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EXISTENCE OF SOLUTIONS OF THE g-NAVIER-STOKES EQUATIONS

Hyeong-Ohk Bae and Jaiok Roh

Abstract. The g-Navier-Stokes equations in spatial dimension 2 are the fol-
lowing equations introuduced in [3]

Z—?—yAu+(u~V)u+Vp:f,

with the continuity equation

1
-V - (gu) = 0.
p (gu)

Here, we show the existence and uniqueness of solutions of g-Navier-Stokes
equations on R™ for n = 2,3.

1. INTRODUCTION

The goveming equations for the fluid are the well-known incompressible Navier—
Stokes equations of the form

1.1) gt—u—uAu+(u-V)u+Vp:f,

(12) (V-u)=0,

with some initial and boundary conditions. Here, v and f are given and the velocity
u and the pressure p are the unknowns. The first equations are called the momentum
equations and the second one continuity equation. For the analysis on the Navier—
Stokes equations, refer to [1], [2], [4] and [5].

Consider the Navier—Stokes equations (1.1) and (1.2) on the spatial domain
Qg := S x [0, g], where )y is a bounded region in the plane and g = g(x1,x2) is
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a smooth function defined on 2 with 0 < m  g(z1,22) M, for (x1, x2) € Qa.
The 2D g-Navier-Stokes equations have been drived in [3] from the 3D Navier-
Stokes equations on €2

(1.3) %I—VAu—f—(u-V)u—i—Vp:f,
(1.4) ;(V-(gu)):%-u+V~u:0

in {%2. Equation (1.3) can be written as

M _ Vg ()t (Y Vyu+(u- Vyut Vp=f.
ot g g

Roh [3] proved the existence of solutions for periodic boundary conditions as
well as Dirichlet boundary conditions on bounded domains. Global attractors are
also discussed for suitable g. For these results, we need the smoothness of g and
the smallness of ||V g||.. Refer to [3] for the details on g-Navier—Stokes equations.

In this paper, we prove the existence of the solutions for the g-Navier-Stokes
equation (1.3)-(1.4) on the whole domain R™.

In section 2, we give a short introduction for the g-Navier-Stokes equations. In
section 3, we review the solution space for the equations. In section 4, we consider
the nonlinear term and perturbation term. In section 5, we review the compactness
theorem in [5]. In section 6, we prove our main result about the existence. In
section 7, we show the solution obtained in section 6 is unique.

2. SHORT INTRODUCTION OF g-NAVIER-STOKES EQUATIONS

Let 3 = Q2 x [0,1]. Let U, V be functions of y = (y1,32,y3) € 4 where
(y1,42) € Q2and 0 y3  g(y1,y2). Then the change of variables

2.1 Y1 =21, Y2 = T2, y3 = v39(T1, T2)
maps 23 onto €2,. The standard 3D Navier-Stokes equations have the form

%—Ij—VAU+(U-V)U+V<I>:F

V.-U=0
on §),. We assume that U satisfy the boundary condition

(22) U-n=0 on 6topQg U 6bottong
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where
8t0PQg = {(y17y27y3) € Qg Y3 :g(yl,?ﬂ)}»
8bottong = {(yla Y2, y3) S Qg L Y3 = O}

Let u(z1,z2,23) = U(y1, y2, y3), where x = (z1,22,23) and y = (y1, y2, ¥3)
satisfy (2.1).
Now we define v = (v, va) as

1 9(1,y2)
) /0 ui(ylay27y3) dy37

1
v =vi(x1,220) = w; (21, 22, 23) dog = ———
7 Z( 1, 2) A Z( 1, L2, 3) 3 g(y1,y2

for + = 1,2 and we get the following proposition.

Proposition 2.1.  Assume that V - U = 0 in Qg and that (??) is valid. Then
one has

d(gvy) + 0(gva)

Va-(gv) = Ory 0z

:ng+g(VQV):O,

o) o) _ [ O O\
where VQ = <8_371’%) and Vg = (ax—gl, %)

Proof. See Roh [3]

Next, we need the following assumption.

