ‖∂l
xw‖2

L2)1/2 for w ∈
Hk(R). Then, the operator S ∈ B(Y, Z), defined by S(u, v) = ((ux, vx), (uxx, vxx))
for (u, v) ∈ Y , satisfies condition (1.4) with cS = 2.

Let v0 ∈ H3(R) and ∂xv0 �= 0. Let r0, R0 and R be positive constants such
that ‖∂xv0‖L2 > r0, ‖v0‖H3 ≤ R0 and r0 < R0 < R, and define D = {(u, v) ∈
Y ; ‖u‖H2 ≤ R, ‖v‖H2 ≤ R} and D0 = {(0, v0)}. Then, relation (1.3) is satisfied
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and it is shown [26, Theorem 8.1] that the family {A((w, z)); (w, z) ∈ D} of closed
linear operators in X defined by{

A((w, z))(u, v) = (vx, (‖w‖2α
L2u)x) for (u, v) ∈ D((A(w, z))),

D(A((w, z))) = {(u, v) ∈ X ; v ∈ H1(R), ‖w‖2α
L2u ∈ H1(R)}

satisfies conditions (1.1), (1.2) and (H1) for sufficiently small T > 0. This means
that assertion (i) holds.

Let Xn and En be the Banach spaces l2(Z) × l2(Z) equipped with the norms
‖(u, v)‖Xn = (‖u‖2

n + ‖v‖2
n)1/2 and ‖(u, v)‖En = (‖u‖2

n + ‖δ−n u‖2
n + ‖v‖2

n +
‖δ−n v‖2

n)1/2, respectively. Here the operator δ−n on l2(Z) is defined by

δ−n u = ((ul − ul−1)/kn) for u = (ul) ∈ l2(Z).

Let PXn(u, v) = (pnu, pnv) for (u, v) ∈ X , and let PEn(u, v) = (pnu, pnv) for
(u, v) ∈ E and X0,n = En. Let Zn be the Banach space Xn × Xn with the norm
‖((u, v), (û, v̂))‖Zn = (‖(u, v)‖2

Xn
+ ‖(û, v̂)‖2

Xn
)1/2, and let PZn((u, v), (û, v̂)) =

(PXn(u, v), PXn(û, v̂)) for ((u, v), (û, v̂)) ∈ Z. Let Dn be the set of all (u, v) ∈
l2(Z)× l2(Z) such that ‖u‖2

n + ‖δ−n u‖2
n + ‖δ+

n δ−n u‖2
n ≤ R2 and ‖v‖2

n + ‖δ−n v‖2
n +

‖δ+
n δ−n v‖2

n ≤ R2, where δ+
n is the operator on l2(Z) defined by

δ+
n u = ((ul+1 − ul)/kn) for u = (ul) ∈ l2(Z).

Let D0,n = {(0, pnv0)}. Then, we have D0,n ⊂ Dn by Lemma 4 (ii) in Appendix,
since ‖v0‖H2 ≤ ‖v0‖H3 ≤ R0 ≤ R. All the other hypotheses in (H2) are easily
shown to be satisfied by (5.1) and Lemma 4 (i), (ii).

To check (H3) we employ Sn ∈ B(En, Zn) defined by

Sn(u, v) = ((δ−n u, δ−n v), (δ+
n δ−n u, δ+

n δ−n v))

for (u, v) ∈ En. For (u, v) ∈ D, the sequence ((pnu, pnv)) in l2(Z) × l2(Z) is a
desired one satisfying (H3-i) by Lemma 4 (i), since (pnu, pnv) ∈ Dn (by (5.1) and
Lemma 4 (ii)) and

(4.4)

‖PZnS(u, v)− Sn(un, vn)‖2
Zn

= ‖pnux − δ−n un‖2
n + ‖pnvx − δ−n vn‖2

n

+‖pnuxx − δ+
n δ−n un‖2

n + ‖pnvxx − δ+
n δ−n vn‖2

n

for (u, v) ∈ H2(R) × H2(R) and (un, vn) ∈ l2(Z) × l2(Z). For (u, v) ∈ D0, the
sequence ((pnu, pnv)) in l2(Z) × l2(Z) is a desired one satisfying (H3-ii), since
pnu = 0 and

(4.5)
‖PX0,n(u, v)− (un, vn)‖2

X0,n
= ‖pnu − un‖2

n + ‖δ−n (pnu − un)‖2
n

+‖pnv − vn‖2
n + ‖δ−n (pnv − vn)‖2

n
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for (u, v) ∈ H1(R) × H1(R) and (un, vn) ∈ l2(Z) × l2(Z). Hypothesis (H3) is
thus checked.

