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CRITICAL BEHAVIOR FOR AN ORIENTED PERCOLATION
WITH LONG-RANGE INTERACTIONS IN DIMENSION d > 2

Lung-Chi Chen and Narn-Rueih Shieh

Abstract. We consider a model of oriented percolation on Z
d × Z, d > 2,

with long-range interactions, in which the bond occupation probability decays
as the α-stable distribution with α = 1. We use the lace expansion to get an
L1 infrared bound estimate which implies several critical exponents via the
triangle condition.

1. INTRODUCTION

The Model

In this paper we introduce a certain type of oriented percolation model which
may be regarded as an infinite layer long-range model. It is defined as follows.
We consider the graph Z

d × Z and oriented bonds ((x, n), (y, n+ 1)), x, y ∈ Z
d,

n ∈ Z. Fix a parameter λ > 0, to each ((x, n), (y, n+ 1)) we associate a random
variable taking value 1 ( open ) with probability pλ

x,y and 0 (close) with probability
1 − pλ

x,y; the random variables are assumed to be totally independent. We require
that pλ

x,y = pλ
y,x = pλ

0,y−x, and define pλ
0,x to be

(1.1) pλ
0,x =

∞∑
l=1

λ11{(l−1)L<‖x‖∞≤lL}
l2
∑
y∈Zd

11{(l−1)L<‖y‖∞≤lL}
,

where ‖x‖∞ = max{j=1,2...,d} |xj|, 11{(l−1)L<‖x‖∞≤lL} is the indicator function
and L is a controlling factor. Note that pλ

0,x = O(λ‖x‖−d−1∞ L−d); thus it decays
as the α-stable distribution with α = 1. The factor L−d is necessary to control the
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convergence of the lace expansion for the dimension d = 3. We believe that the
results of this paper also hold without the factor L−d for dimension d being large
enough.

We write (y,m) −→ (x, n) to denote the event that there is an oriented open
connected path from (y,m) to (x, n), i.e., there is a sequence of sites (um, m) =
(y,m), (um+1, m+1), ..., (un, n) = (x, n) such that the oriented bonds ((uj−1, j−
1), (uj, j)), j = m+ 1, ..., n are all open. The joint probability distribution of the
bond random variables is denoted Pλ, with corresponding expectation Eλ. Define

ψλ(x, n) =

{
Pλ((0, 0) −→ (x, n)) if n > 0,

0 otherwise,

and

(1.2) ϕλ(x, n) = δ(x, n) + ψλ(x, n),

where δ(x, n) is Kronecker’s delta on Z
d × Z. For brevity we write in the se-

quel
∑

(x,n) =
∑

x∈Zd,n∈Z
and

∑
x =

∑
x∈Zd in this paper. The Fourier-Laplace

transforms are

ψ̂λ(k, s+ it) =
∑
(x,n)

eik·xen(s+it)ψλ(x, n),

ϕ̂λ(k, s+ it) =
∑
(x,n)

eik·xen(s+it)ϕλ(x, n),

Zλ,n(k) =
∑

x

eik·xϕλ(x, n), n ∈ Z

for (k, t) ∈ [−π, π]d × [−π, π] and s ∈ R. Let C(0, 0) = {(x, n) : (0, 0) −→
(x, n)} and denotes its cardinality by |C(0, 0)|. We have

(1.3)

Eλ(|C(0, 0)|) = Eλ

(∑
(x,n)

11{(x,n)∈C(0,0)}
)

=
∑
(x,n)

Eλ

(
11{(x,n)∈C(0,0)}

)
= ϕ̂λ(0, 0),

and

(1.4) ϕ̂λ(0, 0) = 1 +
∞∑

n=1

Zλ,n(0)

For (0, 0) −→ (x, n+m), there exists a vertex (y,m) such that (0, 0) −→ (y,m)
and (y,m) −→ (x, n). Since the two events are independent, by translation invari-
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ant, we have

(1.5)

Zλ,n+m(0) =
∑

x

ϕλ(x, n+m)

≤
∑

x

∑
y

ϕλ(y,m)ϕλ(x− y, n)

= Zλ,n(0)Zλ,m(0).

From the subadditive limit theorem, see for Example [9, Theorem II.2], for every
λ > 0, there exists mλ such that

(1.6) −mλ = lim
n→∞

logZλ,n(0)
n

and Zλ,n(0) ≥ e−nmλ

for all n ∈ N. Clearly, emλ is the radius of convergence of the power series ϕ̂λ(0, z).
Since Eλ(|C(0, 0)|) is non-decreasing with respect to λ, there exists a critical point
λc = sup{λ : Eλ(|C(0, 0)|)<∞}. It is seen that

λ0 :=
6
π2

≤ λc,

due to
∑

x p
λ
0,x = π2λ

6 . There is another critical value traditionally defined as
λT = inf{λ : Pλ(|C(0, 0)| = ∞) > 0}[1,9]. For any 0 < ‖x‖∞ ≤ L,

pλ
0,x =

λ∑
y 11{0<‖y‖∞≤L}

≥ λ

(2L+ 1)d
,

which implies λT < (2L+1)d. Since our model is a kind of independent translation
invariant bond percolation models, we have, by [1,Theorem 1.1], λc = λT .

Main Results

The paper is mainly on the infrared bond estimate; there is no general proof
of infrared bound for a given percolation model. There are indications that the
infrared bound is violated in less than dimension six for nearest-neighbor nonoriented
percolation model [8]. In [14], it is obtained the infrared bound of the nearest-
neighbor percolation model in high dimensions and spread-out model for dimension
d > 6. We obtain in this paper the following infrared bound of our model for
dimension d > 2.

Theorem 1.1. For our infinite layer long-range model on Z
d ×Z with d > 2,

there exists an L0 (depending on d) such that for all L ≥ L0, (k, t) ∈ [−π, π]d ×
[−π, π], s ∈ (0, 1] and λ ≤ λc we have

|ϕ̂λ(k,mλ − s + it)| ≤ 1
c1|t| + c2s+ c3‖k‖1

,
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where cj , j = 1, 2, 3, are constants depending on d and L.