Assumption 1. g(x) € C?(R") and 0 <m g(x) M, for all x € R",
where m = m(g) and M = M(g). We also assume

IVglloo = sup [Vg(z,y)| < +oo.
(z,y)eR™

3. FUNCTIONAL SPACES

We consider the physical domain = R" for n = 2, 3. We denote by L?(£2, g)
the space with the scalar product and the norm given by

vy = [(av)gdx and  fuf® = (u g,

where X = (21, ++ ,Zy). Similarly, we will use the space H' (), g) with the norm
by

n

[l 1) = () + DO 05, |,

=1
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Ou _ o
where Do — ou

Remark 1. Since 0 <m g(x) M forall x € R", and g is smooth,
lu|L2(rny is equivalent to [ufg as well as [|ul| g1 gy is equivalent to [[uf| g1 (gn g)-
Let D(R™) be the space of C* functions with compact support contained in
R". The closure of D(R™) in W™ (R") is denoted by Wy™* (R™)(Hg"(R™) when
p=2).
For the mathematical setting, we define the spaces as the followings,
V={ueDR"): V- (gu) =0}
H, = the closure of V in L*(R")
V, = the closure of V in Hj(R"),

where H, are endowed with the scalar product and the norm in L*(R",g), and V,
are endowed with the scalar product and the norm in H!(R",g). The space Vj is
contained in Hy, is dense in Hy, and the injection is continuous. Let H, 5/] and V;
denote the dual spaces of H, and V, and let ¢ denote the injection mapping from
Vg into Hy. The adjoint operator 7’ is linear continuous from H’ into V7, and is
one to one since i(V,) = V; is dense in H, and i (H,) is dense in V since i is one
to one . Therefore H ; can be indentified with a dense subspace of Vg’. Moreover,

by the Riesz representation theorem, we can identify H, and H, and we arrive at
the inclusions
R 2 1 /
Vo CHy=H,CV,,

where each space is dense in the following one and the injections are continuous.
So we note that the scalar product in Hy of f € Hy and u € Vj is the same as the
scalar product of f and u in the duality between Vg’ and V,

(3.1) (f,u)g= (f,u), Vfe H;, Vuelj.
For each u in Vj, the form
veVy;— ((u,v)geR

is linear and continuous on Vj; therefore, there exist an element of Vé’ which we
denote by Au such that

(3.2 (Au,v), = (w,v),, Y e,

where
n

(w,v))y = Y (Diu, Div),.

i=1

Also, we denote
n

lul® = ((u,w), =Y (Diu, D),

=1
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Therefore, we have
hall¥, = [uf*+ [,
where |[ul|, = |ul.
Problem 1. Given f € L?(0,T; V) and ug € Hy, to find u satisfying
ue L*0,T;Vy), u € L*0,T;Vy),
u +vAu=f, on (0,7),

u(0) = up.

Lemma 3.1. Problem I has unique solution uand moreover u € C([0,T]; Hy).
Proof.  One can prove by similar method in Chapter 3, [5]. ]

Remark 2. Assuming that f, ug are sufficiently smooth, we can obtain as
much regularity as desired for u and p. For given f € L?(0,T; Hy) and ug € V,
one can obtain that

u e I7(0,T; H*(),
u’ € L*(0,T; Hy), and p € L*(0, T; H'(Q)).
For our problem, one should note that

1
—E(V -gV)u=—Au— (% -V)u.

Therefore, one obtains

(—Au, v)y = ((u,v))g + <<% V), v)g = (Au,v)y + <<%- V)u, vy,

foru,v e V.