For each n ≥ 1, consider the family {Cn((w, z)); (w, z) ∈ Dn} in B(Xn)
defined in the following way: Cn((w, z))(u, v) = (f, g) if and only if

(4.6)

{
f = (τ+u + τ−u)/2 + (hn/kn)(τ+v − τ−v)/2,

g = (τ+v + τ−v)/2 + (hn/kn)‖w‖2α
n (τ+u − τ−u)/2,

where τ+u = (ul+1) and τ−u = (ul−1) for u = (ul) ∈ l2(Z). Since (wn, zn) :=
An((un, vn))(un, vn) is written as

wn = (1/r)(δ+
n un − δ−n un)/2 + (δ+

n vn + δ−n vn)/2,

zn = (1/r)(δ+
n vn − δ−n vn)/2 + ‖un‖2α

n (δ+
n un + δ−n un)/2

for (un, vn) ∈ Dn and PEnA((u, v))(u, v) = (pnvx, ‖u‖2α
L2pnux) for (u, v) ∈ D,

we use (4.4) and (4.5) withX0,n = En to show that the family {Cn((w, z)); (w, z) ∈
Dn} satisfies the consistency condition (H5) by (5.1) and Lemma 4.

We want to show that the family {Cn((w, z)); (w, z) ∈ Dn} satisfies the stability
condition (H4). For this purpose, we need the following lemma.

Lemma 2. Let h > 0, k > 0 and r = h/k. Let a ≥ 0 and assume that
(a + 1)r2 ≤ 1. Let f, g, ξ, η, w and z in l2(Z) satisfy the system


f = (τ+w + τ−w)/2 + r(τ+z − τ−z)/2

g = (τ+z + τ−z)/2 + ar(τ+w − τ−w)/2

η = ξ + r(τ+w − τ−w)/2.

Then it holds that

(4.7)
(a + 1)‖f‖2 + ‖g‖2 + 2〈g, η〉− a‖η‖2

≤ (a + 1)‖w‖2 + ‖z‖2 + 2〈(τ+z + τ−z)/2, ξ〉 − a‖ξ‖2.

Here ‖u‖ =
(∑∞

l=−∞ |ul|2k
)1/2 and 〈u, v〉 =

∑∞
l=−∞ ulvlk for u = (ul), v =

(vl) ∈ l2(Z).

Proof. The left-hand side of (4.7) is written as

(4.8)

(a + 1)‖f‖2 + ‖g + η‖2 − (a + 1)‖η‖2

= (a + 1){‖(τ+w + τ−w)/2‖2

+2r〈(τ+w+τ−w)/2, (τ+z−τ−z)/2〉+r2‖(τ+z−τ−z)/2‖2}
+‖(τ+z + τ−z)/2 + (a + 1)r(τ+w − τ−w)/2 + ξ‖2

−(a + 1){‖ξ‖2+2r〈ξ, (τ+w−τ−w)/2〉+ r2‖(τ+w−τ−w)/2‖2}.
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The second term on the right-hand side of (4.8) is equal to

(4.9)

‖(τ+z + τ−z)/2‖2 + (a + 1)2r2‖(τ+w − τ−w)/2‖2 + ‖ξ‖2

+2(a + 1)r〈(τ+z+τ−z)/2, (τ+w−τ−w)/2〉+2〈(τ+z+τ−z)/2, ξ〉
+2(a + 1)r〈(τ+w − τ−w)/2, ξ〉.

Substituting (4.9) into (4.8) and using the following two equalities

‖(τ+u + τ−u)/2‖2 + ‖(τ+u − τ−u)/2‖2 = ‖u‖2 for u ∈ l2(Z)

and 〈τ+w, τ+z〉 = 〈τ−w, τ−z〉 for w, z ∈ l2(Z), we obtain the desired inequality
(4.7), by the condition that (a + 1)r2 ≤ 1.

