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EXISTENCE OF SOLUTIONS OF THE g-NAVIER-STOKES EQUATIONS

Hyeong-Ohk Bae and Jaiok Roh

Abstract. The g-Navier-Stokes equations in spatial dimension 2 are the fol-
lowing equations introuduced in [3]

@u

@t
¡ º¢u + (u ¢ r)u +rp = f ;

with the continuity equation
1

g
r ¢ (gu) = 0:

Here, we show the existence and uniqueness of solutions of g-Navier-Stokes
equations on Rn for n = 2;3.

1. INTRODUCTION

The governing equations for the fluid are the well-known incompressible Navier–
Stokes equations of the form

@u

@t
¡ º¢u +(u ¢ r)u +rp= f ;(1.1)

(r ¢u) = 0;(1.2)

with some initial and boundary conditions. Here, º and f are given and the velocity
u and the pressure p are the unknowns. The first equations are called the momentum
equations and the second one continuity equation. For the analysis on the Navier–
Stokes equations, refer to [1], [2], [4] and [5].

Consider the Navier–Stokes equations (1.1) and (1.2) on the spatial domain
­g := ­2 £ [0; g], where ­2 is a bounded region in the plane and g = g(x1;x2) is
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a smooth function defined on ­2 with 0 < m · g(x1;x2)·M , for (x1; x2) 2 ­2.
The 2D g-Navier-Stokes equations have been drived in [3] from the 3D Navier-
Stokes equations on ­g:

@u

@t
¡ º¢u +(u ¢ r)u+rp= f ;(1.3)

1

g

¡
r ¢ (gu)

¢
=
rg
g
¢u +r ¢u = 0(1.4)

in ­2 . Equation (1.3) can be written as

@u

@t
¡ º

g
(r ¢ (gr))u+ º(

rg
g
¢ r)u +(u ¢ r)u+rp= f:

Roh [3] proved the existence of solutions for periodic boundary conditions as
well as Dirichlet boundary conditions on bounded domains. Global attractors are
also discussed for suitable g. For these results, we need the smoothness of g and
the smallness of krgk1. Refer to [3] for the details on g-Navier–Stokes equations.

In this paper, we prove the existence of the solutions for the g-Navier-Stokes
equation (1.3)-(1.4) on the whole domain Rn.

In section 2, we give a short introduction for the g-Navier-Stokes equations. In
section 3, we review the solution space for the equations. In section 4, we consider
the nonlinear term and perturbation term. In section 5, we review the compactness
theorem in [5]. In section 6, we prove our main result about the existence. In
section 7, we show the solution obtained in section 6 is unique.

2. SHORT INTRODUCTION OF g-NAVIER-STOKES EQUATIONS

Let ­3 = ­2 £ [0; 1]. Let U, V be functions of y = (y1; y2; y3) 2 ­g where
(y1; y2) 2 ­2 and 0 · y3 · g(y1; y2). Then the change of variables

y1 = x1; y2 = x2; y3 = x3g(x1; x2)(2.1)

maps ­3 onto ­g. The standard 3D Navier-Stokes equations have the form

@U

@t
¡ º¢U +(U ¢ r)U +r© = F

r ¢U = 0

on ­g . We assume that U satisfy the boundary condition

U ¢n = 0 on @top­g [ @bottom­g(2.2)
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where

@top­g = f(y1; y2; y3) 2 ­g : y3 = g(y1; y2)g;

@bottom­g = f(y1; y2; y3) 2 ­g : y3 = 0g:

Let u(x1;x2;x3) = U(y1; y2; y3), where x = (x1;x2;x3) and y = (y1; y2; y3)
satisfy (2.1).

Now we define v = (v1;v2) as

vi = vi(x1;x2) =

Z 1

0
ui(x1; x2; x3) dx3 =

1

g(y1; y2)

Z g(y1 ;y2)

0
ui(y1; y2; y3) dy3;

for i = 1;2 and we get the following proposition.