4. NONLINEAR AND PERTURBATION TERMS

We define the trilinear form

b(u,v,w) = Z/ u;(Div;)wjgdz,

1,7=1

where u,v, w lie in appropriate subspaces of L?(R",g) and D; = a‘z. Since

V.gu=>",Di(gu;) =0, for u € Hy, one obtains
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b(u,v,w) Z/ w(D;vj)wjgdz

,Jl

:—Z D (gw)vijwjdr — Z/ gu;v;(Dyw;)dz

2,j=1 1,5=1
= —Z/ guvi(Diw;)dr = —b(u, w, v),
ij=171"
for sufficient smooth functions u, v,w € H,. Therefore b(u,v, w) = —b(u, w,v)

and b(u, v, v) = 0, for smooth functions u,v,w € H,,.
For u, v in Vj, we denote by B(u,v) the element of V] defined by

(B(u,v),w); =b(u,v,w), VweV,

and we set
B(u) = B(u,u) €V,, VueV,

Before we estimate the nonlinear term B(u), let us look at the useful inequalities.
Lemma 4.1 [fn =2, then we have
1, .1
lullsgeg)  clul2ull?, Vue H'(R?g).
and if n = 3, then we have

1 3
(4.1) lullsgsg) clultlluls, vue HY(Rg).

Proof. One can easily see by the equivalence of the nomms. [ |

Lemma 4.2 We assume that u € L*(0,T;V,). Then the function Bu defined
by
(Bu(t),v)g =b(u(t),u(t),v), Vu eV, ae. tel0,T],

belongs to L(0,T; V,). Moreover; the function Cu defined by

(Cult), ¥y — (T Vyavig = 3 /Rn

Vg dx-b(E u,v),
g ig=1 g

for all v € Vy, belong to L*(0,T; Hy), and hence belong to L*(0, T} V7).



Existence of Solutions of the g-Navier-Stokes Equations 91

Proof. One can easily check by the previous lemma that for almost all ¢,
Bu(t) € V. Foru,v €V, one has

[(B(w),v)g| = [b(u,u,v)]

= | /n Z ui(Diuj)ng dX’

i,j=1
n

= | /n Z w;(D;vj)u;g dx|

4,j=1
2 2
clvillulzamngy — clvily, lalzsgn g)-

So, if n = 2, then
2
[1B)lly;  clulfagzy) cullul.
Also, if n = 3, then
1, .3
IB@)lly, cllulZage, —cul?|ulz.
Hence, for n = 2, 3, one has that
42) 1Bully;  cllulf,, Yue,

for some constant c. Hence, we obtain

T T
AHBuHng dt CA [, dt < +oo

which implies that Bu belong to L (0,T’; V).
Next, for the estimate of Cu, we have

(Cu, V)| =[>0 1 Jrn %(Diuj)ng dx|

clIValloollull [vl-

4.3)

So, one obtains
4.4) ICu(t)] <[Vl
Hence, we have
T T T
A Cu(t)2dt |Vl /0 lul2dt ¢ gl A 2, dt < +o0

which implies that Cu(t) belong to L?(0,7; Hy). ]
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5. COMPACTNESS
The following two propositions are stated in [5].
Proposition 5.1. Let X, X and X7 be three Banach spaces such that
XoC X C Xy,
the injection of X into X1 being continuous, and the injection of Xo into X is
compact. Then for every n > 0, there exist some constant c, depending on 7 (and

on the spaces Xo, X, X1) such that:

IVllx 2lviix, + ellviix,, ¥v e Xo.
Now, we assume that X, X, X, are Hilbert spaces with
(5.1 Xo C X C Xi,
the injections being continuous and
(5.2) the injection of Xy into X is compact.

If v is a function from R into X7, we denote by Vv its Fourier transform
oo .
9(r) = / e 27T (1) dt.
The derivative in ¢ of order 7y of v is the inverse Fourier transform of (2i77)7¥ or
Dv(r) = (2imr)¥(r).
For given v > 0, we define the space
H(R; Xo,X1) = {v € L*(R; Xo),D;'v € I*(R; X1)}.
This is a Hilbert space for the norm,
_ 2 P 3
||V||Hw(R,XO,X1) = {HVHL2(R;X0) +[I7] V”LQ(R;Xl)}Q'
We also define the subspace 7-[}’{ of H7, for any set K C R, as
M) (R; Xo,X1) = {u e H'(R; Xo,X1), support u C K}.
Proposition 5.2.  Let us assume that Xo, X, X1 are Hilbert spaces which
satisfy (5.1) and (5.2).