Lemma 3. Let h > 0, k > 0 and r = h/k. Let K ≥ 1 be an integer such
that Kh ≤ T . Let M ≥ 0 and L ≥ 0. Let {ai}K−1

i=0 be a sequence such that
0 ≤ ai ≤ M and 0 ≤ ai − ai−1 ≤ Lh for 0 ≤ i ≤ K − 1, where a−1 = a0. Let
{fi}K

i=1 and {gi}K
i=1 be two sequences in l2(Z). Let {wi}K

i=0 and {zi}K
i=0 be two

sequences in l2(Z) satisfying the system

(4.10)

{
wi = (τ+wi−1 + τ−wi−1)/2 + r(τ+zi−1 − τ−zi−1)/2 + hfi

zi = (τ+zi−1 + τ−zi−1)/2 + ai−1r(τ+wi−1 − τ−wi−1)/2 + hgi

for 1 ≤ i ≤ K. Assume that (M + 1)r2 ≤ 1 and (M + 1)h ≤ 1/2. Then it holds
that

‖wi‖2 + ‖zi‖2 ≤ exp((2(M + 1) + L + T + 1)T )((M + 1)M1 + M2 + TM3)

for 0 ≤ i ≤ K. Here M1, M2 and M3 are defined by

M1 = ‖w0‖2 + h
∑K

i=1 ‖fi‖2, M2 = ‖z0‖2 + h
∑K

i=1 ‖gi‖2

M3 = ‖δ−z0‖2 + h
∑K

i=1 ‖δ−gi‖2,

where δ−u = ((ul − ul−1)/k) for u = (ul) ∈ l2(Z).

Proof. Let 1 ≤ j ≤ K. To use Lemma 2, we employ the sequence {ξi}j
i=0 in

l2(Z) defined inductively by ξj = 0 and

(4.11) ξi−1 = (τ+ξi + τ−ξi)/2 − r(τ+wi−1 − τ−wi−1)/2

for 1 ≤ i ≤ j. Since r(τ+wi−1 − τ−wi−1)/2 = h(δ+wi−1 + δ−wi−1)/2, we have

(4.12) ξi + h

j−1∑
p=i

(2−1(τ+ + τ−))p−i(2−1(δ+ + δ−)wp) = 0
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for 0 ≤ i ≤ j. Consider the sequence {Ei}j
i=0 in R defined by

Ei = (ai−1 + 1)‖wi‖2 + ‖zi‖2 + 2〈zi, (τ+ξi + τ−ξi)/2〉 − ai−1‖ξi‖2

for 0 ≤ i ≤ j. To obtain the recursive inequality (4.14) for {Ei}j
i=0, let 1 ≤ i ≤ j.

Since (ai−1+1)r2 ≤ (M +1)r2 ≤ 1, we apply Lemma 2 with (a, f, g, ξ, η, w, z) =
(ai−1, wi − hfi, zi − hgi, ξi−1, (τ+ξi + τ−ξi)/2, wi−1, zi−1) to the system (4.10)
and (4.11), so that

(ai−1 + 1)‖wi − hfi‖2 + ‖zi − hgi‖2

+2〈zi − hgi, (τ+ξi + τ−ξi)/2〉 − ai−1‖(τ+ξi + τ−ξi)/2‖2

≤ (ai−1 + 1)‖wi−1‖2 + ‖zi−1‖2

+2〈(τ+zi−1 + τ−zi−1)/2, ξi−1〉 − ai−1‖ξi−1‖2.

Since ai−2 ≤ ai−1 and ‖(τ+ξi + τ−ξi)/2‖ ≤ ‖ξi‖, we find

(4.13)
Ei ≤ Ei−1+(ai−1−ai−2)‖wi−1‖2+2h(ai−1+1)〈wi, fi〉+2h〈zi, gi〉

+2h〈gi, (τ+ξi + τ−ξi)/2〉.

Since 〈δ+u, v〉+ 〈u, δ−v〉 = 0 for u, v ∈ l2(Z), we see by (4.12) that the last term
on the right-hand side of (4.13) is equal to

2h2
j−1∑
p=1

〈2−1(δ+ + δ−)gi, (2−1(τ+ + τ−))p−i+1wp〉.

Since 2〈u, v〉 ≤ ‖u‖2 + ‖v‖2 for u, v ∈ l2(Z), it follows that

(4.14)

Ei ≤ Ei−1 + Lh‖wi−1‖2 + (M + 1)h(‖wi‖2 + ‖fi‖2)

+h(‖zi‖2 + ‖gi‖2) + (j − 1)h2‖δ−gi‖2 + h2
j−1∑
p=1

‖wp‖2.

