
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 5, No. 3, pp. 565-574, September 2001

This paper is available online at http://www.math.nthu.edu.tw/tjm/

C∗-CROSSED PRODUCTS OF C∗-ALGEBRAS WITH THE WEAK
BANACH-SAKS PROPERTY BY COACTIONS

Masaharu Kusuda

Abstract. Let A be a C∗-algebra and let δ be a nondegenerate coaction of a
locally compact group G on A. Suppose that δ is pointwise unitary and that
Â is the Hausdorff spectrum of A. Then it is shown that A has the weak

Banach-Saks property and G is discrete if and only if the crossed product

A ×δ G by δ has the weak Banach-Saks property.

1. INTRODUCTION

In [1], Banach and Saks showed that every bounded sequence in Lp([0, 1]) with
1 < p < ∞ has a subsequence whose arithmetic means converge in the norm

topology. More generally, if every bounded sequence in a Banach space X has a

subsequence whose arithmetic means converge in the norm topology, we say that X
has the Banach-Saks property. It is known that Banach spaces with the Banach-Saks

property are reflexive. It hence follows that L1([0, 1]) cannot have the Banach-Saks
property.

Let X be a Banach space. If given any weakly null sequence {xn} in X , one
can extract a subsequence {xn(k)} such that

lim
k→∞

1
k
‖xn(1) + · · ·+ xn(k)‖ = 0,

we say that X has the weak Banach-Saks property. It was shown by Szlenk [11]

that L1([0, 1]) has the weak Banach-Saks property.
Recently, Chu [2] has studied C∗-algebras with the weak Banach-Saks property

in detail as a noncommutative extension of characterizations of the Banach space,
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of complex continuous functioins on a compact Hausdorff space, with the weak

Banach-Saks property. Actually he has obtained the following characterization of

C∗-algebras with the weak Banach-Saks property.

Theorem A [2, Theorem 2]. Let A be a C∗-algebra. Then the following

conditions are equivalent:

(1) A has the weak Banach-Saks property.

(2) A is scattered and c0(A) does not contain an isometric copy of C0(ωω),
where ωω denotes the set [0, ωω) of ordinals preceding ωω with the order

topology.

(3) A is scattered and does not contain an isometric copy of C0(ωω).
(4) A is of type I and Â(k) is empty for some natural number k, where Â(0) = Â,

the spectrum of A, and Â(n) is the nth derived set of Â, consisting of the
accumulation points of Â(n−1).

(5) There exists some natural number k such that σ(a)(k) is empty for every

self-adjoint a ∈ A, where σ(a) denotes the spectrum of a.

Given a C∗-dynamical system (A,G, α), the author has recently studied when
the C∗-crossed product A ×α G by the action α of G has the weak Banach-Saks

property, under the condition that A should have the weak Banach-Saks property

(see Theorems B and C in §2 below). In this paper, we treat C∗-algebras A with

coactions δ of locally compact groups G, and we consider when the crossed product
A×δG by a coaction δ has the weak Banach-Saks property, under the condition that

A should have the weak Banach-Saks property. We shall show some results, for

crossed products by coactions, similar to the results obtained for crossed products

by actions.

2. RESULTS

For a C∗-algebra A, we denote again by Â the spectrum of A, that is, the set
of (unitary) equivalence classes [π] of nonzero irreducible representations π of A
equipped with the Jacobson topology. We note that Â is a locally compact space,
not necessarily a Hausdorff space. However, we will pay our attension later to the

case where Â is a Hausdorff space.
First we state results on C∗-crossed products by actions without the proofs (see

the references cited below for the proofs). Let (A,G, α) be a C∗-dynamical system.
By a C∗-dynamical system, we mean a triple (A,G, α) consisting of a C∗-algebra

A, a locally compact group G and a group homomorphism α from G into the

automorphism group of A such that G 3 t 7→ αt(x) is continuous for each x in A
in the norm topology. Denote by A ×α G (resp. A×αr G) the C

∗-crossed product

of A by G (resp. the reduced C∗-crossed product of A by G).
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Given a C∗-dynamical system (A,G, α), α induces the natural action of G on

Â which is defined by

(t, [π]) ∈ G× Â 7→ [π ◦ αt−1 ] ∈ Â.