As usual, the critical exponents γ, β, δ and ∆t+1 are defined as follows:

(1.7)

Eλ(|C(0, 0)|) ∼ (λc − λ)−γ as λ ↑ λc,

Pλ(|C(0, 0)| = ∞) ∼ (λ− λc)β as λ ↓ λc,∑
1≤n≤∞

Pλc(|C(0, 0)| = n)[1− e−nh] ∼ hδ as h ↓ 0,

Eλ(|C(0, 0)|t+1)
Eλ(|C(0, 0)|t) ∼ (λc − λ)−∆t+1 as λ ↑ λc

for t ∈ N, where we write A(r) ∼ B(r) as r ↑ r0, resp. r ↓ r0, means that
there are universal constants c1, c2 such that c1B(r) ≤ A(r) ≤ c2B(r) as the
parameter r ↑ r0, resp. r ↓ r0. It was proved in [18] that for the nearest-neighbor
oriented percolation model in high dimensions and spread-out oriented model in
dimension d > 4, the critical exponents β, γ , δ and ∆t+1 exist and take their mean-
field values. The same results were extended to the contact process [22]. In the
following theorem, we use Theorem 1.1 and the triangle condition to prove that
γ = 1. Then the other critical exponents δ, β and ∆t+1 can be obtained (see
[5],[26]).

Theorem 1.2. For our infinite layer long-range model on Z d ×Z with d > 2,
there exists an L0 ( depending on d ) such that for all L ≥ L0, the critical exponents
are γ = 1, β = 1, δ = 1

2 and ∆t+1 = 2 for t ∈ N.

Remark 1.1. Theorem 1.2 implies that there is no infinite cluster at the critical
value λ = λc for our model in dimension d > 2. There have been literatures[3,
4, 21] to discuss the cluster infinity and related properties at the critical values for
non-oriented long-range percolation models with polynomial decays.

Remark 1.2. For each percolation model, there exists a upper critical dimension
dc such that the critical behavior is the same as the mean-field behavior when di-
mension d > dc. If the random walk with one-step transition function pλ

o,x/
∑

x p
λ
o,x

belongs to the domain of an α-stable law, then the upper critical dimension of the
oriented percolation is believed to be 2α. For the case α = 2, it is proved that, by
using the hyperscaling inequalities , the upper critical dimension is four [23]. The
upper critical dimension is two in our model; this will be the content of a coming
paper.

To prove Theorem 1.1, we use the lace expansion which is introduced in a
seminal paper of [7] for studying the weakly self-avoiding walk in dimension d > 4.
The method has also been applied successfully to study the strictly self-avoiding walk
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([12, 13]), percolation models ([14], [11]), oriented percolation models ([18, 19]),
lattice trees and lattice animals ([15]), networks of self-avoiding walks ([20, 10]),
etc. The basic idea of the present work is closely related to that in [18]; however, it
should be emphasized that our infrared bound is an L1 estimates, rather than the L2

estimate as that appeared in [18] and other works. It is the L1 estimate makes us
to be significantly different from the L2 arguments in [18]. An L1 infrared bound
estimate for self-avoiding random walks has been studied by Y. Cheng (a 2000 PhD
thesis of Temple University).

From the lace expansion, there is a connected function Πλ(x, n) such that its
Fourier-Laplace transform Π̂λ(k, z) is defined by the renewal equation (see [17])

(1.8) ϕ̂λ(k, z) =
1 + Π̂λ(k, z)
Fλ(k, z)

for λ ≤ λc, Re(z) < mλ, where

(1.9) Fλ(k, z) = 1 − λ−1
0 λezD̂(k)(1 + Π̂λ(k, z)),

(1.10) D̂(k) =
∑

x

ϕλ0(x, 1)eik·x.

To prove Theorem 1.1, we need the following continuity of two-point functions.

Proposition 1.3. For our infinite layer long-range model on Z
d × Z with

d > 0, we have

(a) Eλ(|C(0, 0)|)<∞ if and only if mλ > 0,

(b) Eλ(|C(0, 0)|) = ∞ and mλ = 0 if λ = λc,

(c) ϕ̂λ(0, r) is continuous at λ for 0 < λ < λ c, r < mλ and limλ↑λc ϕ̂λ(0, r) =
ϕ̂λc(0, r) for r < 0.

From [18], we know that Proposition 1.3 holds for finite-range models, and we
show that it can also be extended to our model.

Next, we need to estimate D̂(k) as follows:

Proposition 1.4. For our infinite layer long-range model on Z
d × Z with

d > 2, there exists an L0 (depending on d) such that for L ≥ L0, we have

(a) |D̂(k)| ≤ 1 − 0.12L
d ‖k‖1 for ‖k‖∞ ∈ [0, π

4L+1 ],

(b) |D̂(k)| < 0.95 for ‖k‖∞ ∈ ( π
4L+1 ,

π
L ],

(c) |D̂(k)| < 9
10n for ‖k‖∞ ∈ (nπ

L ,
(n+1)π

L ] with n = 1, 2, ..., L− 1.
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Finally, we want to control |Π̂λ(k, z)|. The following two propositions give us
that |Π̂λ(k, z)| decays to zero as L tends to infinity for λ = λ0 and satisfies a
bootstrapping argument for λ ≤ λc, respectively.

Proposition 1.5. For our infinite layer long-range model on Z
d × Z with

d > 2, there exists an L1 ( depending on d ) such that for L ≥ L1, we have∑
(x,n)

|Πλ0(x, n)| ≤ τ0
L
,∑

(x,n)

|nΠλ0(x, n)| ≤ τ1
L
,

∑
(x,n)

‖x‖1

∣∣Πλ0(x, n)
∣∣ ≤ τ2(logL)

1
3

L

for some universal constants τ 0, τ1 and τ2.