Since ξj = 0 and aj−1 ≥ 0, we have ‖wj‖2 + ‖zj‖2 ≤ Ej . Adding (4.14) from
i = 1 to i = j, we find

(4.15)

‖wj‖2 + ‖zj‖2 ≤ (M + 1)M1 + M2 + 2〈z0, 2−1(τ+ + τ−)ξ0〉

+Lh

j−1∑
i=0

‖wi‖2 + (M + 1)h
j∑

i=1

‖wi‖2

+h

j∑
i=1

‖zi‖2 + Th

j∑
i=1

‖δ−gi‖2 + Th

j−1∑
p=1

‖wp‖2.
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The third term on the right-hand side of (4.15) is estimated by hj‖δ−z0‖2 +
h
∑j−1

p=0 ‖wp‖2, since it is written as 2h
∑j−1

p=0〈(2−1(τ++τ−))p+1(2−1(δ++δ−)z0),
wp〉 by (4.12). It follows that

‖wj‖2 + ‖zj‖2 ≤ (M + 1)M1 + M2 + TM3 + (L + T + 1)h
∑j−1

p=0 ‖wp‖2

+(M + 1)h
∑j

i=1 ‖wi‖2 + h
∑j

i=1 ‖zi‖2

for 0 ≤ j ≤ K. By Aj we denote the right-hand side. Then, we have ‖wj‖2 +
‖zj‖2 ≤ Aj for 0 ≤ j ≤ K and Aj − Aj−1 ≤ (L + T + 1)hAj−1 + (M + 1)hAj

for 1 ≤ j ≤ K. Since 1 + t ≤ exp(t) for t ≥ 0 and (1 − t)−1 ≤ exp(2t) for
0 ≤ t ≤ 1/2, we have Aj ≤ exp((2(M + 1) + L + T + 1)h)Aj−1 for 1 ≤ j ≤ K .
The desired inequality is obtained by solving this inequality and using the fact that
A0 = (M + 1)M1 + M2 + TM3.

Now, we show that for each n ≥ 1, the family {Cn((w, z)); (w, z) ∈ Dn}
defined by (4.6) satisfies the stability condition (H4). Since (d/dθ)‖θw + (1 −
θ)ŵ‖2α

n = 2α‖θw + (1 − θ)ŵ‖2(α−1)
n 〈θw + (1 − θ)ŵ, w − ŵ〉n, where 〈u, v〉n =∑∞

l=−∞ ulvlkn for u = (ul), v = (vl) ∈ l2(Z), we have

(4.16)
∣∣‖w‖2α

n − ‖ŵ‖2α
n

∣∣ ≤ 2αmax(‖w‖n, ‖ŵ‖n)2α−1‖w − ŵ‖n

for w, ŵ ∈ l2(Z). Since r(τ+
n u−τ−

n u)/2 = hn(δ+
n u+δ−n u)/2, (H4-iv) follows from

(4.16). Hypothesis (H4-iii) is automatically satisfied, since En = l2(Z)× l2(Z).
To check (H4-i), letM = R2α, 0 < r ≤ 1/(M+1)1/2 and L = 2α(1/r+1)R2α.

Let (w0, z0) ∈ D0,n. Since limn→∞ ‖2−1(δ+
n + δ−n )(pnv0)‖n = ‖∂xv0‖L2 > r0 (by

Lemma 4 (i)), z0 = pnv0 and limn→∞ hn = 0, there exists an integer n0 ≥ 1 such
that (M + 1)hn ≤ 1/2,

(4.17) r0 ≤ ‖2−1(δ+
n + δ−n )z0‖n,

(4.18) ‖z0‖2
n + ‖δ−n z0‖2

n + ‖δ+
n δ−n z0‖2

n + ‖δ−n δ+
n δ−n z0‖2

n ≤ R2
0

for n ≥ n0. Here (4.18) follows from Lemma 4 (ii), since ‖v0‖H3 ≤ R0. Let
n ≥ n0. Then it will be proved that there exists T > 0 such that hypothesis (H4-i)
is satisfied, by showing inductively that the sequence {(wi, zi)}Kn

i=1, defined by

(4.19) (wi, zi) = Cn((wi−1, zi−1))(wi−1, zi−1)

for 1 ≤ i ≤ Kn, satisfies the following conditions:

