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ASYMPTOTIC BEHAVIOR OF SOME WAVELET SERIES

Chang-Pao Chen and Yu-Ying Huang

Abstract. In this paper, the asymptotic behavior of wavelet series at a neigh-

borhood of a point of divergence is investigated. Our results extend the works

of Reyes [8, 9].

1. INTRODUCTION

Let 0 < s ≤ 1 and Cs(R) be the Hölder space of all bounded, continuous
functions on R such that |f(x) − f(y)| ≤ C|x − y|s for some constant C. The
wavelet series in question is of the form

F (x) =
∞∑

j=1

cjψ(2njx − kj),(1.1)

where {cj}∞j=1 is a bounded complex sequence, and ψ, nj, kj satisfy conditions

(i)− (iv), stated below:

(i) ψ ∈ Cs(R) and there exist C > 0, N > 0 such that

|ψ(x)| ≤ C(1 + |x|)−N (x ∈ R),

(ii) nj ∈ N and kj ∈ Z such that n1 < n2 < · · · and

sup
j∈N

(nj+1 − nj) <∞,
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(iii) there exists x0 ∈ R for which

θj := 2njx0 − kj −→ θ∗ ∈ R (as j → ∞),

(iv) the sequence {jnj
−1}∞j=1 converges to a real number q

∗.

By an elementary arguement, we can easily see that (ii) is equivalent to (ii∗):

(ii∗) nj ∈ N and kj ∈ Z such that n1 < n2 < · · · and {nj}∞j=1 is relatively dense

in N in the sense that for some M ∈ N,

{l+ 1, · · · , l+M} ∩ {n1, n2, · · ·} 6= φ for every integer l ≥ 0.

In [8, 9], Reyes investigated the pointwise asymptotic behavior of F near x0 for

the case that ψ has a bounded derivative and {cj}∞j=1 is nonnegative. The purpose

of this paper is to generalize Reyes’ results in the following three directions. First,

we extend ψ with a bounded derivative to ψ ∈ Cs(R). Second, we relax {cj}∞j=1

from nonnegative sequences to complex sequences. The last one is to establish the

following two formulas for the case that jαcj → A ∈ C:

F (x0 + δ) ∼ ACαψ(θ∗)(log(|δ|−1))1−α (0 ≤ α < 1),(1.2)

F (x0 + δ) ∼ Aψ(θ∗) log log(|δ|−1) (α = 1),(1.3)

where Cα = (1− α)−1(q∗/ log 2)1−α. For cj = j−α, (1.2)-(1.3) take the form

∞∑

j=1

j−αψ(θj + 2njδ) ∼ Cαψ(θ∗)(log(|δ|−1))1−α (0 ≤ α < 1),(1.4)

∞∑

j=1

j−1ψ(θj + 2njδ) ∼ ψ(θ∗) log log(|δ|−1).(1.5)

They are analogous to the ones established in [1, 3, 4, 6, 7, 10] for trigonometric

series. The details will be thoroughly discussed in §2 and §3

2. MAIN RESULTS

Theorem 2.1. Assume that {cj}∞j=1 ∈ `∞,
∑∞

j=1 |cj| = ∞, and (i) − (iii) are
satisfied. Then

F (x0 + δ) = ψ(θ∗)
r(δ)∑

j=1

cj + o

(r(δ)∑

j=1

|cj |
)

(as δ → 0),(2.1)
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where r(δ) := min{r ∈ N : 2nr |δ| ≥ 1}.
The symbol `∞ denotes the space consisting of all bounded sequences. Obvi-

ously, if cj ≥ 0 for all j, then (2.1) is the same as

lim
δ→0

(r(δ)∑

j=1

cj

)−1

F (x0 + δ) = ψ(θ∗).(2.2)

Hence, Theorem 2.1 generalizes [9, Theorem 1]. As shown in the proof of [9,

Theorem 2], under (iv), we have

lim
δ→0

r(δ)
s(δ)

= 1,(2.3)

where s(δ) := [q∗(log 2)−1 log(|δ|−1)]. This leads us to the following result.