This map makesG into a topological transformation group acting on Â. For [π] ∈ Â,
we denote by S[π] the stability group at [π], which is defined by S[π] = {t ∈
G|[π ◦ αt−1 ] = [π]}. If all stability groups are trivial, i.e., S[π] consists only of the

identity of G at every [π] ∈ Â, it is said that G acts freely on Â. In this situation,
the author has shown the following result:

Theorem B [6, Theorem 2.6]. Let (A,G, α) be a C∗-dynamical system. Sup-
pose that G acts freely on Â. Then the following conditions are equivalent:

(1) A has the weak Banach-Saks property.

(2) G is discrete and A×α G has the weak Banach-Saks property.

(3) G is discrete and A×αr G has the weak Banach-Saks property.

In [6, Theorem 2.6], the equivalence of (1) and (2) was shown. Since every

quotient of a C∗-algebra with the weak Banach-Saks property has the weak Banach-

Saks property [2, p. 6], Condition (2) obviously implies Condition (3). If G is

discrete, A is embedded into A×αrG. Hence Condition (3) then implies Condition
(1).

For a C∗-dynamical system (A,G, α), we say that α is pointwise unitary if
for every irreducible representation (π,Hπ) of A, there exists a strongly continuous
unitary representation u of G on Hπ such that

π(αt(a)) = utπ(a)u∗t

for all a ∈ A and t ∈ G.
In Theorem B above, the group which acts on A as an automorphism group is

discrete and S[π] consists only of the identity of the group at every [π] ∈ Â. Hence,
given a C∗-dynamical system (A,G, α), the situation opposite to that of Theorem
B is that G is compact and S[π] = G at every [π] ∈ Â. A result in such a situation
is the following:

Theorem C [6, Theorem 3.2]. Let (A,G, α) be a C∗-dynamical system and let
G be compact. We denote by Aα the fixed point algebra of A under α. Consider

the following conditions:

(1) A has the weak Banach-Saks property.

(2) A×α G has the weak Banach-Saks property.

(3) Aα has the weak Banach-Saks property.
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Then we have (1) =⇒ (2) =⇒ (3).
Furthermore, we suppose that G is (compact) abelian. Then the implication

(3) =⇒ (2) holds. If A is of type I and if α is pointwise unitary, the implication
(2) =⇒ (1) holds.

Now we turn to crossed products by coactions, and we briefly review their

definition. Let G be a locally compact group. We denote by λ the left regular
representation of G on L2(G). We define the representation λ̃ of L1(G) on L2(G)
by λ̃(f) =

∫
G f(t)λtdt for f ∈ L1(G). Then the reduced group C∗-algebra C∗

r (G)
of G is defined as the norm closure of λ̃(L1(G)) in the set of all bounded linear
operators on L2(G).

Let A be a C∗-algebra and denote by M(A⊗min C
∗
r (G)) the multiplier algebra

of the injective C∗-tensor product A⊗minC
∗
r (G). We then define the C∗-subalgebra

M̃(A⊗min C
∗
r (G)) of M(A⊗min C

∗
r (G)) by

M̃(A⊗min C
∗
r (G)) = {m ∈M(A⊗min C

∗
r (G))|m(1⊗ x), (1⊗ x)m

∈ A⊗min C
∗
r (G) for all x ∈ C∗

r (G)}.

We denote by WG the unitary operator on L
2(G×G) defined by

(WGξ)(s, t) = ξ(s, s−1t) for ξ ∈ L2(G× G) and s, t ∈ G.

Define the homomorphism δG from C∗
r (G) into M̃(C∗

r (G)⊗min C
∗
r (G)) by

δG(λ̃(f)) = WG(λ̃(f)⊗ 1)W ∗
G for f ∈ L1(G).

We say that an injective homomorphism δ from A into M̃(A ⊗min C
∗
r (G)) is a

coaction of a locally compact group G on A if δ satisfies:

(a) there is an approximate identity {ei} for A such that δ(ei) → 1 strictly in
M̃(A⊗min C

∗
r (G)),

(b) (δ ⊗ id)(δ(a)) = (id⊗ δG)(δ(a)) for all a ∈ A.
Furthermore, the coaction δ is said to be nondegenerate if it satisfies the
additional condition:

(c) for every nonzero ϕ ∈ A∗, there exists ψ ∈ C∗
r (G)∗ such that (ϕ⊗ψ)◦δ 6= 0.