(4.20) 0 ≤ ‖wj‖2α
n ≤ M for 0 ≤ j ≤ Kn,
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(4.21) 0 ≤ ‖wj‖2α
n − ‖wj−1‖2α

n ≤ Lhn for 0 ≤ j ≤ Kn,

(4.22) (wj, zj) ∈ Dn for 0 ≤ j ≤ Kn,

where w−1 = w0. Since w0 = 0 and D0,n ⊂ Dn, (4.20) through (4.22) are clearly
true for j = 0. Assume that (4.20) through (4.22) hold for 0 ≤ j ≤ i − 1. Then,
(wi, zi) is well-defined by (4.19). By (4.6), the sequence {(wj, zj)}i

j=0 satisfies the
system

(4.23)

{
wj = (τ+wj−1 + τ−wj−1)/2 + r(τ+zj−1 − τ−zj−1)/2,

zj = (τ+zj−1 + τ−zj−1)/2 + r‖wj−1‖2α
n (τ+wj−1 − τ−wj−1)/2

for 1 ≤ j ≤ i. Since (4.20) and (4.21) hold for 1 ≤ j ≤ i − 1, we apply Lemma 3
with K = i, fj = 0, gj = 0 and aj = ‖wj‖2α

n to find the inequality

(4.24) ‖wi‖2
n + ‖zi‖2

n ≤ exp((2M + L + T + 3)T )(‖z0‖2
n + T‖δ−n z0‖2

n),

since w0 = 0 by the definition ofD0,n. Since the two sequences {(δ−n wj, δ
−
n zj)}i

j=0

and {(δ+
n δ−n wj, δ

+
n δ−n zj)}i

j=0 satisfy the systems similar to (4.23), we have by
Lemma 3

(4.25) ‖δ−n wi‖2
n +‖δ−n zi‖2

n ≤ exp((2M +L+T +3)T )(‖δ−n z0‖2
n +T‖δ+

n δ−n z0‖2
n)

and

(4.26)
‖δ+

n δ−n wi‖2
n + ‖δ+

n δ−n zi‖2
n

≤ exp((2M + L + T + 3)T )(‖δ+
n δ−n z0‖2

n + T‖δ−n δ+
n δ−n z0‖2

n).

If T > 0 is chosen so that exp(α(2M + L + T + 3)T )(1 + T )αR2α
0 ≤ M , then

the inequality (4.20) is true for j = i by (4.24) combined with (4.18). If T > 0 is
chosen so that exp((2M + L + T + 3)T )(1 + T )R2

0 ≤ R2, then condition (4.22)
is satisfied for j = i, by (4.18), (4.24), (4.25) and (4.26). By (4.23) with j = i we
have

wi − wi−1 = hn((kn/hn)2−1(δ+
n − δ−n )wi−1 + 2−1(δ+

n + δ−n )zi−1).

Hence ‖wi − wi−1‖n ≤ hn((1/r)R + R). By (4.16) we have∣∣‖wi‖2α
n − ‖wi−1‖2α

n

∣∣ ≤ 2αR2αhn(1/r + 1).

Since ‖wi‖2α
n − ‖wi−1‖2α

n ≥ 2α‖wi−1‖2(α−1)
n 〈wi−1, wi −wi−1〉n by convexity, the

desired inequality (4.21) will be proved, if T > 0 is chosen so that 〈wi−1, wi −
wi−1〉n ≥ 0. Since w0 = 0 and

(4.27) wj − wj−1 = h2
n(kn/hn)22−1δ+

n δ−n wj−1 + hn2−1(δ+
n + δ−n )zj−1
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for 1 ≤ j ≤ i, we have

(4.28) wi−1 = h2
n(kn/hn)2

i−1∑
j=1

2−1δ+
n δ−n wj−1 + hn

i−1∑
j=1

2−1(δ+
n + δ−n )zj−1.