Proposition 1.6. For our infinite layer long-range model on Z d × Z with
d > 2, there exists an L0 ( depending on d ) such that for L ≥ L0, λ ≤ λc and
r ≤mλ, (P4) implies (P2), where (Pα) means that the following inequalities hold

(1.11)
∑
(x,n)

∣∣Πλ(x, n)ern
∣∣ ≤ ατ ′0

L
,

(1.12)
∑
(x,n)

∣∣nΠλ(x, n)ern
∣∣ ≤ ατ ′1

L
,

(1.13)
∑
(x,n)

‖x‖1

∣∣Πλ(x, n)ern
∣∣ ≤ ατ ′2(logL)

1
3

L

for some universal constants τ ′
0, τ ′1 and τ ′2 with τ ′j ≥ τj , τj as in Proposition 1.5.

We denote c to be a positive constant, whose precise value is not important
to us and may vary from line to line. In Section 2, we prove the main theorems
by assuming Propositions 1.3, 1.5 and 1.6. In Section 3, we define the Feynman
diagrams which are the same as in [18]. Proposition 1.3 is proved in Section 4 and
Proposition 1.4 is proved in Section 5. In Section 6, we prove Proposition 1.5 and
1.6 by Proposition 1.4 and the inequalities in Section 3.

2. PROOF OF THE MAIN THEOREMS

The following inequality is used to prove Theorem 1.1.
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Lemma 2.1. For our infinite layer long-range model on Z
d × Z with d > 2,

there exists an L0 (depending on d) such that for L ≥ L0, λ ≤ λc and r ≤ mλ,
(P4) and Proposition 1.4 imply

|Π̂λ(0, r)− Π̂λ(k, r− s+ it)e−s+itD̂(k)| ≤ 1
3
|1− e−s+itD̂(k)|

Proof. Since

(2.1)

|Π̂λ(0, r)− Π̂λ(k, r− s+ it)e−s+itD̂(k)|
≤ |Π̂λ(0, r)− Π̂λ(0, r− s + it)|
+|Π̂λ(0, r− s + it) − Π̂λ(k, r− s + it)|
+|Π̂λ(k, r− s+ it)||1− e−s+itD̂(k)|,

we have, by Mean-Value theorem and (P4),

(2.2)

|Π̂λ(k, r−s+it)− Π̂λ(0, r−s+it)| ≤[∑
(x,n)

‖x‖1|Πλ(x, n)er−s+it|]‖k‖1

≤ 4τ ′2(logL)
1
3

L
‖k‖1,

and

(2.3)
|Π̂λ(0, r)− Π̂λ(0, r− s + it)| ≤ [∑

(x,n)

|nΠλ(x, n)er+it|](|s− it|)
≤ 4τ ′

1
L (|s− it|).

Then by (2.1)-(2.3),

(2.4)
|Π̂λ(0, r)− Π̂λ(k, r− s+ it)e−s+itD̂(k)| ≤ 4τ ′2(logL)

1
3

L

(‖k‖1

)
+

4τ ′1
L

(|s− it|) +
4τ ′0
L

|1− e−s+itD̂(k)|.

On the other hand, we have, by Proposition 1.4,

(2.5)

|1− e−s+itD̂(k)|2 =
∣∣(1 − e−s+it) + e−s+it[1 − D̂(k)]

∣∣2
≥ |1− e−s+it|2 + ce−2s‖k‖2

1

≥ (c′|s− it| + ce−s‖k‖1)2

2
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for some universal constants c, c′ > 0. From (2.4) and (2.5), let L > 0 large enough,
this lemma follows.

Proof of Theorem 1.1. By Proposition 1.5, for L ≥ L1, (P1) is stisfied at λ = λ0

and r = 0. Then ϕ̂λ0(0, 0) = Eλ0(|C(0, 0)|) < ∞, by (1.8). From Proposition
1.3 (a) and (b), we have λc > λ0. According to (1.8)-(1.9) and Proposition 1.3
(c), the left-hand sides of (1.11)-(1.13) are continuous at λ for every λ < λc and
r < mλ. Then from Proposition 1.6 and inductive method, (P4) is satisfied for
every λ ∈ (0, λc) and r < mλ. By the Dominated Convergence theorem, we have

Π̂λ(0, mλ) = lim
s↓0

Π̂λ(0, mλ − s)

which implies (P4) is satisfied for every λ ∈ (0, λc) and r ≤ mλ. From (1.4) and
(1.6), we have

ϕ̂λ(0, mλ) = lim
s↓0

ϕ̂λ(0, mλ − s) = 1 + lim
s↓0

∞∑
n=1

Zλ,n(0)e(mλ−s)n

≥ 1 + lim
s↓0

∞∑
n=1

e−sn = ∞,

and

1+Π̂λ(0, mλ) = lim
s↓0

ϕ̂λ(0, mλ − s)
1 + λ−1

0 λemλ−sϕ̂λ(0, mλ − s)
=

1
1

ϕ̂λ(0,mλ) + λ−1
0 λemλ

<∞.

Then

(2.6) Fλ(0, mλ) = lim
s↓0

1 + Π̂λ(0, mλ − s)
ϕ̂λ(0, mλ − s)

= 0

and 1 + Π̂λ(0, mλ) = λ0λ
−1e−mλ . (2.6) implies

Fλ(k,mλ − s + it) = Fλ(k,mλ − s+ it) − Fλ(0, mλ)
= λ−1

0 λemλ(1− e−s+itD̂(k)) + λ−1
0 λemλ

[
Π̂λ(0, mλ)

−e−s+itD̂(k)Π̂λ(k,mλ − s + it)
]
.

Since (P4) is satisfied for all λ ∈ (0, λc) with r ≤ mλ, there exists L0 > 0 such
that for L ≥ L0 and λ ∈ (0, λc), |Π̂λ(0, mλ)| < 1

2 , and from Lemma 2.1, we have

(2.7)

|Fλ(k,mλ − s+ it)| ≥ 2λemλ

3λ0
|1 − e−s+itD̂(k)|

= 2
3[1+Π̂λ(0,mλ)]

|1− e−s+itD̂(k)|

≥ 4
9 |1 − e−s+itD̂(k)|
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with s ∈ (0, 1). Besides, by Proposition 1.3, ϕ̂λ(k,−s + it) is left continuous at
λ = λc for s ∈ (0, 1). This completes the proof.