Then for any bounded set K and any vy > 0, the injection of H};(R; Xo, X1)
into L>(R, X) is compact.
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Remark 3. Let us recall the mathematical spaces for our problem. For the
mathematical setting, we defined the spaces as the followings,

V ={ueDR"), V- (qu) =0}
H, = the closure of V in L?*(R")

V; = the closure of V in H}(R"™),

where H, are endowed with the scalar product and the norm in L?(R", g), and V,
are endowed with the scalar product and the norm in H'(R", g). The space V is
contained in Hy, is dense in Hy, and the injection is continuous. But, the injection
is not compact. So, we can not use the previous compactness theorem. Hence, to
use the previous compactness theorem, we consider a bounded ball @ in R instead

of R™ and
V ={ueD(Q), V-(9u) =0}
Hy(Q) = the closure of V in L?(Q)
V4(Q) = the closure of V in H}(Q).
Then the space V,(Q) is contained in Hy(Q), is dense in Hy(Q), and the injection

being continuous is compact. Therefore, we can use the previous compactness
theorem and we have the following lemma.
Lemma 5.3. [fuy, converges to win L*(0,T;V,(Q)) weakly and L*(0, T; Hy(Q))
strongly, then for any vector function w with components in C3(Q),
T T
| s 0. w1~ [ vuo.u), wio)ar
0 0
Proof. We note that
T T
/ b(ukv uk’aw)dt = _/ b(ukaw7 uk)
0 0
n_ AT
__ Z/ /(uk)i(Diwj)(uk)j g dxdt.
These integrals converge to
n T T T
- Z/ /ui(Diwj)uj g dxdt = —/ b(u, w, u)dt:/ bg(u, u, w)dt,
i=1J0 Ja 0 0

because g is bounded function on R" and w € C}(Q). [ |
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6. PROOF OF EXISTENCE

The initial value problem of the g-Navier-Stokes equations is to find suitable
vector function u and scalar function p such that

u:Qx[0,7]—-R", p:Q2x[0,7]—R
satisfying

E—yAu—}— wDu+Vp=f inQx(0,7),
1

i(v.(gu))zv.qu(%-u):O in Qx (0,7),

ou i
1=

u(x,0) =ug(x) in Q.

Problem 2. For f € L?(0,T;V,) and wp € Hy, to find u € L*(0,T; V)
satisfying

d
V) tr((y)y +b(uu,v)

6.1)
= <f7 V>g - <(Zgg ’ V)U,V>g Vv e va

and

6.2) u(0) = uo.

If u e L%(0,T; V,) satisfies the equation (6.1), then by (3.1), (3.2) and lemma
4.2, one can write the equation (6.1) as

d
%<u,v): (f —vAu— Bu—Cu,v), Vvel,.

One note that since Au belong to L%(0, T} V;), the function f — vAu— Bu—Cu
belong to L (0,T; V).
Theorem 6.1.  Assume that f € L?(0, T; V) and wg € Hy. Then there exist
at least one solution u of problem 2. Moreover,
ue L=(0,T; Hy)

and u is weakly continuous from [0, T into H,.