Proposition 2.1. Assume that r ¢U = 0 in ­g and that (??) is valid. Then
one has

r2 ¢ (gv) =
@(gv1)

@x1
+
@(gv2)

@x2
=rg ¢ v + g (r2 ¢ v) = 0;

where r2 = ( @
@x1

; @
@x2

) and rg = ( @g
@x1

; @g@x2
).

Proof. See Roh [3]

Next, we need the following assumption.

Assumption 1. g(x) 2 C2(Rn) and 0 < m · g(x) ·M , for all x 2 Rn,
where m = m(g) and M = M(g). We also assume

krgk1 = sup
(x;y)2Rn

jrg(x;y)j < +1:

3. FUNCTIONAL SPACES

We consider the physical domain ­ = Rn for n= 2; 3. We denote by L2(­; g)
the space with the scalar product and the norm given by

hu; vig =

Z

­
(u ¢ v) g dx and juj2 = hu;uig;

where x = (x1; ¢ ¢ ¢ ;xn). Similarly, we will use the space H1(­; g) with the norm
by

kukH1(­;g) =
h
hu;uig +

nX

i=1

h@iu; @iuig
i1

2
;



88 Hyeong-Ohk Bae and Jaiok Roh

where @u
@xi

= @iu.

Remark 1. Since 0 < m · g(x) · M for all x 2 Rn, and g is smooth,
jujL2(Rn) is equivalent to jujg as well as kukH1(Rn) is equivalent to kukH1(Rn;g).

Let D(Rn) be the space of C1 functions with compact support contained in
Rn. The closure of D(Rn) in Wm;p(Rn) is denoted byWm;p

0 (Rn)(Hm
0 (Rn) when

p= 2).
For the mathematical setting, we define the spaces as the followings,

V = fu 2 D(Rn) : r ¢ (gu) = 0g
Hg = the closure of V in L2(Rn)

Vg = the closure of V in H1
0(R

n);

where Hg are endowed with the scalar product and the norm in L2(Rn; g), and Vg
are endowed with the scalar product and the norm in H1(Rn; g). The space Vg is
contained in Hg , is dense in Hg , and the injection is continuous. Let H0

g and V 0g
denote the dual spaces of Hg and Vg , and let i denote the injection mapping from
Vg into Hg. The adjoint operator i0 is linear continuous from H0 into V 0g , and is
one to one since i(Vg) = Vg is dense in Hg and i0(H0

g) is dense in V 0g since i is one
to one . Therefore H0

g can be indentified with a dense subspace of V 0g . Moreover,
by the Riesz representation theorem, we can identify Hg and H0

g , and we arrive at
the inclusions

Vg ½Hg =H0
g ½ V 0g ;

where each space is dense in the following one and the injections are continuous.
So we note that the scalar product in Hg of f 2 Hg and u 2 Vg is the same as the
scalar product of f and u in the duality between V 0g and Vg,

hf ;uig = (f ;u); 8f 2 Hg ; 8u 2 Vg :(3.1)

For each u in Vg, the form

v 2 Vg! ((u; v))g 2 R

is linear and continuous on Vg ; therefore, there exist an element of V 0g which we
denote by Au such that

hAu;vig = ((u; v))g ; 8v 2 Vg ;(3.2)

where

((u; v))g =
nX

i=1

hDiu; Divig:

Also, we denote

kuk2 = ((u;u))g =
nX

i=1

hDiu;Diuig:
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Therefore, we have

kuk2Vg = juj2 + kuk2;

where kukHg
= juj.

Problem 1. Given f 2L2(0;T ;V 0g) and u0 2 Hg , to find u satisfying

u 2 L2(0;T ;Vg); u0 2 L2(0; T;V 0g);

u0 + ºAu = f ; on (0; T);

u(0) = u0:

Lemma 3.1. Problem 1 has unique solution u and moreover u 2 C([0; T];Hg).

Proof. One can prove by similar method in Chapter 3, [5].