(In (b) and (c), we implicitly extended δ to M(A ⊗min C
∗
r (G)), which is

ensured by Condition (a).)

Let δ be a coaction of a locally compact group G on A and let C0(G) be
the set of all continuous functions on G vanishing at infinity. We denote by Mf

the multiplication operator on L2(G) given by f ∈ C0(G), which is defined by
(Mfξ)(t) = f(t)ξ(t) for all ξ ∈ L2(G). Then the crossed product A×δ G of A by
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δ is theC∗-subalgebra of M̃(A⊗minC
∗
r (G)) generated by the set {δ(a)(1⊗Mf)|a ∈

A, f ∈ C0(G)}.
Suppose that δ is nondegenerate. If, for every irreducible representation π of A,

there exists a unitary W ∈M(π(A)⊗min C
∗
r (G)) such that

(π ⊗ id)(δ(a)) = W (π(a)⊗ 1)W ∗

for a ∈ A, then δ is called pointwise unitary.

Theorem 2.1. Let A be a C∗-algebra and let δ be a nondegenerate coaction

of a locally compact group G on A. Consider the following conditions:

(1) A has the weak Banach-Saks property and G is discrete.

(2) A×δ G has the weak Banach-Saks property.

Then we have (1) =⇒ (2). If δ is pointwise unitary and if the spectrum Â is a

Hausdorff space, then the implication (2) =⇒ (1) holds.

Proof. (1) =⇒ (2). It follows from [5] that there exists the dual action δ̂ of G
such that we have

(A×δ G)×
δ̂
G ∼= A⊗ C(L2(G)),

where C(L2(G)) denotes the C∗-algebra of all compact operators on L2(G). We
note here that A is of type I if and only if A⊗ C(L2(G)) is, and that Â is home-
omorphic to (A ⊗ C(L2(G))) .̂ Thus we see that A has the weak Banach-Saks

property if and only if A ⊗ C(L2(G)) does. Hence (A×δ G) ×
δ̂
G has the weak

Banach-Saks property. Since G is discrete, C∗
r (G) is unital. Since (A×δ G)×

δ̂
G

is generated by π̃(A ×δ G)(1 ⊗ 1 ⊗ C∗
r (G)), where π̃ is some faithful represen-

tation of A ×δ G (see [5] or [9, p. 768]), we see that A ×δ G is embedded into

(A ×δ G) ×
δ̂
G as a C∗-subalgebra. Since every C∗-subalgebra of a C∗-algebra

with the weak Banach-Saks property has also the weak Banach-Saks property [2],

we conclude that A×δ G has the weak Banach-Saks property.

(2) =⇒ (1). Since δ is pointwise unitary and Â is a Hausdorff space, it follows
from [9, Theorem 5.5] that the action of G induced by the dual action δ̂ is free

on (A ×δ G) .̂ Hence we see from Theorem B above that G is discrete and

that (A ×δ G) ×
δ̂
G has the weak Banach-Saks property. Since (A ×δ G) ×

δ̂
G

is isomorphic to A ⊗ C(L2(G)), A ⊗ C(L2(G)) also has the weak Banach-Saks
property. Thus we see that A has the weak Banach-Saks property.

The following Lemma is obtained as an application of Morita equivalence (see

[8, Lemma 2.1]). But we give a direct elementary proof.

Lemma 2.2. Let A be a C∗-algebra and let B be a hereditary C∗-subalgebra
of A. We denote by I(B) the closed ideal of A generated by B. Then B has the

weak Banach-Saks property if and only if I(B) has the weak Banach-Saks property.
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Proof. Suppose that B has the weak Banach-Saks property. For every nonzero

irreducible representation (π,H) of I(B), the restriction of π to B is not zero.

Hence the map π 7→ π|B induces a homeomorphism from Î(B) onto B̂. Hence,

if B̂(k) is empty for some natural number k, then Î(B)
(k)
is empty. On the other

hand, since B is postliminal, there exists x in B such that π|B(x) is compact
and nonzero. Hence π(x) is compact and nonzero on H . Thus we conclude that
I(B) is postliminal or, equivalently, of type I. Thus we see that I(B) has the weak
Banach-Saks property. Since the reverse implication is trivial, we complete the

proof.