Proof. We apply the Galerkin procedure. Since V; is seperable and V is dense
in V,, there exists a sequence wi, ....,W,,, ... of elelments of V, which is free and
total in V;. For each m we define an approximate solution u,, of equation (6.1) as

w, = Z Bimn ()W ;
=1
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which satisfies

’ Vg
63 (D) )y b ) w)

+b(um (t), wn(t), wj) = (£(2), wj)g,

for t € [0,T], j = 1,...,m, and u,,(0) = ug,,, where uy,, is the orthogonal
projection in Hy of ug onto the space spanned by wy, ..., w,,. Then one can get

Z(Wi,wj)qsgm(t) + VZ((Wi7Wj))g¢im(t)

+Zb( y Wi, Wj )im (t) + Z b( WZ7WI7WJ)¢””< )Pim(t)

3,l=1
= (£(t), wj)g-

Inverting the nonsingular matrix with elements (w;, w;)g, 1 ¢,j  m, we can
write the differential equations in the usual form

64) Pyt +Z%¢>Jm + Z i Bjm (£) B (1) Zﬁ”
7j=1 Jk=1

where QG5 ijk, ,Bij €R. Let

6.5) bim(0) = the i** component of uyy,,.

The nonlinear ordinary differential system (6.4) with the initial condition (6.5) has
a maximal solution defined on some interval [0,¢,,). If ¢, < T, then |u,(t)| must
tend to 400 as t — t,,,; the a priori estimates we shall prove later show that this
does not happen and therefore ¢, = T. To do that, we need several estimates.

(1) We multiply (6.3) by ¢ (t) and add these equations for j =1, ...,m to get

(W (), () + vl um(t) [* = (£(2), wm(t)) g - b(% V) (t), un(t))-

Then we write
L)+ 2] (1) P = 206(0), (1)) + %(% V)t (8), (1))
AEE Ny [am®)lly + 2 Vglocltm®[m B + [l

vian B + & £®)I5 +

221V g3 [um () + vium 2,

vm?

so that

d 8
(6.6) S+ v () ;Hf(t)ll%/r +alun (8],
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where a = ~25|Vg|, +v.

Hence, one obtains

d 8
Zlem @ alum®F + S IEDI7

2
vm2

where o = |[Vg|%.. So, by the usual method of the Gronwall inequality, we have

(O (unOF + 5 [ 169

By the assumption the right side of the above inequality is uniformly bounded for
s €[0,7] and m.
Hence

g T
sup_[wn(s)[” e“T(Ium(0)|2+—/ [£(s)[¥ds)
s€[0,T] vVJo

which implies that
(6.7) the sequence u,, remains in a bounded set of L>°(0,T"; Hy).

(i1) For the convenience, let us define
oI 2 8 g 2
K(T) =e* (Jun(0)* + > A ]f(5)|Vg/ds).
Now, we integrate (6.6) from 0 to 7" to get
T 2
aa()P +0 [ Jun)lf

, 8 (T 2 r 2
ugml® + / IE)12, dt + o / (1) 2dt

v

g (T

wof? + ;A IE(8)|2 dt+a K(T) T.
Therefore,
(6.8) the sequence u,, remains in a bounded set of L? 0, T Vy).

(iii) Let 1@, denote the function from R into V, which is equal to u,, on [0, T]
and to 0 on the complitement of this interval. The Fourier transform of 1w, is
denoted by 11,,. Then, we want to show that there exist a positive constant ¢ and ~y
such that

6.9) / T P () dr e

—00
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So, since the sequence u,, remains in a bounded set of L2(0,T; V),

6.10) the sequence @, remains in a bounded set of H?(R; V,, Hy).

It is classical that since @,,, has two discontinuities, at 0 and 7°, the distribution
derivative of ,, is given by

d N
%ﬁm = ¢m +un(0)do —un(T)dT,

where Jg and Jr are the Dirac distributions at 0 and 7', and ¢,,, = ul, is the
derivative of u,, on [0,7’]. Therefore by (6.3), one obtains that

d 5 -
(6.11) £<um,vvj>g = (£, Wj)g + (Wom, Wj)gdo — (um(T), w;) g0,

for j = 1,..., m, where dy, o7 are Dirac distributions at 0 and 7', f,,, = f —vAu,, —
Bu,, — Cuyy,, and f,, = f,, on [0,7], 0 outside this interval. By the Fourier
transform, (6.11) gives