Proof of Theorem 1.2. Let


λ(x, n) =
∑

(u1,n1)

∑
(u2,n2)

Pλ((0, 0) −→ (u1, n1))Pλ((u1, n1) −→ (u2, n2))

×Pλ((x, n) −→ (u2, n2)).

Since the x-space is symmetric with respect to the origin, its Fourier transform is


̂λ(k, it) = ϕ̂λ(k, it)2ϕ̂λ(−k,−it) = ϕ̂λ(k, it)2ϕ̂λ(k,−it).
Then, by Hausdorff-Young’s inequality and infrared bound ( we write

∫ ∫
dkdt =

1
(2π)d+1

∫
t∈[−π,π]

∫
k∈[−π,π]d dkdt and

∫
dk = 1

(2π)d

∫
k∈[−π,π]d dk in this paper ),

{∑
(x,n)

| 
λ (x, n)|p
} 1

p

≤
{∫ ∫

|ϕ̂λ(k, it)2ϕ̂λ(k,−it)|qdkdt
} 1

q

≤
{∫ ∫

| 1
c1mλ + c2|t|+ c3‖k‖1

|3qdkdt

} 1
q

,

where 1
p + 1

q = 1 and 0 < q ≤ 2. Then for any d > 2 and 1 < q < 1+ 1
3 , there exists

constant c0 ( depending on d and q ) such that for all λ < λc,
∑

(x,n) |
λ (x, n)|p ≤
c0. Since

∑
(x,n) | 
λc (x, n)|p = limλ↑λc

∑
(x,n) | 
λ (x, n)|p, which implies the

triangle condition holds, that is,

lim
R→∞

sup{
λc(x, n) : ‖x‖2 + |n| ≥ R} = 0.

Then γ = 1, δ = 1
2 , β = 1 and ∆ = 2 (see [5, 18, 16] etc.). This completes the

proof.

3. ESTIMATES OF Πλ(x, n) AND ITS DERIVATIVES

As in [17], there are unique the lace parts Π (l)
λ (x, n) for l = 0, 1, 2, ..., such

that

Π̂λ(k, z) =
∞∑
l=0

(−1)lΠ̂(l)
λ (k, z).

In this section, we describe the Feynman diagrams which are adapted from [18] and
use them to control the upper bound of |Π̂(l)

λ (k, z)| for each l = 0, 1, 2, ....
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Given sites (x1, n1), (x2, n2), (x, n) and an oriented bond b, define the triangle
function:

Tλ[((x1, n1), (x2, n2)); ((x, n), b)] = Pλ(b : open)Pλ(top of b −→ (x, n))
×Pλ((x2, n2) −→ bottom of b)ψλ(x− x1, n− n1).

Let the triangle function Tλ[(u, n′); ((x, n), b)] = Tλ[((x1, n1), (x2, n2)); ((x, n), b)]
if (x1, n1) = (x2, n2) = (u, n′). We also assume

Tλ[((x2, n2), (x1, n1)); (b, (x, n))] = Tλ[((x1, n1), (x2, n2)); ((x, n), b)].

Define the bubble functions as follows

Q
(λ,1)
(y,m)

(x, n) = ϕλ(x, n)ϕλ(x− y, n−m),

Q
(λ,2)
(y,m)(x, n) = ψλ(x, n)

[∑
u

ψλ(x− u, 1)ϕλ(u− y, n−m− 1)
]
,

Q
(λ,3)
(y,m)(x, n) =

[∑
u

ϕλ(u, n− 1)ψλ(x− u, 1)
]
ψλ(x− y, n−m).

They are represented by the diagrams in Figure 1.

Fig. 1.

For l pairs of sites and bonds {((uj, nj), bj), j = 1, 2, ..., l}, set σj((uj, nj), bj) =
((uj, nj), bj) or (bj, (uj, nj)), j = 1, 2, 3, ..., l−1 and σl((ul, nl), bl) = ((ul, nl), bl).
Let σ = (σ1, σ2, ..., σl), the diagram

D
(l)
λ [σ, (0, 0), (bj, (uj, nj)), (x, n); j = 1, 2, ..., l]

is defined by

(3.1)
Tλ[(0, 0); ((u1, n1), b1)]

{∏
j=2,...,l Tλ[σj−1((uj−1, nj−1), bj−1);

σj((uj, nj), bj)]
}×Q

(λ,1)
bl

(x− ul, n− nl).

The diagramD
(l)
λ (x, n) is defined as the sum ofD(l)

λ [σ, (0, 0), (bj, (uj, nj)), (x, n); j =
1, 2, ..., l] over {(bj, (uj, nj)), j = 1, 2, ..., l} and σ such that σl = identity and σi
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is identity map or the permutation of sites and bonds for all j = 1, 2, ..., l− 1 and
l ∈ N. Let D(0)

λ (x, n) = Q
(λ,2)
(0,0)(x, n). The following lemma states upper bounds

of Π(l)
λ (x, n) and their Fourier-Laplace transforms which were proved in [18] by

diagrams introduced above and Van Den Berg-Kesten’s inequality (see [6]).

Lemma 3.1. For l ∈ N ∪ {0}, we have

Π(l)
λ (x, n) ≤ D

(l)
λ (x, n) for (x, n) ∈ Z

d × Z, Π̂λ(0, s) ≤ D̂
(l)
λ (0, s) for s ∈ R.

Fig. 2.

To estimate the upper bounds of the Feynman diagrams D̂(l)
λ (0, s) for all l ∈ N,

we have to introduce the triangle functions which are defined in [18].

T
(λ,1)
(y,m)(x, n) = ϕλ(x, n)

∑
(u1,n1)

ϕλ(x− u1, n− n1)ϕλ(u1 − y, n1 −m),

T
(λ,2)
(y,m)(x, n) = ψλ(x, n)

{ ∑
(u1,n1)

∑
u∈Zd

ϕλ(x− u1, n− n1)ψλ(u1 − u, 1)

×ϕλ(u− y, n1 − 1 −m)
}
,

T
(λ,3)
(y,m)

(x, n) =
∑

(u1,n1)

∑
u∈Zd

ϕλ(u, n− 1)ψλ(x− u, 1)ϕλ(x− u1, n− n1)

×ψλ(u1 − y, n1 −m).