Remark 2. Assuming that f , u0 are sufficiently smooth, we can obtain as
much regularity as desired for u and p. For given f 2 L2(0; T;Hg) and u0 2 Vg,
one can obtain that

u 2 L2(0;T ;H2(­));

u0 2L2(0; T;Hg); and p 2L2(0; T;H1(­)):

For our problem, one should note that

¡1

g
(r ¢ gr)u =¡¢u¡ (

rg
g
¢ r)u:

Therefore, one obtains

h¡¢u; vig = ((u; v))g + h(rg
g
¢ r)u;vig = hAu;vig + h(rg

g
¢ r)u;vig;

for u; v 2 Vg .

4. NONLINEAR AND PERTURBATION TERMS

We define the trilinear form

b(u;v;w) =
nX

i;j=1

Z

Rn
ui(Divj)wjgdx;

where u;v;w lie in appropriate subspaces of L2(Rn; g) and Di = @
@xi

. Since
r ¢ gu =

P
iDi(gui) = 0, for u 2 Hg , one obtains
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b(u;v;w) =
nX

i;j=1

Z

Rn
ui(Divj)wjgdx

=¡
nX

i;j=1

Z

Rn
Di(gui)vjwjdx¡

nX

i;j=1

Z

Rn
guivj(Diwj)dx

=¡
nX

i;j=1

Z

Rn
guivj(Diwj)dx =¡b(u;w; v);

for sufficient smooth functions u; v;w 2 Hg. Therefore b(u;v;w) = ¡b(u;w;v)
and b(u;v; v) = 0, for smooth functions u;v;w 2 Hg .

For u, v in Vg, we denote by B(u;v) the element of V 0g defined by

hB(u;v);wig = b(u; v;w); 8w 2 Vg ;

and we set
B(u) = B(u;u) 2 V 0g ; 8u 2 Vg:

Before we estimate the nonlinear term B(u), let us look at the useful inequalities.

Lemma 4.1 If n = 2, then we have

kukL4(R2;g) · cjuj 12kuk 1
2 ; 8u 2 H1(R2; g):

and if n = 3, then we have

kukL4(R3;g) · cjuj 14kuk 3
4 ; 8u 2 H1(R3; g):(4.1)

Proof. One can easily see by the equivalence of the norms.

Lemma 4.2 We assume that u 2 L2(0;T ;Vg). Then the function Bu defined
by

hBu(t);vig = b(u(t);u(t);v); 8 u 2 Vg; a:e: t 2 [0; T];

belongs to L1(0; T; V 0g). Moreover, the function Cu defined by

hCu(t); vig = h(rg
g
¢ r)u;vig =

2X

i;j=1

Z

Rn

Dig

g
(Diuj)vjg dx = b(

rg
g
;u;v);

for all v 2 Vg , belong to L2(0;T ;Hg), and hence belong to L2(0;T ;V 0g).
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Proof. One can easily check by the previous lemma that for almost all t,
Bu(t) 2 V 0g . For u;v 2 Vg , one has

jhB(u);vigj = jb(u;u; v)j

= j
Z

Rn

nX

i;j=1

ui(Diuj)vjg dxj

= j
Z

Rn

nX

i;j=1

ui(Divj)ujg dxj

· ckvkkuk2L4(Rn;g) · ckvkVgkuk
2
L4(Rn;g) :

So, if n = 2, then

kB(u)kV 0g · ckuk2L4(R2 ;g) · cjuj kuk:

Also, if n = 3, then

kB(u)kV 0g · ckuk
2
L4(R2;g) · cjuj 12kuk 3

2 :

Hence, for n = 2; 3, one has that

kBukV 0g · ckuk
2
Vg ; 8 u 2 Vg ;(4.2)

for some constant c. Hence, we obtain
Z T

0

kBukV 0g dt · c

Z T

0

ku(t)k2Vg dt <+1

which implies that Bu belong to L1(0;T ;V 0g).
Next, for the estimate of Cu, we have

jhCu; vij = jPn
i;j=1

R
Rn

Dig
g (Diuj)vjg dxj

· ckrgk1kuk jvj:
(4.3)

So, one obtains

jCu(t)j · ckrgk1kuk:(4.4)

Hence, we have
Z T

0
jCu(t)j2dt · ckrgk21

Z T

0
kuk2dt · ckrgk21

Z T

0
kuk2Vgdt <+1

which implies that Cu(t) belong to L2(0;T ;Hg).
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5. COMPACTNESS

The following two propositions are stated in [5].