Theorem 2.2. Assume that {cj}∞j=1 ∈ `∞,
∑∞

j=1 |cj| = ∞, and there exists a
constant K such that

|cn+j | ≤ K|cn| (1 ≤ j ≤ n).(2.4)

If (i)− (iv) are satisfied, then

F (x0 + δ) = ψ(θ∗)
s(δ)∑

j=1

cj + o

(s(δ)∑

j=1

|cj |
)

(as δ → 0).(2.5)

For cj ≥ 0, (2.5) can be restated in the form

lim
δ→0

(s(δ)∑

j=1

cj

)−1

F (x0 + δ) = ψ(θ∗).(2.6)

It is obvious that (2.4) is satisfied by those nonnegative sequences {cj}∞j=1 with

cj/Rj decreasing for some nondecreasing sequence {Rj}∞j=1 of positive numbers

subject to the condition: supj≥1R2j/Rj <∞. Any of such {cj}∞j=1 is said to be an

O-regularly varying quasimonotone sequence (cf . [2]). In particular, nonincreasing
null sequences belong to such a class. Thus, Theorem 2.2 generalizes [9, Theorem

2]. For δ → 0, we have

s(δ)∑

j=1

1
jα

∼
{

(1 − α)−1[q∗(log 2)−1 log(|δ|−1)]1−α (0 ≤ α < 1),
log log(|δ|−1) (α = 1).

Applying Theorem 2.2 to the case cj = j−α, (1.4) − (1.5) will be derived. The
next theorem allows us to extend them to (1.2)− (1.3) for the case:

jαcj → A as j → ∞.(2.7)
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Theorem 2.3. Let A ∈ C, 0 ≤ α ≤ 1, and {cj}∞j=1 ∈ `∞. If (i) − (iv) and
(2.7) are satisfied, then (1.2)− (1.3) hold.

It is clear that formula (1.2) with α = 0 reduces to

lim
δ→0

F (x0 + δ)
log(|δ|−1)

= λ0ψ(θ∗),(2.8)

where λ0 = (log 2)−1q∗(limj→∞ cj). Hence, Theorem 2.3 generalizes [8, Theorem
1]. Consider the case cj = j−s, where s > 1. We have λ0 = 0. Thus, applying [8,
Theorem 1] (i.e. (2.8)) to such a case, we only obtain

lim
δ→0

F (x0 + δ)
log(|δ|−1)

= 0.(2.9)

In contrast, jcj → 0 = A, so Theorem 2.3 will lead us to

lim
δ→0

F (x0 + δ)
log log(|δ|−1)

= 0,

which is better than (2.9). The same example also satisfies
∑∞

j=1 |cj| <∞. There-
fore, Theorem 2.2 cannot apply to such a case. This differs Theorem 2.3 from

Theorem 2.2.

3. PROOFS

Proof of Theorem 2.1. Let |δ| ≤ 1. Set

S(δ) =
r(δ)∑

j=1

cj{ψ(θj + 2njδ)− ψ(θ∗)},

R(δ) =
∑

j>r(δ)

cjψ(θj + 2njδ).

Then

F (x0 + δ) = ψ(θ∗)
r(δ)∑

j=1

cj + S(δ) +R(δ).(3.1)

As proved in [9, Theorem 1],

|R(δ)| ≤
(

sup
j>r(δ)

|cj |
){

j0‖ψ‖∞ +
2NC

1 − 2−N

}
= o

(r(δ)∑

j=1

|cj |
)
,(3.2)
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where j0 is a positive integer with |θj | ≤ 2j0−1 for all j ≥ 1. We have assumed
that ψ ∈ Cs(R). Thus, there exists P > 0 such that |ψ(x)−ψ(y)| ≤ P |x− y|s for
all x, y ∈ R. This implies

|S(δ)|≤ P

r(δ)∑

j=1

|cj||θj + 2njδ − θ∗|s

≤ 2sP

(r(δ)∑

j=1

|cj||θj − θ∗|s
)

+ 2sP

(
|δ|s

r(δ)∑

j=1

2njs|cj |
)

= S1(δ) + S2(δ), say.