207 (Ui, Wj>g = <fm»wj>g + (om, Wj>y

6.12)
—(wn (1), w;)gexp (—2inT'T),

i, and £, denoting the Fourier transforms of 1, and £, respectively. We multiply

(6.12) by gb}m (7)(=Fourier transform of qb;-m) and add the resulting equations for
j=1,...,m; we get:

2477 [ (7) 2 = (B (7), (7)) g + (Uom, tm (7))
— (U (1), 0y, (7)) g exp (=271 7).
Because of inequality (3.2), (4.2), (4.3) and (4.4) one obtains

T T
A [ () v dt A (@) + v m(®) |+l Vgl oo [+l um @) [7,) dt.
Therefore, f,,,(t) belong to a bounded set in the space L'(0, T; V). Hence,

sup||f'm(7')HV, constant, Vm.
TER g

So, by using
lun(0)]  K(T), |u,(T) K(T),
we deduce from (6.12) that

[ (T)* 2 ltm (7)lly, + csltm(7)]
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or
(6.13) rllam(m)? el (7)lly, -
For v fixed, v < %, we observe that

1?7 es(y)

Thus, by (6.13), we have

+oo . too 147 .
/ a2 dr  es() / AHT e dr

oo LT
oo [ty (1)l too
cﬁ/ LA 07/ (7|12, dr.
oo LA T[T oo

Since u,, € L?(0,T;V,), by the Parseval equality

—+00
/ l(r)}, dr < constant.

—00

Also, by the Schwarz inequality and the Parseval equality, one obtains

o (1)l b bopreo 3
g —_—
/_oo 1+ |r[i2 dr (/_OO 1+ |7-’1—2'y)2d7—) </_oo Hum(t)Hngt) ;

which is finite since v < i. So, the proof of (6.9) is achieved and u,, €

HI(R; V,, Hy).

Therefore, so far, we obtained that u,,, remains in a bounded set of L>°(0, T'; H,),
L*(0,T;V,) and H(R; V,, Hy).

The estimates (6.7) and (6.8) enable us to assert the existence of an element
u e L*(0,T;V,) N L>(0,T; Hy,) and a sub-sequence u,, such that

(6.14) W,y — u in L4(0,T;V,) weakly
and
(6.15) u,y —u in L°(0,7;H,) weak-star

as m/ — oc. For any ball @ included in R™, the injection of V,(Q) into H,(
compact and (6.10) shows that u,,| o belong to a bounded set of ’H'V (R; Vg ( Q§ H Q))
Then, proposition 5.2 implies that

U)o — u|g in L2(0,T; Hy(Q)), strongly V Q.
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Similarly, for any support Q,; of w;, we have
(6.16) un|o, — ulg, in L*(0,T; Hy(Q;)), strongly.
Let 1) be a continuously differentiable function on [0, T with ¢(T) = 0. We
multiply (6.3) by ¥(¢), and then integrate by parts. This leads to the equation
T

T
- / (W (), ()W)t + v / (i (), Wy (8))
0

0

) . "3 )
+ [ )0 w0 + | ) wswopa
= (Wom, w;)1(0) +A (E(t), wjrh(t))gdt.

One should note that each term is same value when we replace u,, by uno;.

Therefore, by passing to the limit with the sequence m/, one obtains from (6.14),
(6.15) and (6.16) that

T T
~ [ o v @na v [, von)a
T T
6.17) +/ b(u(t), u(t), vip(t))dt +/ b(ﬂ, u(t), vip(t))dt
0 . 0 )
= (a0, 9)0(0) + [ {E(0) volO)git
Also, we note that the limit holds for v = wy, wy, ---; by linearity this equation

holds for v = any finite linear combination of the w;, and by a continuity argument
(6.17) 1s still true for any v € V. Now writing, in particular, (6.17) with 1) =
¢ € D((0,T)), we see that u satisfies (6.1) in the distribution sense.