They are represented by the diagrams in Figure 3. We have the following lemma
which is the same as (32) in [18].

Fig. 3.



1356 Lung-Chi Chen and Narn-Rueih Shieh

Lemma 3.2.

D̂
(l)
λ (0, s) ≤ 2l−1

[
sup
(y,m)

Q̂
(λ,1)
(y,m)(0, s)

][
sup
(y,m)

T̂λ,(y,m)(0, s)
]l for l ∈ N,

where

T̂λ,(y,m)(0, s) = max
{
T̂

(λ,2)
(y,m)(0, s), T̂

(λ,3)
(y,m)(0, s)

}
.

Define

δkj f̂ (0, s) =
∑
(x,n)

|xj|f(x, n)esn, δz f̂(0, s) =
∑
(x,n)

|n|f(x, n)esn,

where f(x, n) is any function on Z
d × Z and j ∈ {1, 2, ..., d}. Then

|δkj Π̂
(0)
λ (0, s)| ≤ sup

(y,m)

{
∑
(x,n)

|xj|Q(λ,2)
(y,m)

(x, n)esn} = sup
(y,m)

[δkj Q̂
(λ,2)
(y,m)

(0, s)],

|δzΠ̂(0)
λ (0, s)| ≤ sup

(y,m)
{
∑
(x,n)

|n|Q(λ,2)
(y,m)(x, n)esn} = sup

(y,m)
[
∂

∂z
Q̂

(λ,2)
(y,m)(0, s)].

Clearly, the upper bound of δaD̂
(l)
λ (0, s) is also an upper bound of δaΠ̂

(l)
λ (0, s) with

l ∈ N ∪ {0} for a = k1, ..., kd or a = z. To estimate δaD̂
(l)
λ (0, s), we need to

distribute the factors such that |xj| or n is along the top of the diagram. Using the
same technique as in Section 3.2 of [14], we have the following lemma.

Lemma 3.3. For l ∈ N, a ∈ {k1, ..., kd} or a = z, we have

|δaΠ̂(l)
λ (0, s)|≤ 2l−1l[ sup

(y,m)
T̂λ,(y,m)(0, s)]

l−1[ sup
(y,m)

T̂
(λ,1)
(y,m)(0, s)][ sup

(y,m)
δaQ̂λ,(y,m)(0, s)]

+2l−1[ sup
(y,m)

δaQ̂
(λ,1)
(y,m)(0, s)][ sup

(y,m)
T̂λ,(y,m)(0, s)]

l,

where
Q̂λ,(y,m)(0, s) = max{Q̂(λ,2)

(y,m)(0, s), Q̂
(λ,3)
(y,m)(0, s)}.

The upper bounds of the triangle functions and bubble functions in terms of
related Fourier-Laplace transforms are stated in the following lemma which was
proved in [17].
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Lemma 3.4.

sup
(y,m)

Q̂
(λ,1)
(y,m)

(0, s) ≤
∫ ∫

|ϕ̂λ(k, s+ it)ϕ̂λ(k, it)|dkdt,

sup
(y,m)

Q̂
(λ,2)
(y,m)(0, s) ≤

∫ ∫
|D̂(k)ψ̂λ(k, s+ it)ϕ̂λ(k, it)|dkdt,

sup
(y,m)

Q̂
(λ,3)
(y,m)

(0, s) ≤ es
∫ ∫

|D̂(k)ϕ̂λ(k, s+ it)ψ̂λ(k, it)|dkdt,

sup
(y,m)

T̂
(λ,1)
(y,m)

(0, s) ≤
∫ ∫

|ϕ̂λ(k, s+ it)ϕ̂2
λ(k, it)|dkdt,

sup
(y,m)

T̂
(λ,2)
(y,m)(0, s) ≤

∫ ∫
|D̂(k)ψ̂λ(k, s+ it)ϕ̂2

λ(k, it)|dkdt,

sup
(y,m)

T̂
(λ,3)
(y,m)

(0, s) ≤ es
∫ ∫

|D̂(k)ϕ̂λ(k, it)ψ̂λ(k, it)ϕ̂λ(k, s+ it)|dkdt.

Next, we want to estimate the derivatives of the bubble functions in terms of
ϕ̂λ(k, z) and its derivatives. Note that ϕλ(x, n) = 0 if n < 0. Using Hausdorff-
Young’s inequality, we have

sup
(y,m)

δzQ̂
(λ,1)
(y,m)(0, s) = sup

(y,m)

∑
(x,n)

|n|Q(λ,1)
(y,m)(x, n)esn = sup

(y,m)

∑
(x,n)

nQ
(λ,1)
(y,m)(x, n)esn

= sup
(y,m)

ϕλ,s,z ∗ ϕλ(y,m) ≤
∫ ∫

|ϕ̂λ,s,z(k, it)ϕ̂λ(k, it)|dkdt,

where ϕλ,s,z(x, n) = ϕλ(x, n)esnn, and

ϕ̂λ,s,z(k, it) =
∑
(x,n)

ϕλ(x, n)esnneik·xeitn =
∂

∂z
ϕ̂λ(k, s+ it).

By this argument, we have the following lemma:

Lemma 3.5.

sup
(y,m)

δzQ̂
(λ,1)
(y,m)

(0, s) ≤
∫ ∫ ∣∣ϕ̂λ(k, it)

∂

∂z
ϕ̂λ(k, s+ it)

∣∣dkdt,
sup
(y,m)

δzQ̂
(λ,2)
(y,m)(0, s) ≤

∫ ∫ ∣∣D̂(k)ϕ̂λ(k, it)
∂

∂z
ψ̂λ(k, s+ it)

∣∣dkdt,
sup
(y,m)

δzQ̂
(λ,3)
(y,m)(0, s) ≤ es

∫ ∫ ∣∣ϕ̂λ(k, it)
∂

∂z
[D̂(k)ϕ̂λ(k, s+ it)]

∣∣dkdt.
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4. PROOF OF PROPOSITION 1.3

In order to prove Proposition 1.3, we need the following lemma.