Proposition 5.1. Let X0, X and X1 be three Banach spaces such that

X0 ½ X ½X1;

the injection of X into X1 being continuous, and the injection of X0 into X is
compact. Then for every ´ > 0, there exist some constant c´ depending on ´ (and
on the spaces X0 , X, X1) such that:

kvkX · ´kvkX0
+ c´kvkX1

; 8v 2 X0:

Now, we assume that X0, X , X1, are Hilbert spaces with

X0 ½ X ½X1;(5.1)

the injections being continuous and

the injection of X0 into X is compact.(5.2)

If v is a function from R into X1, we denote by v̂ its Fourier transform

v̂(¿) =

Z 1

¡1
e¡2i¼t¿v(t) dt:

The derivative in t of order ° of v is the inverse Fourier transform of (2i¼¿)°v̂ or

dD°
t v(¿) = (2i¼¿)°v̂(¿):

For given ° > 0, we define the space

H°(R;X0;X1) = fv 2 L2(R;X0);D
°
t v 2 L2(R;X1)g:

This is a Hilbert space for the norm,

kvkH°(R;X0 ;X1) = fkvk2L2(R;X0) + kj¿ j°v̂k2L2(R;X1)g
1
2 :

We also define the subspace H°K of H°, for any set K ½R, as

H°K(R;X0;X1) = fu 2 H°(R;X0;X1); support u½ Kg:

Proposition 5.2. Let us assume that X0, X, X1 are Hilbert spaces which
satisfy (5.1) and (5.2).

Then for any bounded set K and any ° > 0, the injection of H°
K(R;X0;X1)

into L2(R;X) is compact.
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Remark 3. Let us recall the mathematical spaces for our problem. For the
mathematical setting, we defined the spaces as the followings,

V = fu 2 D(Rn); r ¢ (gu) = 0g
Hg = the closure of V in L2(Rn)

Vg = the closure of V in H1
0 (Rn);

where Hg are endowed with the scalar product and the norm in L2(Rn; g), and Vg
are endowed with the scalar product and the norm in H1(Rn; g). The space Vg is
contained in Hg , is dense in Hg, and the injection is continuous. But, the injection
is not compact. So, we can not use the previous compactness theorem. Hence, to
use the previous compactness theorem, we consider a bounded ball Q in Rn instead
of Rn and

V = fu 2 D(Q); r ¢ (gu) = 0g
Hg(Q) = the closure of V in L2(Q)

Vg(Q) = the closure of V in H1
0 (Q):

Then the space Vg(Q) is contained in Hg(Q), is dense in Hg(Q), and the injection
being continuous is compact. Therefore, we can use the previous compactness
theorem and we have the following lemma.

Lemma 5.3. If uk converges to u in L2(0;T ;Vg(Q))weakly andL2(0; T;Hg(Q))
strongly, then for any vector function w with components in C1

0 (Q),
Z T

0
b(uk(t);uk(t);w(t))dt !

Z T

0
b(u(t);u(t);w(t))dt:

Proof. We note that
Z T

0
b(uk;uk;w)dt =¡

Z T

0
b(uk;w;uk)

=¡
nX

i;j=1

Z T

0

Z

­
(uk)i(Diwj)(uk)j g dxdt:

These integrals converge to

¡
nX

i;j=1

Z T

0

Z

­
ui(Diwj)uj g dxdt = ¡

Z T

0
b(u;w;u)dt =

Z T

0
bg(u;u;w)dt;

because g is bounded function on Rn and w 2 C1
0(Q).
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6. PROOF OF EXISTENCE

The initial value problem of the g-Navier-Stokes equations is to find suitable
vector function u and scalar function p such that

u : ­£ [0; T]! Rn; p : ­£ [0; T]! R

satisfying

@u

@t
¡ º¢u+

nX

i=1

uiDiu +rp= f in ­£ (0; T);