Similarly, we have
(4.29)

zj = z0 +
j∑

p=1

(
hn(kn/hn)2−1(δ+

n − δ−n )zp−1 + hn‖wp−1‖2α
n 2−1(δ+

n + δ−n )wp−1

)
for 0 ≤ j ≤ i. Substituting (4.29) into (4.28) and estimating the resulting equality,
we find

(4.30)
‖wi−1 − hn(i− 1)2−1(δ+

n + δ−n )z0‖n

≤ h2
n(kn/hn)2(i−1)2−1R+h2

n(i−1)2{2−1(kn/hn)R+R2α+1}.
By (4.27) and (4.29) we have, in a way similar to the derivation of (4.30),

(4.31)
‖wi − wi−1 − 2−1hn(δ+

n + δ−n )z0‖n

≤ 2−1h2
n(kn/hn)2R + h2

n(i − 1){2−1(kn/hn)R + R2α+1}.
Combining (4.30) and (4.31), we find

〈wi−1, wi − wi−1〉n
≥ h2

n(i − 1){‖2−1(δ+
n + δ−n )z0‖2

n

−2R0(2−1hn(kn/hn)2R + hn(i − 1)(2−1(kn/hn)R + R2α+1))

−(2−1hn(kn/hn)2R + hn(i − 1)(2−1(kn/hn)R + R2α+1))2}
≥ h2

n(i − 1){r2
0 − RT (R/r2 + 2R2α+1) − (T (R/(2r2) + R2α+1))2}.

Here we have used (4.17), (4.18) and the fact that r2 ≤ r. Since r0 > 0 it is
possible to choose T > 0 independently of n, i such that 〈wi−1, wi − wi−1〉n ≥ 0
for all n ≥ n0. Hypothesis (H4-i) is thus shown to be satisfied. Since the sequence
{(wi, zi)}Kn

i=1 defined by (4.19) satisfies (4.20) and (4.21), Hypothesis (H4-ii) is
checked by Lemma 3.

5. APPENDIX

In this section we study some properties of the operator pn from L2(R) into
l2(Z) defined by (4.3). It is known [27] that

‖pnu‖n ≤ ‖u‖L2 and limn→∞ ‖pnu‖n = ‖u‖L2 for u ∈ L2(R).

Lemma 4. The following assertions hold:
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(i) limn→∞ ‖pn(∂i
xu) − (δ−n )ipnu‖n = 0 for u ∈ H i(R) and i ≥ 0.

(ii) ‖(δ−n )ipnu‖n ≤ ‖∂i
xu‖L2 for u ∈ H i(R) and i ≥ 0.

(iii) limn→∞ ‖τ+(pnu) − pnu‖n = 0 for u ∈ L2(R).

Proof. We employ the operator ∇n on L2(R) defined by

(∇nw)(x) = k−1
n (w(x)− w(x− kn)) for w ∈ L2(R).

Since (∇nw)(x) =
∫ 1
0 (∂xw)(x+(θ−1)kn)dθ for w ∈ H1(R), we have ‖∇nw‖L2 ≤

‖∂xw‖L2 and limn→∞ ‖∇nw − ∂xw‖L2 = 0 for w ∈ H1(R), by the Riemann-
Lebesgue theorem.

Let k ≥ 1 and u ∈ Hk(R). Assume that (i) and (ii) hold for 0 ≤ i ≤ k − 1.
Since

(5.2) δ−n (pnu) = pn(∇nu),

we have by (ii) with i = k − 1

‖(δ−n )k−1(pn(∂xu) − δ−n (pnu))‖n

≤ ‖∂k−1
x (∂xu −∇nu)‖L2 = ‖∂x(∂k−1

x u)−∇n(∂k−1
x u)‖L2

and the right-hand side vanishes as n → ∞ by the first part of the proof. This fact
and (i) with i = k−1 and u replaced by ∂xu together imply that (i) holds for i = k.
By (5.2) and the first part of the proof, we show that (ii) is true for i = k in the
way that

‖(δ−n )kpnu‖n = ‖(δ−n )k−1pn(∇nu)‖n

≤ ‖∂k−1
x (∇nu)‖L2 = ‖∇n(∂k−1

x u)‖L2 ≤ ‖∂x(∂k−1
x u)‖L2.

Since τ+(pnu) − pnu = pn(τknu − u) where (τknw)(x) = w(x + kn), we have
‖τ+pnu − pnu‖n ≤ ‖τknu − u‖L2 by (ii) with i = 0. Assertion (iii) is a direct
consequence of the Riemann-Lebesgue theorem.
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