Finally, it remains to prove that u satisfies (6.2). For this we multiply (6.1) by
1), and integrate. After integrating the first term by parts, we get

T

T
- / (u(t), vi!(8))dt + v / (ut), vo(t)))dt
0 0
T

' Eu A4
+A b(u(t),u(t),v¢(t))dt—|—/ b( P (t), vip(t))dt

. 0
= (0. ¥)0(0) + [ (1) Vo) .
By comparison with (6.17),
(u(0) — ug, v)y(0) = 0.
We can choose 9 with ¢(0) = 1; thus
(u(0) —ug,v) =0, Vvel,
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which implies (6.2). The proof of continuity comes from usual continuity lemma. W
7. UNIQUENESS OF SOLUTIONS OF PROBLEMS 2

Lemma 7.1. If'n= 2, then we have
1 1 1 1
(7.1) b, v, W) clulz [[u]> [lv] [w[2 [[w]>,
for all u,v,w € H*(R"). Also, if u belong to L2(0,T;V) N L>(0,T; V), then
Bu belong to L?(0,T; V) and
1
(7.2) 1Bull 20,7y 22 0|z 0,10 [0l L2g0, 750 -
If n= 3, we have
(7.3) [b(a, u, v)| CH“||L4(R3) [[ull HVHL4(R3)
1 z
(7.4) by, v)| cluft ¥ V] e
Proof. (7.1) and (7.3) come from (2.1) and (4.1), respectively. And (7.2) is
from (7.1). [ ]

Teorem 7.2. Ifn = 2 then the solution of problem 2 given by theorem 1 is
unique.

Proof. Let us assume that u; and ug are two solutions of problem 2, and let
u = uj; — uy. Then, we have

u + vAu+ Cu = —Bu; + Bus,

u(0) =0.
We take a.e. in ¢ the scalar product of (7.1) with u(t) in the duality between V,
and V. Then one obtains

%lll(t)l2 +2v]u(t)|* + 26( 3% u(t), u(t)
(7.5) = 2b(uz(t), wz(t), u(t)) — 2b(w (t), wi(t),u(t))
= —2b(u(?), uz(t), w))
Also, by (7.1), we have
2b(u(t), uy(t),w))[  clu(®)] [u@)] [luz @)l
vl + 5 ()Pl 0],
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and

7.6) 12604, u(t),u(t)]  2¢[[Vgllooull ul

. 2
viu@®)|? + < Vgll2ult)?.

Therefore, we have

02 02
a0 (S IV, ) o

& o[ o+ Sivales) -] o

Hence, we get
lut)* 0, Vtelo,T].

Thus, u; = us.
For the case n = 3, we have different theory.

Theorem 7.3. Ifn =3, then there is at most one solution of problem 2 such
that

(7.7) u € L*(0,T;V,) N L>(0,T; Hy),

(7.8) u e L8(0,T; LYR?)).

Proof. Let us assume that u; and up are two solutions of problem 2 which
satisfies (7.7) and (7.8) and let u = u; — ug. Then, by (7.5)

o) SO + 2002 + 252, u(0), u(t)
= —2b(u(t), uz(t), w)) = 2b(u(t), u(t), us(t)).

Now, we have from (7.4) and young inequality (p = %, q =8, e =v) that

8
c
(7.10) [2b(u(t), u(t),w ()| v[u(®)|*+ ) [uz Ol s)-
So, by (7.6), (7.9) and (7.10), one obtains that

d 2 & 8 ¢ 2 2
1) 7 )l Lsms) + I Vells | lu@).
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So, one has

d E tc® 2 8 c? 2 \q 2
5 Bap 0(7lu(t)| la2(®)l[za(ms) + - 1Vgllso)ds ) - [ult)] 0.

Hence, we get
lu(t)]*> 0, Vtelo,T].

Thus, u; = us.
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