1

g
(r ¢ (gu)) =r ¢u + (

rg
g
¢u) = 0 in ­£ (0; T);

u(x;0) = u0(x) in ­:

Problem 2. For f 2 L2(0; T; V 0g) and u0 2 Hg , to find u 2 L2(0; T; Vg)
satisfying

d

dt
(u;v)g + º((u;v))g +b(u;u;v)

= hf ; vig ¡ h(rgg ¢ r)u;vig 8v 2 Vg
(6.1)

and

u(0) = u0:(6.2)

If u 2 L2(0; T; Vg) satisfies the equation (6.1), then by (3.1), (3.2) and lemma
4.2, one can write the equation (6.1) as

d

dt
hu; vi= hf ¡ ºAu¡Bu¡ Cu;vi; 8 v 2 Vg :

One note that since Au belong to L2(0; T; V 0g), the function f ¡ ºAu¡Bu¡Cu

belong to L1(0;T ;V 0g).

Theorem 6.1. Assume that f 2 L2(0; T; V 0g) and u0 2 Hg . Then there exist
at least one solution u of problem 2. Moreover,

u 2 L1(0;T ;Hg)

and u is weakly continuous from [0; T] into Hg.

Proof. We apply the Galerkin procedure. Since Vg is seperable and V is dense
in Vg, there exists a sequence w1; ::::;wm; ::: of elelments of V, which is free and
total in Vg . For each m we define an approximate solution um of equation (6.1) as

um =
mX

i=1

Áim(t)wi
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which satisfies

(u0m(t);wj) + º((um(t);wj))g ¡ b(
rg
g
;um(t);wj)

+b(um(t);um(t);wj) = hf(t);wjig ;
(6.3)

for t 2 [0;T ], j = 1; :::; m, and um(0) = u0m, where u0m is the orthogonal
projection in Hg of u0 onto the space spanned by w1; :::;wm. Then one can get

mX

i=1

(wi;wj)Á
0
im(t) + º

mX

i=1

((wi;wj))gÁim(t)

+
mX

i

b(
rg
g
;wi;wj)Áim(t) +

mX

i;l=1

b(wi;wl;wj)Áim(t)Álm(t)

= hf(t);wjig :

Inverting the nonsingular matrix with elements hwi;wjig , 1 · i; j · m, we can
write the differential equations in the usual form

Á0im(t) +
mX

j=1

®ijÁjm(t) +
mX

j;k=1

®ijkÁjm(t)Ákm(t) =
mX

j=1

¯ijhf(t);wjig ;(6.4)

where ®ij , ®ijk, ¯ij 2R. Let

Áim(0) = the ith component of u0m:(6.5)

The nonlinear ordinary differential system (6.4) with the initial condition (6.5) has
a maximal solution defined on some interval [0; tm]. If tm < T , then jum(t)j must
tend to +1 as t ! tm; the a priori estimates we shall prove later show that this
does not happen and therefore tm = T . To do that, we need several estimates.

(i) We multiply (6.3) by Ájm(t) and add these equations for j = 1; :::;m to get

(u0m(t);um(t)) + ºkum(t)k2 = hf(t);um(t)ig¡ b(
rg
g
¢ r)um(t);um(t)):

Then we write

d

dt
jum(t)j2 + 2ºkum(t)k2 = 2hf(t);um(t)ig + 2b(

rg
g
¢ r)um(t);um(t))

· 2kf(t)kV 0 kum(t)kV + 2
m jrgj1jum(t)jkum(t)k+ kumk2;

· ºkum(t)k2 + 8
ºkf(t)k

2
V 0 + 2

ºm2 jrgj21jum(t)j2 + ºjumj2;

so that

d

dt
jum(t)j2 + ºkum(t)k2 · 8

º
kf(t)k2

V 0 + ®jum(t)j2;(6.6)
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where ® = 2
ºm2 jrgj21 + º .

