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ASYMPTOTIC BEHAVIOR OF SOME WAVELET SERIES

Chang-Pao Chen and Yu-Ying Huang

Abstract. In this paper, the asymptotic behavior of wavelet series at a neigh-
borhood of a point of divergence is investigated. Our results extend the works

of Reyes [8, 9].

1. INTRODUCTION

Let 0 < s < 1 and C*(R) be the Holder space of all bounded, continuous

functions on R such that |f(z) — f(y)| < C|z — y|°® for some constant C. The
wavelet series in question is of the form

(1.1) F(z) =) cpp(2%a — k),
Jj=1

where {c;} 521 1s a bounded complex sequence, and ¢, n;, k; satisfy conditions

(1) — (iv), stated below:

(7) ¥ € C*(R) and there exist C > 0, N > 0 such that

(@) <CA+a))™  (z€R),

(17) n; € N and k; € Z such that n; < mng < --- and

sup  (nj41 — ny) < 0o,
jeN
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(#47) there exists g € R for which
Hj :=2nj$0—kj—>0*€R (as j—>OO),

(1v) the sequence { jnj_l}z?‘;l converges to a real number ¢*.
By an elementary arguement, we can easily see that (ii) is equivalent to (:i*):

(i) n; € Nand k;j € Z such that ny < ng < --- and {n;}32, is relatively dense
in N in the sense that for some M € N,

{t+1,--- I+ M}n{ny,ng, -} #o for every integer [ > 0.

In [8, 9], Reyes investigated the pointwise asymptotic behavior of F' near x( for
the case that ¢ has a bounded derivative and {cj}f‘;l is nonnegative. The purpose
of this paper is to generalize Reyes’ results in the following three directions. First,
we extend ¢ with a bounded derivative to ¢ € C*(R). Second, we relax {c;}22,
from nonnegative sequences to complex sequences. The last one is to establish the
following two formulas for the case that j%c; — A € C:

(12)  Flao+8) ~ ACup(@)(log(5 ) (0<a<1),
(13) F(zo + ) ~ Ap(6%) loglog(|6] ") (a=1),

where C,, = (1 — )7 !(g*/log2)! 2. For ¢; = j~2, (1.2)~(1.3) take the form

(1.4) Zy (0, +298) ~ Coatp(67) (log(16] )1 (0< & < 1),

(1.5) D i T(6; +2798) ~ (67) loglog (18] ).

They are analogous to the ones established in [1, 3, 4, 6, 7, 10] for trigonometric
series. The details will be thoroughly discussed in §2 and §3

2. MAIN RESULTS

Theorem 2.1. Assume that {c;}32, € £>°,3 722, |¢j| = oo, and (i) — (iii) are
satisfied. Then

r(6) r(6)

2.1 F(xo+0) = (6) Zq—l—o(Z\cﬂ) as & —0),
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where 7(0) := min{r € N: 2" |§| > 1}.
The symbol ¢°° denotes the space consisting of all bounded sequences. Obvi-
ously, if ¢; > 0 for all j, then (2.1) is the same as

r(9) -1
(2.2) lim <Z Cj) F(xo + 5) = 'Lﬂ(e*)

0—0\ 4
Jj=1

Hence, Theorem 2.1 generalizes [9, Theorem 1]. As shown in the proof of [9,
Theorem 2], under (iv), we have

L T(0) _

where s(8) := [¢*(log2) ! log(]6|~1)]. This leads us to the following result.

Theorem 2.2. Assume that {c;}32, € £°,3 72 |c;| = oo, and there exists a
constant K such that

(2.4) |enil < Klenl (1<j<n).
If (i) — (iv) are satisfied, then

s(6) s(6)

(2.5) F(zo+06) =(0%) ch + 0(2 \cﬂ) (as 6 —0).

For ¢; > 0, (2.5) can be restated in the form

5(9)

(2.6) lim (Z cj) _lF(xo +0) = (6).

0—0\ 4
Jj=1

It is obvious that (2.4) is satisfied by those nonnegative sequences {cj}oo ; with
cj/R; decreasing for some nondecreasing sequence {I?;}72, of positive numbers
subject to the condition: sup;~; Ra;/R; < oo. Any of such {cj}32, is said to be an
O-regularly varying quasimonotone sequence (cf. [2]). In particular, nonincreasing
null sequences belong to such a class. Thus, Theorem 2.2 generalizes [9, Theorem
2]. For § — 0, we have

s
%:) 1 (1 —a)"'g*(log2) "M log(lo] '™ (0<a <),
2 2 ™\ loglog(a]1) (a=1).
=
Applying Theorem 2.2 to the case ¢; = j~, (1.4) — (1.5) will be derived. The
next theorem allows us to extend them to (1.2) — (1.3) for the case:

2.7) j%; — A as j — oo.
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Theorem 2.3. Let A € C,0 < a < 1, and {c;}32, € (. If (i) — (iv) and
(2.7) are satisfied, then (1.2) — (1.3) hold.