Lemma 4.1. In our infinite layer long-range model on Z
d ×Z with d > 0, we

have
(a) for any n finite, ϕλ(x, n) and Zλ,n(0) are continuous functions of λ on

λ ∈ (0, (2L+ 1)d
)
,

(b) mλ is a continuous function of λ on λ ∈ (0, λ c].

Proof of Proposition 1.3 (a). Ifmλ > 0, by the definition ofmλ, Eλ(|C(0, 0)|)<
∞. On the other hand, if Eλ(|C(0, 0)|) < ∞, by (1.4), there exists n1 > 0 such
that Zλ,n(0) ≤ u < 1 for n ≥ n1. Then by (1.5), we have

lim
n→∞Zλ,n(0) ≤ lim

n→∞ u
n
n1 ,

which implies mλ > 0 by (1.6). This completes the proof.

Proof of Proposition 1.3 (b). From Proposition 1.5 (a) and Lemma 4.1 (c), we
have mλc ≥ 0. Suppose mλc > 0, since

ϕ̂λc(0, 0) = 1 +
n0∑

n=1

Zλc,n(0) +
∞∑

n=n0+1

Zλc,n(0),

and the second term can be made arbitrarily small since Zλc,n(0) ∼ e−nmλc as
n0 large, by (1.6), and the first term is finite sum of the continuous functions, by
Lemma 4.1(a), we have ϕ̂λ(0, 0) is continuous at λ = λc. Then there exists λ1 > λc

such that ϕ̂λ1(0, 0) < ∞, which is contradictory to the definition of λc. Hence,
mλc = 0. This completes the proof of (b).

Proof of Proposition 1.3 (c). For any 0 < λ1 < λc, from Lemma 4.1 (b), there
exists λ1 < λ′ < λc such that 0 < mλ′−r < mλ1 −r. This implies ϕ̂λ′(0, r) <∞,
by the Dominated Convergence theorem and Lemma 4.1 (a), we have

lim
λ→λ1

ϕ̂λ(0, r) = lim
λ→λ1

∑
(x,n)

ϕλ(x, n)ern =
∑
(x,n)

lim
λ→λ1

ϕλ(x, n)ern = ϕ̂λ1(0, r),

Besides, by the Monotone Convergence theorem, for r < 0 we have limλ↑λc ϕ̂λ(0, r)
= ϕ̂λc(0, r). This completes the proof of (c).

For any n, let C≤n(0, 0) = {x : (x,m) ∈ Cm(0, 0) for m ≤ n}, and denotes
its cardinality by |C≤n(0, 0)|. To prove Lemma 4.1, we use the following lemma.
The proof of Lemma 4.2 is the same as the one of Lemma A.5 [1].
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Lemma 4.2. In our infinite layer long-range model, for any finite number n
and m, Pλ

(|C≤n(0, 0)| = m
)

is a continuous function of λ.

Proof of Lemma 4.1. (a). Since for n < ∞, Pλ(|C≤n(0, 0)| = ∞) = 0, we
have

lim
λ→λ1

ϕλ(x, n) = lim
λ→λ1

Pλ

(
(x, n) ∈ Cn(0, 0)

)
= lim

λ→λ1

Pλ

(
(x, n) ∈ C(0, 0), |C≤n(0, 0)| <∞)

= ϕλ1(x, n),

where the last equality is by Lemma 4.2. Then ϕλ(x, n) is a continuous function
of λ for any (x, n) with n <∞. Moreover, for any λ ∈ (0, (2L+ 1)d) and n <∞
we have

Zλ,n(0) =
∑

x:‖x‖∞≤m

ϕλ(x, n) +
∑

x:‖x‖∞>m

ϕλ(x, n) <∞,

where the second term can be made arbitrarily small uniformly, by choosing m large
enough and the first term is finite sum of the continuous functions. The proof of
(a) is completed.

Proof of Lemma 4.1. (b). For any n < ∞ and λ1 ∈ (0, λc), we have
(i). Zλ,n(0) = limm→∞

∑
x:‖x‖∞≤mL ϕλ(x, n) pointwise on λ ∈ [λ1, λc], (ii).

{∑x:‖x‖∞≤mL ϕλ(x, n)}m<∞ is a sequence of continuous functions on [λ1, λc]
and Zλ,n(0) is also a continuous function on [λ1, λc], (iii)

∑
x:‖x‖∞≤mL ϕλ(x, n) ≤∑

x:‖x‖∞≤(m+1)L ϕλ(x, n) for all m ∈ N and λ ∈ [λ1, λc]. Then, by (i) (ii) and
(iii), for any n <∞, we have

Zλ,n(0) = lim
m→∞

∑
x:‖x‖∞≤mL

ϕλ(x, n)

uniformly on [λ1, λc]. This implies for any n < ∞, there exists a Mn > 1 which
is independent of λ ∈ [λ1, λc] such that∑

x:‖x‖∞>MnL

ϕλ(x, n) ≤
∑

x:‖x‖∞≤MnL

ϕλ(x, n).(4.1)

By the definition of Zλ,n(0), for any λ ≤ λc and t ≥ 1,

lim
n→∞

∑
x:‖x‖∞>ntL

ϕλ(x, n) ≤ lim
n→∞Zλ,n(0) = lim

n→∞
∑

x:‖x‖∞≤ntL

ϕλ(x, n).(4.2)
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By (4.1)− (4.2), there exists a constant M > 1 ( depending only on λ1 ) such that
for any λ ∈ [λ1, λc] and n ∈ Z,∑

x:‖x‖∞>nML

ϕλ(x, n) ≤
∑

x:‖x‖∞≤nML

ϕλ(x, n).