Hence, one obtains

d

dt
jum(t)j2 · ®jum(t)j2 +

8

º
kf(t)k2

V 0;

where ® = 2
ºm2 jrgj21. So, by the usual method of the Gronwall inequality, we have

jum(t)j2 · e®t(jum(0)j2 +
8

º

Z t

0
jf(s)j2V 0gds):

By the assumption the right side of the above inequality is uniformly bounded for
s 2 [0;T ] and m.

Hence

sup
s2[0;T ]

jum(s)j2 · e®T (jum(0)j2 +
8

º

Z T

0
jf(s)j2V 0gds)

which implies that

the sequence um remains in a bounded set of L1(0;T ;Hg):(6.7)

(ii) For the convenience, let us define

K(T) = e®T (jum(0)j2 +
8

º

Z T

0
jf(s)j2V 0gds):

Now, we integrate (6.6) from 0 to T to get

jum(T)j2 + º

Z T

0
kum(t)k2 dt

· ju0mj2 +
8

º

Z T

0

kf(t)k2
V 0 dt + ®

Z T

0

jum(t)j2dt

· ju0j2 +
8

º

Z T

0
kf(t)k2

V 0 dt+ ® K(T) T:

Therefore,

the sequence um remains in a bounded set of L2(0; T; Vg):(6.8)

(iii) Let ~um denote the function from R into Vg, which is equal to um on [0; T]
and to 0 on the complitement of this interval. The Fourier transform of ~um is
denoted by ûm. Then, we want to show that there exist a positive constant c and °
such that

Z 1

¡1
j¿ j2° jûm(¿)j2 d¿ · c:(6.9)
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So, since the sequence um remains in a bounded set of L2(0;T ;Vg),

the sequence ~um remains in a bounded set of H°(R; Vg ;Hg):(6.10)

It is classical that since ~um has two discontinuities, at 0 and T , the distribution
derivative of ~um is given by

d

dt
~um = ~Ám +um(0)±0 ¡um(T )±T;

where ±0 and ±T are the Dirac distributions at 0 and T , and Ám = u0m is the
derivative of um on [0;T ]. Therefore by (6.3), one obtains that

d

dt
h~um;wjig = h~fm;wjig + hu0m;wjig±0 ¡hum(T);wjig±T ;(6.11)

for j = 1; :::; m, where ±0, ±T are Dirac distributions at 0 and T , fm = f¡ºAum¡
Bum ¡ Cum, and ~fm = fm on [0; T], 0 outside this interval. By the Fourier
transform, (6.11) gives

2i¼¿hûm;wjig = hf̂m;wjig + hu0m;wjig
¡hum(T);wjig exp(¡2i¼T ¿);

(6.12)

ûm and f̂m denoting the Fourier transforms of ~um and ~fm respectively. We multiply
(6.12) by ^Ájm(¿)(=Fourier transform of ~Ájm) and add the resulting equations for
j = 1; :::;m; we get:

2i¼¿ jûm(¿)j2 = hf̂m(¿); ûm(¿)ig + hu0m; ûm(¿)ig
¡ hum(T ); ûm(¿)ig exp(¡2i¼T ¿):

Because of inequality (3.2), (4.2), (4.3) and (4.4) one obtains
Z T

0
kfm(t)kV 0g dt ·

Z T

0
(kf(t)kV 0g +ºkum(t)k+ckrgk1 kumk+ckum(t)k2Vg) dt:

Therefore, fm(t) belong to a bounded set in the space L1(0; T; V 0g). Hence,

sup
¿2R

kf̂m(¿)kV 0g · constant; 8m:

So, by using
jum(0)j ·K(T ); jum(T )j ·K(T);

we deduce from (6.12) that

j¿ jjûm(¿)j2 · c2kûm(¿)kVg + c3jûm(¿)j
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or

j¿ jjûm(¿)j2 · c4kûm(¿)kVg :(6.13)

For ° fixed, ° < 1
4 , we observe that

j¿ j2° · c5(°)
1 + j¿ j

1 + j¿ j1¡2°
; 8¿ 2 R:

Thus, by (6.13), we have
Z +1

¡1
j¿ j2°jûm(¿)j2 d¿ · c5(°)