It is clear that formula (1.2) with o = 0 reduces to

2.8) Jim £(#0 +9)

550 W = A0¢(9*)7

where \g = (log2) 1¢*(lim;_o ¢;). Hence, Theorem 2.3 generalizes [8, Theorem
1]. Consider the case c; = 7%, where s > 1. We have \g = 0. Thus, applying [8,
Theorem 1] (i.e. (2.8)) to such a case, we only obtain

2.9) Jim £ (20 +9)

3 Tog(oT ) ~

In contrast, jc; — 0 = A, so Theorem 2.3 will lead us to

F(z¢ + )

0T
5—0 loglog(|6]~1) ’

which is better than (2.9). The same example also satisfies 372, [c;j| < co. There-

fore, Theorem 2.2 cannot apply to such a case. This differs Theorem 2.3 from
Theorem 2.2.

3. PrROOFS

Proof of Theorem 2.1. Let |§] < 1. Set

r(9)
S(8) = ci{th(8; +2"8) — (6%},
j=1
R(O)= > cjo(6; +2%0).
J>r(6)
Then
r(6)
(3.1) F(zg+6) = ¢(0%) ch + 5(8) + R(6).

As proved in [9, Theorem 1],

r(6)

62 1RO < (s lof ) {allol + T | = (Zm)

3>r(d)



Asymptotic Behavior of Some Wavelet Series 771

where jjj is a positive integer with |0 < 270~! for all j > 1. We have assumed
that ¢ € C*(R). Thus, there exists P > 0 such that [¢(z) — ¢ (y)| < P|lz —y|® for
all z,y € R. This implies

r(6)
SO P lelle; +26 —6°
J=1

(3.3) r(0) r(0)
<2 P( kel — o) + 2P (15 o2 )
J=1 7=1
= 51(0) + S2(0), say.

Since » 22 |cj| = oo, it follows from [5, Theorem 12] that the method (N, pn)
with p, = |cy| is regular. We have |6; — 0*|° — 0 as j — o0, so

r(0)

(3.4) _O<Z\cj\) (as & —0).

The definition of 7(§) gives |[§] < 27" (-1 < Q27" where logy Q = sup;(n;41—
n;). Hence,

r(5)

S2(0)|< 2°PQ* ( sup;~q |¢j| |27 ®3 Y 2mi®
J=Z J

(3.5) o) =1

93 PQ*
<z (i) = o(1e1)

J=1

A

Putting (3.1) — (3.5) together yields (2.1). This is what we want. ]

Proof of Theorem 2.2. Rewrite (2.1) into the form

5(9)
F(xo+0) = (6) Z ¢; + error terms.
j=1

To compare such a form with (2.5), we see that it suffices to show

M (5) m(5)

(3.6) > \cj\_o<2\cj\) as & — 0,

j=m(8)+1

where m(0) = min{r(J), s(d)} and M(§) = max{r(d), s(d)}. From (2.3), we
see M(0)/m(0) — 1 as 6 — 0. This indicates that M (d) < 2m(J) as 0 is small
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enough. Thus, (2.4) implies

M(6)
o el < K(M(8) = m(8))[ens)
j=m(8)+1
and
m(4)
m(9)
Z ‘Cj‘ > 2K ‘Cm(é)‘
7=1
Putting these together yields
M(6) 5 m(
> el (d - 1) Z\ o
j=m(d)+1 J=1
m(d)
= O<Z \cj\) (as & —0)
j=1
and so the desired result follows. [

Proof of Theorem 2.3. First, consider the case 0 < o < 1. Then Theorem 2.2
ensures the validity of (1.4). Let 0 < |§] < 1. We have

' (zo +6) — Azg—w +2”f5)'

< »—A'—a¢0‘+2”15|
(3.7) jgzr:((s)(cj J ) (J )
+(supj\cj—Aj—a\) S (0 +26)

3>r(9)
— 51(8) + Sa(9), sy,

where 7(0) := min{r € N : 2"|6] > 1}. As (3.2) indicated,

. N
15,(6)| < (supjemcj\ n W){JOWHOO T —ON}
= o(log(]6| 1))« as 0 — 0.

(3.8)
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On the other hand, for 1 < M < r(¢), we have

N
510) < M6l (31015200 T2 )

jOé
r(9)
+kuoo(supM<jgr<5) e — A\) R
j=M+1
. oo(r(8))1 o
< MIlloosupjor 15%¢; — A]) + WleoT@ T2 e, — a)).
1l—« G>M

It follows from (2.3) that () ~ ¢*(log2)~!log(|d| '), as § — 0. This guarantees
the existence of a constant K, such that

5100 < 10ld 3 (sup o = A1) + K o)) (sup Li%e; — 1) .
Jj=1 j>M

By (2.7), we can choose M so large that sup;~  |j%c; — A| is as small as possible.

Therefore,

(3.9) 151(8)| = o(log(]6] )™  as §—0.

Putting (1.4) and (3.7)—(3.9) together yields (1.2). To replace (1.4) by (1.5) and to
change (log(|6| 1))}~ to loglog(|§| 1) for each occurrence, we see that the above
proof still works for the case o = 1. This means that (1.3) holds and the proof is
complete. ]
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