Then

(4.3) Zλ,n(0) ≤ 2
∑

x:‖x‖∞≤nML

ϕλ(x, n)≤2(2nML+1)d

{
sup

x:‖x‖∞≤nML
ϕλ(x, n)

}
,

and
sup

‖x‖∞>nML
ϕλ(x, n) ≤ 2(2nML+ 1)d

{
sup

‖x‖∞≤nML
ϕλ(x, n)

}
with n ∈ Z, λ ∈ [λ1, λc]. By (1.5), we have

sup
x:‖x‖∞≤(n+m)ML

ϕλ(x, n+m) = sup
x:‖x+y‖∞≤(n+m)ML

ϕλ(x+ y, n+m)

≤ sup
x:‖x+y‖∞≤(n+m)ML

∑
y

ϕλ(y, n)ϕλ(x,m)

≤
∑

y:‖y‖∞≤nML

ϕλ(y, n)
[
sup

x
ϕλ(x,m)

]
+

∑
y:‖y‖∞>nML

ϕλ(y, n)
[

sup
x:‖x‖∞≤mML

ϕλ(x,m)
]

≤ c(2mML)d
∑

y

ϕλ(y, n)
[

sup
‖x‖∞≤mML

ϕλ(x,m)
]

≤ c(2mML)d(2nML)d
[

sup
‖y‖∞≤nML

ϕλ(y, n)
]

×[ sup
‖x‖∞≤mML

ϕλ(x,m)
]

for all n,m. Thus, there is a universal constant c such that

γn+m(λ) ≤ cd[log(2nML) + log(2mML)] + γn(λ) + γm(λ),(4.4)

where
γn(λ) = log

{
sup

x:‖x‖∞≤nML
ϕλ(x, n)

}
.

Let bn(λ) = −γn

n , then, by (4.4) and the Generalized Subadditive Limit theorem
(see Appendix II in [9]), we have limn→∞ bn(λ) exists. From (1.6) and (4.3), we
have

|mλ − bn(λ)| ≤ cd log(2MnL+ 1)
n

,(4.5)
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for some universal constant c. Thus by (4.5), bn(λ) → mλ uniformly as n → ∞.
Also, bn(λ) is a continuous function of λ on λ ∈ [λ1, λc], by Lemma 4.1 (a) and
{x : ‖x‖∞ ≤ cnL} be only the finite collection. Therefore, mλ is a continuous
function of λ on λ ∈ [λ1, λc]. This completes the proof.

5. PROOF OF PROPOSITION 1.4

5.1 Estimates D̂(k)

To prove Proposition 1.4, we first need to analyze D̂(k). Let L > 0 be fixed,
and define Bl = {x ∈ Z

d : (l − 1)L < ‖x‖∞ ≤ lL} and denote its cardinality by
|Bl|. Since all Bl are symmetric with respect to the origin, the part of sine in the
following sum vanish. Thus we have

D̂(k) =
∑

x

∞∑
l=1

λ01{(l−1)L<‖x‖∞≤lL}
l2|Bl| eik·x

=
∞∑
l=1

∑
x

λ01{(l−1)L<‖x‖∞≤lL}
l2|Bl|

[
cos(k · x) + i sin(k · x)]

=
∞∑
l=1

∑
x∈Bl

λ0 cos(k · x)
l2|Bl| ,

and ∑
x∈Bl

cos(k1x1 + k2x2 + · · ·+ kdxd)

=
∑
x∈Bl

{
cos(k1x1 + k2x2 + · · · + kd−1xd−1) cos kdxd

− sin(k1x1 + k2x2 + · · ·+ kd−1xd−1) sinkdxd

}
=
∑
x∈Bl

cos(k1x1 + k2x2 + · · · + kd−1xd−1) cos kdxd

=
∑
x∈Bl

d∏
j=1

cos kjxj,

so

D̂(k) =
∞∑
l=1

λ0

l2|Bl|
{∑

x∈Bl

d∏
j=1

cos kjxj

}
.
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For l ∈ N,

∑
x∈Bl

=
∑

(l−1)L<x1≤lL
−lL≤x1<−(l−1)L

lL∑
x2=−lL

· · ·
lL∑

xd=−lL

+
(l−1)L∑

x1=−(l−1)L

∑
(l−1)L<x2≤lL

−lL≤x2<−(l−1)L

lL∑
x3=−lL

· · ·
lL∑

xd=−lL

+ . . .

+
(l−1)L∑

x1=−(l−1)L

· · ·
(l−1)L∑

xj−1=−(l−1)L

∑
(l−1)L<xj≤lL

−lL≤xj <−(l−1)L

lL∑
xj+1=−lL

· · ·
lL∑

xd=−lL

+ . . .

+
(l−1)L∑

x1=−(l−1)L

· · ·
(l−1)L∑

xd−1=−(l−1)L

∑
(l−1)L<xd≤lL

−lL≤xd<−(l−1)L

and for j = 1, 2, ..., d

(l−1)L∑
x1=−(l−1)L

· · ·
(l−1)L∑

xj−1=−(l−1)L

∑
(l−1)L<xj≤lL

−lL≤xj <−(l−1)L

lL∑
xj+1=−lL

· · ·
lL∑

xd=−lL

d∏
j=1

cos kjxj

= [
(l−1)L∑

x1=−(l−1)L

cos k1x1] · · · [
(l−1)L∑

xj−1=−(l−1)L

cos kj−1xj−1][2
Ll∑

xj=(l−1)L+1

cos kjxj]

×[
lL∑

xj+1=−lL

cos kj+1xj+1] · · · [
lL∑

xd=−lL

cos kdxd]

= [1 + 2
(l−1)L∑
x1=1

cos k1x1] · · · [1 + 2
(l−1)L∑
xj−1=1

cos kj−1xj−1][2
L−1∑
m=0

cos(lL−m)kj]

×[1 + 2
lL∑

xj+1=1

cos kj+1xj+1] · · · [1 + 2
lL∑

xd=1

cos kdxd].