Z +1

¡1

1 + j¿ j
1 + j¿ j1¡2°

jûm(¿)j2 d¿

· c6

Z +1

¡1

kûm(¿)kVg
1 + j¿ j1¡2°

d¿ + c7

Z +1

¡1
kûm(¿)k2

Vg d¿:

Since um 2L2(0;T ;Vg), by the Parseval equality
Z +1

¡1
kûm(¿)k2Vg d¿ < constant:

Also, by the Schwarz inequality and the Parseval equality, one obtains

Z +1

¡1

kûm(¿)kVg
1 + j¿ j1¡2°

d¿ ·
µZ +1

¡1

1

(1 + j¿ j1¡2°)2
d¿

¶1
2
µZ +1

¡1
kum(t)k2Vgdt

¶1
2

;

which is finite since ° < 1
4 . So, the proof of (6.9) is achieved and um 2

H°(R;Vg ;Hg).
Therefore, so far, we obtained that um remains in a bounded set of L1(0; T;Hg),

L2(0;T ;Vg) and H°(R; Vg ;Hg).
The estimates (6.7) and (6.8) enable us to assert the existence of an element

u 2 L2(0;T ;Vg) \L1(0;T ;Hg) and a sub-sequence um0 such that

um0 ! u in L2(0; T; Vg) weakly(6.14)

and

um0 ! u in L1(0;T ;Hg) weak-star(6.15)

as m0 !1. For any ball Q included in Rn, the injection of Vg(Q) into Hg(Q) is
compact and (6.10) shows that umjQ belong to a bounded set of H°(R; Vg(Q);Hg(Q)).
Then, proposition 5.2 implies that

um0jQ! ujQ in L2(0;T ;Hg(Q)); strongly 8 Q:
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Similarly, for any support Qj of wj , we have

um0jQj ! ujQj in L2(0;T ;Hg(Qj)); strongly:(6.16)

Let Ã be a continuously differentiable function on [0; T] with Ã(T) = 0. We
multiply (6.3) by Ã(t), and then integrate by parts. This leads to the equation

¡
Z T

0
(um(t);Ã0(t)wj)dt+ º

Z T

0
((um(t);wjÃ(t)))dt

+

Z T

0
b(um(t);um(t);wjÃ(t))dt +

Z T

0
b(
rg
g
;um(t);wjÃ(t))dt

= (u0m;wj)Ã(0) +

Z T

0

hf(t);wjÃ(t)igdt:

One should note that each term is same value when we replace um by umjQj .
Therefore, by passing to the limit with the sequence m0, one obtains from (6.14),
(6.15) and (6.16) that

¡
Z T

0

(u(t); vÃ0(t))dt + º

Z T

0

((u(t);vÃ(t)))dt

+

Z T

0
b(u(t);u(t); vÃ(t))dt+

Z T

0
b(
rg
g
;u(t); vÃ(t))dt

= (u0; v)Ã(0) +

Z T

0
hf(t); vÃ(t)igdt:

(6.17)

Also, we note that the limit holds for v = w1, w2 , ¢ ¢ ¢ ; by linearity this equation
holds for v = any finite linear combination of the wj, and by a continuity argument
(6.17) is still true for any v 2 Vg . Now writing, in particular, (6.17) with Ã =
Á 2 D((0; T)), we see that u satisfies (6.1) in the distribution sense.

Finally, it remains to prove that u satisfies (6.2). For this we multiply (6.1) by
Ã, and integrate. After integrating the first term by parts, we get

¡
Z T

0
(u(t); vÃ0(t))dt + º

Z T

0
((u(t); vÃ(t)))dt

+

Z T

0

b(u(t);u(t); vÃ(t))dt +

Z T

0

b(
rg
g
;u(t); vÃ(t))dt

= (u(0); v)Ã(0)+

Z T

0
hf(t); vÃ(t)igdt:

By comparison with (6.17),

(u(0)¡ u0; v)Ã(0) = 0:

We can choose Ã with Ã(0) = 1; thus

(u(0)¡u0;v) = 0; 8v 2 Vg ;
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which implies (6.2). The proof of continuity comes from usual continuity lemma.