(3.3)

Since
∑∞

j=1 |cj | = ∞, it follows from [5, Theorem 12] that the method (N̄ , pn)
with pn = |cn| is regular. We have |θj − θ∗|s → 0 as j → ∞, so

S1(δ) = o

(r(δ)∑

j=1

|cj |
)

(as δ → 0).(3.4)

The definition of r(δ) gives |δ| ≤ 2−nr(δ)−1 ≤ Q2−nr(δ) , where log2Q = supj(nj+1−
nj). Hence,

|S2(δ)|≤ 2sPQs

(
supj≥1 |cj|

)
2−nr(δ)s

r(δ)∑

j=1

2njs

≤ 2sPQs

s ln 2

(
sup
j≥1

|cj |
)

= o

(r(δ)∑

j=1

|cj |
)
.

(3.5)

Putting (3.1) – (3.5) together yields (2.1). This is what we want.

Proof of Theorem 2.2. Rewrite (2.1) into the form

F (x0 + δ) = ψ(θ∗)
s(δ)∑

j=1

cj + error terms.

To compare such a form with (2.5), we see that it suffices to show

M(δ)∑

j=m(δ)+1

|cj| = o

(m(δ)∑

j=1

|cj |
)

as δ → 0,(3.6)

where m(δ) = min{r(δ), s(δ)} and M(δ) = max{r(δ), s(δ)}. From (2.3), we

see M(δ)/m(δ) → 1 as δ → 0. This indicates that M(δ) ≤ 2m(δ) as δ is small
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enough. Thus, (2.4) implies

M(δ)∑

j=m(δ)+1

|cj | ≤ K(M(δ)−m(δ))|cm(δ)|

and

m(δ)∑

j=1

|cj | ≥
m(δ)
2K

|cm(δ)|.

Putting these together yields

M(δ)∑

j=m(δ)+1

|cj|≤ 2K2

(
M(δ)
m(δ)

− 1
) m(δ)∑

j=1

|cj |

= o

(m(δ)∑

j=1

|cj|
)

(as δ → 0),

and so the desired result follows.

Proof of Theorem 2.3. First, consider the case 0 ≤ α < 1. Then Theorem 2.2
ensures the validity of (1.4). Let 0 < |δ| < 1. We have

∣∣∣∣F (x0 + δ)− A
∞∑

j=1

j−αψ(θj + 2njδ)
∣∣∣∣

≤
∣∣∣∣

∑

j≤r(δ)

(cj − Aj−α)ψ(θj + 2njδ)
∣∣∣∣

+
(

supj |cj − Aj−α|
) ∑

j>r(δ)

|ψ(θj + 2njδ)|

= S1(δ) + S2(δ), say,

(3.7)

where r(δ) := min{r ∈ N : 2nr |δ| ≥ 1}. As (3.2) indicated,

|S2(δ)|≤
(

supj∈N |cj| + |A|
){

j0‖ψ‖∞ + 2N C
1−2−N

}

= o(log(|δ|−1))1−α as δ → 0.
(3.8)
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On the other hand, for 1 ≤M ≤ r(δ), we have

|S1(δ)|≤M‖ψ‖∞
(

sup1≤j≤M

|jαcj − A|
jα

)

+‖ψ‖∞
(

supM<j≤r(δ) |jαcj − A|
) r(δ)∑

j=M+1

j−α

≤M‖ψ‖∞
(

supj≥1 |jαcj − A|
)

+
‖ψ‖∞(r(δ))1−α

1 − α

(
sup
j>M

|jαcj − A|
)
.

It follows from (2.3) that r(δ) ∼ q∗(log 2)−1 log(|δ|−1), as δ → 0. This guarantees
the existence of a constant Kα such that

|S1(δ)| ≤ ‖ψ‖∞
{
M

(
sup
j≥1

|jαcj −A|
)

+Kα(log(|δ|−1))1−α

(
sup
j>M

|jαcj −A|
)}

.

By (2.7), we can chooseM so large that supj>M |jαcj −A| is as small as possible.
Therefore,

|S1(δ)| = o(log(|δ|−1))1−α as δ → 0.(3.9)

Putting (1.4) and (3.7)–(3.9) together yields (1.2). To replace (1.4) by (1.5) and to

change (log(|δ|−1))1−α to log log(|δ|−1) for each occurrence, we see that the above
proof still works for the case α = 1. This means that (1.3) holds and the proof is
complete.
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