Let X be a topological space. Then the nth derived set X(n) of X is defined

as follows: Put X(0) = X , and define X(n) as the set of all accumulation points of

X(n−1). We need the following Lemma to show Theorem 2.3 below.

Lemma D [6, Lemma 3.1]. Let X be a topological space and let {Oi}i∈I

be a family of open subsets in X . Suppose that X =
⋃

i∈I Oi. Then we have

X(k) =
⋃

i∈I O
(k)
i for each natural number k ∈ N.

Let A be a C∗-algebra and let δ be a nondegenerate coaction of a discrete group

G on A. Then we denote by Aδ the fixed point algebra of A under δ, which is
defined by

Aδ = {a ∈ A | δ(a) = a⊗ 1}.

Then Aδ is not zero [10, Remark 2.2]. Now we denote by Me the multiplication

operator defined by

(Meξ)(t) = ξ(e) for ξ ∈ l2(G),

where e denotes the identity of G.

Theorem 2.3. Let A be a C∗-algebra and let δ be a nondegenerate coaction

of a discrete group G on A. Consider the following conditions:

(1) A×δ G has the weak Banach-Saks property.

(2) Aδ has the weak Banach-Saks property.

Then we have (1) =⇒ (2). Conversely, if G is (discrete) amenable, then the
implication (2) =⇒ (1) holds.

Proof. (1) =⇒ (2). Since {a⊗ 1|a ∈ Aδ} is a C∗-subalgebra of A×δG which

is isomorphic to Aδ, Aδ has the weak Banach-Saks property.
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(2) =⇒ (1). Since Aδ is of type I, so is A ×δ G (see [10, Theorem 3.6]).

Hence we have only to show that the kth derived set ̂(A×δ G)
(k)
is empty for some

natural number k.
Let p = 1 ⊗Me ∈ M(A ×δ G). Then p is a projection, and it follows from

the proof of [10, Proposition 2.4] that the hereditary C∗-subalgebra p(A ×δ G)p
coincides with {(a ⊗ 1)(1 ⊗ Me)|a ∈ Aδ} = {a ⊗ Me|a ∈ Aδ}. Since Aδ is

isomorphic to {a ⊗Me|a ∈ Aδ} ⊂ A ×δ G [10, Proposition 2,4], it follows from

Lemma 2.2 that the closed ideal J of A×δG generated by {a⊗Me |a ∈ Aδ} has the
weak Banach-Saks property. By Theorem A, we can conclude that Ĵ(k) is empty

for some natural number k. Let {Ij} be the family of closed ideals of A×δ G such

that Î
(k)
j is empty for every j and let I be the closed ideal of A×δ G generated by⋃

Ij . Since we have Î =
⋃
Îj and since the spectrum of every closed ideal is an

open subset, it follows from Lemma D that Î(k) =
⋃
Î

(k)
j is empty. Thus, applying

Lemma D again, we easily see that I is the largest ideal of A×δG among all closed

ideals whose kth derived sets of the spectra are empty. Hence an easy application
of lemma D shows that I is invariant under every automorphism of A ×δ G; in

particular, I is δ̂-invariant for the dual action δ̂ of δ. Thus we see that there exists
a δ-invariant ideal B of A such that I = B ×δ G (see [4, 3.7]). Then we conclude

from the proof of [10, Theorem 3.6] that A = B, that is, I = A ×δ G. Hence

̂(A×δ G)
(k)

(= Î(k)) is empty. Thus we complete the the proof.

Note that every coaction of an amenable group is always nondegenerate [9,

Remarks 2.2].

Proposition 2.4. Let A be a C∗-algebra and let δ be a coaction of a compact
group G on A. If A×δ G has the weak Banach-Saks property, then A also has the

same property.

Proof. Since G is compact, C0(G) has the identity. Since A×δ G is generated

by {δ(a)(1⊗Mf)|a ∈ A, f ∈ C0(G)}, A is regarded as a C∗-subalgebra of A×δG.
Hence A has the weak Banach-Saks property.

We obtain the following corollary from Theorem 2.1, Theorem 2.3 and Propo-

sition 2.4.

Corollary 2.5. Let A be a C∗-algebra and let δ be a coaction of a finite group

G on A. Then the following conditions are equivalent:

(1) A has the weak Banach-Saks property.

(2) A×δ G has the weak Banach-Saks property.