7. UNIQUENESS OF SOLUTIONS OF PROBLEMS 2

Lemma 7.1. If n= 2, then we have

jb(u;v;w)j · cjuj12 kuk 1
2 kvk jwj12 kwk 1

2 ;(7.1)

for all u;v;w 2 H1(Rn). Also, if u belong to L2(0;T ;V ) \ L1(0; T; Vg), then
Bu belong to L2(0;T ;V 0g) and

kBukL2(0;T ;V 0) · 2
1
2 jujL1(0;T ;H)kukL2(0;T ;V ):(7.2)

If n= 3, we have

jb(u;u; v)j · ckukL4(R3) kuk kvkL4(R3)(7.3)

jb(u;u;v)j · cjuj14 kuk 7
4 kvkL4(R3):(7.4)

Proof. (7.1) and (7.3) come from (2.1) and (4.1), respectively. And (7.2) is
from (7.1).

Teorem 7.2. If n = 2 then the solution of problem 2 given by theorem 1 is
unique.

Proof. Let us assume that u1 and u2 are two solutions of problem 2, and let
u = u1¡ u2. Then, we have

u0 + ºAu+ Cu =¡Bu1 +Bu2;

u(0) = 0:

We take a.e. in t the scalar product of (7.1) with u(t) in the duality between Vg
and V 0g . Then one obtains

d

dt
ju(t)j2 +2ºku(t)k2 + 2b(rgg ;u(t);u(t))

= 2b(u2(t);u2(t);u(t))¡ 2b(u1(t);u1(t);u(t))

=¡2b(u(t);u2(t);u))

(7.5)

Also, by (7.1), we have

j2b(u(t);u2(t);u))j · cju(t)j ku(t)k ku2(t)k

· ºku(t)k2 + c2

º ju(t)j2ku2(t)k2;
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and

j2b(rgg ;u(t);u(t))j · 2ckrgk1kuk juj

· ºku(t)k2 + c2

º krgk
2
1ju(t)j2:

(7.6)

Therefore, we have

d

dt
ju(t)j2 ·

µ
c2

º
ku2(t)k2 +

c2

º
krgk21

¶
ju(t)j2:

So, one has

d

dt

·
Exp

µZ t

0

(
8

º
ku2(t)k2 +

c2

º
krgk21)ds

¶
¢ ju(t)j2

¸
· 0:

Hence, we get
ju(t)j2 · 0; 8 t 2 [0;T ]:

Thus, u1 = u2.
For the case n = 3, we have different theory.

Theorem 7.3. If n = 3, then there is at most one solution of problem 2 such
that

u 2 L2(0;T ;Vg) \L1(0;T ;Hg);(7.7)

u 2L8(0;T ;L4(R3)):(7.8)

Proof. Let us assume that u1 and u2 are two solutions of problem 2 which
satisfies (7.7) and (7.8) and let u = u1 ¡u2. Then, by (7.5)

d

dt
ju(t)j2 +2ºku(t)k2 +2b(

rg
g
;u(t);u(t))

=¡2b(u(t);u2(t);u)) = 2b(u(t);u(t);u2(t)):
(7.9)

Now, we have from (7.4) and young inequality (p= 8
7; q = 8; ² = º) that

j2b(u(t);u(t);u2(t))j · ºku(t)k2 +
c8

º7
ju(t)j2 ku2(t)k8L4(R3):(7.10)

So, by (7.6), (7.9) and (7.10), one obtains that

d

dt
ju(t)j2 ·

µ
c8

º7 ku2(t)k8L4(R3) +
c2

º
krgk21

¶
ju(t)j2:
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So, one has

d

dt

·
Exp

µZ t

0
(
c8

º7
ju(t)j2 ku2(t)k8L4(R3) +

c2

º
krgk2

1)ds

¶
¢ ju(t)j2

¸
· 0:

Hence, we get
ju(t)j2 · 0; 8 t 2 [0; T]:

Thus, u1 = u2.
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