(3) Aδ has the weak Banach-Saks property.
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3. REMARKS ON CROSSED PRODUCTS OF DUAL C∗-ALGEBRAS BY COACTIONS

In this section, we give results for dual C∗-algebras similar to Theorem 2.1,
Theorem 2.3, Proposition 2.4 and Corollary 2.5. We recall that a C∗-algebra A is
called dual if and only if it is isomorphic to a C∗-subalgebra of the C∗-algebra of

compact operators on some Hilbert space or, equivalently, every maximal abelian

subalgebra of A is generated by minimal projections [3, 4.7.20]. Since the C∗-

algebra of compact operators on some Hilbert space has the weak Banach-Saks

property, it follows that every dual C∗-algebra has the weak Banach-Saks property.

As is easily seen, A is a type-I C∗-algebra with discrete spectrum Â if and only

if it is a c0-sum of C∗-algebras of compact operators. Thus the C∗-algebra A

is dual if and only if it is a type-I C∗-algebra with discrete spectrum Â. Note
that dual C∗-algebras play an essential role in the study of C∗-algebras with the

weak Banach-Saks property. In fact, at the end of [2], Chu has shown that a C∗-
algebras A has the weak Banach-Saks property if and only if there are closed ideals
I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ A such that I1 and all the successive quotients are dual

C∗-algebras. For dual C∗-algebras, we have the result similar to Thoerem B as

follows.

Theorem E [6, Theorem 2.3]. Let (A,G, α) be a C∗-dynamical system. Sup-
pose that G acts freely on Â. Then the following conditions are equivalent:

(1) A is a dual C∗-algebra.

(2) G is discrete and A×α G is a dual C
∗-algebra.

(3) G is discrete and A×αr G is a dual C
∗-algebra.

In fact, the equivalence of (1) and (2) was shown in [6, Theorem 2.3], and (2)

=⇒ (3) =⇒ (1) are obvious.

We remark that by definition, every C∗-subalgebra of a dual C∗-algebra is dual.

As we easily see that A is a dual C∗-algebra if and only if A⊗C(L2(G)) is a dual
C∗-algebra, employing Theorem E now we can show the following result for dual

C∗-algebras similar to Theorem 2.1. In fact, the proof of Theorem 3.1 proceeds
along lines similar to those of the proof of Theorem 2.1. Hence we will leave the

details of the proof to the reader.

Theorem 3.1. Let A be a C∗-algebra and let δ be a nondegenerate coaction

of a locally compact group G on A. Consider the following conditions:

(1) A is a dual C∗-algebra and G is discrete.

(2) A×δ G is a dual C
∗-algebra.

Then we have (1) =⇒ (2). If δ is pointwise unitary and if the spectrum Â is a

Hausdorff space, then the implication (2) =⇒ (1) holds.
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Note that a C∗-algebra A is dual if and only if A is of type I and Â(1) is empty.

Hence we obtain the result on dual C∗-algebras, which is similar to Lemma 2.2,
that a hereditary C∗-subalgebra B of A is dual if and only if the closed ideal I(B)
of A generated by B is dual. Thus, using Lemma D, the following theorem can be
shown by modifying the proof of Theorem 2.3.

Theorem 3.2. Let A be a C∗-algebra and let δ be a nondegenerate coaction
of a discrete group G on A. Consider the following conditions:

(1) A×δ G is a dual C
∗-algebra.

(2) Aδ is a dual C∗-algebra.

Then we have (1) =⇒ (2). Conversely, if G is (discrete) amenable, then the
implication (2) =⇒ (1) holds.

Proposition 3.3. Let A be a C∗-algebra and let δ be a coaction of a compact
group G on A. If A×δ G is a dual C

∗-algebra, then A is also a dual C∗-algebra.

The proof of Proposition 2.4 is valid for Proposition 3.3. Hence we will leave

the details to the reader.

Corollary 3.4. Let A be a C∗-algebra and let δ be a coaction of a finite group
G on A. Then the following conditions are equivalent:

(1) A is a dual C∗-algebra.

(2) A×δ G is a dual C
∗-algebra.

(3) Aδ is a dual C∗-algebra.

This corollary follows from Theorem 3.1, Theorem 3.2 and Proposition 3.3.
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Added in proof: The reference [7] will appear as §3 in [6].
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