We have

D̂(k) =
∞∑
l=1

∑
x∈Bl

λ0
∏d

j=1 cos(kjxj)
l2|Bl|
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(5.1)

= λ0

∞∑
l=1

1
l2|Bl|

{ d∑
j=1

[j−1∏
µ=1

(1+2
(l−1)L∑
xµ=1

cos kµxµ)
][

2
L−1∑
m=0

cos(lL−m)kj

]
×[ d∏

ν=j+1

(1 + 2
lL∑

xν=1

cos kνxν)
]}

= λ0

∞∑
l=1

2dL

|Bl|
d∑

j=1

{[L−1∑
m=0

cos(lL−m)kj

l2L

] j−1∏
µ=1

[1
2

+
(l−1)L∑
xµ=1

cos kµxµ

]
×

d∏
ν=j+1

[1
2

+
lL∑

xν=1

cos kνxν

]}

= λ0

∞∑
l=1

d∑
j=1

[L−1∑
m=0

cos(Ll−m)kj

Ll2
]
Jj

l (k),

where

Jj
l (k) =

∏j−1
µ=1

[1
2

+
L(l−1)∑
xµ=1

cos kµxµ

] d∏
ν=j+1

[1
2

+
Ll∑

xν=1

cos kνxν

]
Al

,(5.2)

and

Al =
|Bl|
2dL

=

(
1
2

+ lL

)d

L

1 −
(

1
2 + (l− 1)L

1
2 + lL

)d
 .(5.3)

Let gl(r) = 6
π2

∑L−1
m=0

cos(Ll−m)r
Ll2 for l ∈ N and gl(r) = 0 for l ≤ 0. By (5.1) and

recall λ0 = 6
π2 , we have

D̂(k) =
π2λ0

6

d∑
j=1

∞∑
l=1

[gl(kj)J
j
l (k)] =

d∑
j=1

∞∑
l=1

[gl(kj)J
j
l (k)].(5.4)

Suppose k with ‖k‖∞ tends to 0, it is easy to see that
∑d

j=1 J
j
l (k) tends to 1. Then

we define G(r) =
∑∞

l=1 gl(r) for r ∈ [−π, π] and use it to control D̂(k). From
trigonometric series [24], we have

G(r) =
∞∑
l=1

gl(r) = f1(r)f2(r) + f3(r)f4(r)(5.5)
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with

f1(r) =
6
π2

∞∑
l=1

cos(Llr)
l2

= 1− 3
π
L|r|+ 3

2π2
L2r2,(5.6)

f3(r) =
6
π2

∞∑
l=1

sin(Llr)
l2

=
6
π2

{−(log 2)Lr−
∫ Lr

0
log | sin t

2
|dt},(5.7)

f2(r) =
1
L

L−1∑
m=0

cos(mr) =
1
L

sin( 2L−1
2 r) + sin( r

2)
2 sin( r

2)
,(5.8)

f4(r) =
1
L

L−1∑
m=0

sin(mr) =
1
L

cos( r
2 )− cos( 2L−1

2 r)
2 sin( r

2)
.(5.9)

The behavior of f1(r), f2(r), f3(r) and f4(r) is stated in the following three lemmas.

Lemma 5.1. (a). f1(r) is an even function and strictly decreasing for |r| ≤ π
L

with f1( 3−√
3

3L ) = 0, f1( π
L) = −1

2 ,
(b). f3(r) is a odd function, strictly increasing for r ∈ [0, π

3L ] with f3( π
3L) ≤ 0.64

and strictly decreasing for r ∈ [ π
3L ,

π
L ] with f3( π

L) ≥ 0,
(c). For |r| ≤ π

4L+1 ,

1− 3
π
L|r| ≤ f1(r) ≤ 1 − 21L|r|

8π
,

and
6Lr
π2

{
1 − log(Lr)

} ≤ |f3(r)| ≤ 6L|r|
π2

{
1.12− log(L|r|)}.

Proof. (a) and (b) are obvious by (5.6) and (5.7). Since 0.89u ≤ u− u3

6 ≤
sinu ≤ u for u ∈ [0, π

4 ], we have, by (5.7),

|f3(r)| ≤ 6
π2

{−(log 2)Lr−
∫ Lr

0
log(0.89

t

2
)dt
}

=
6Lr
π2

{− log 0.89 + 1− log(Lr)
} ≤ 6Lr

π2

{− log(L|r|) + 1.12
}
,

and |f3(r)| ≥ 6Lr
π2

{
1 − log(Lr)

}
for r ∈ [0, π

4L+1 ]. By (5.6), we have 21
8πL|r| ≤

1 − f1(r) ≤ 3L|r|
π for |r| ≤ π

4L+1 . This completes the proof.

Lemma 5.2. For |r| ≤ π
4L+1 , we have 1 − (L−1)(2L−1)r2

12 ≤ f2(r) ≤ 1 −
0.94(L−1)(2L−1)r2

12 and 0.89r(L−1)
2 ≤ f4(r) ≤ r(L−1)

2 .
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Proof. By Taylor’s formula, 1 − u2

2 ≤ cosu ≤ 1 − u2

2 + u4

24 . For |u| < π
4 , we

have 1 − |u|2
2 ≤ cos u ≤ 1 − 0.94 |u|2

2 . Then

1− (L− 1)(2L− 1)r2

12
≤ 1
L

L−1∑
m=0

cos(mr) ≤ 1− 0.94(L− 1)(2L− 1)r2

12
.

Similarly, by (5.9), 0.89r(L−1)
2 ≤ f4(r) ≤ r(L−1)

2 for |r| ≤ π
4L+1 . This completes

the proof.

Lemma 5.3.

(a) 0 ≤ f2(r) ≤ sinLr
Lr(1− 1

L2 )
+ 1

2L for r ∈ [ π
4L+1 ,

π
L ],

(b) |f4(r)| ≤ 1−cosLr
Lr(1− 1

L2 )
for r ∈ [ π

4L+1 ,
π
L ],

(c) |f2(r)|+ |f4(r)| ≤ 2
nπ + 1

2L for r ∈ [nπ
L ,

(n+1)π
L ] and n = 1, 2, ..., L− 1.

The proof of Lemma 5.3 is similar to the one of Lemma 5.2 and is omitted.

5.2 Proposition 1.4

Let Kl(r) = 1
2 +

∑Ll
m=1 cosmr be the l-th Dirichlet kernel for l ∈ N. The

following lemma is the key lemma to show Proposition 1.4.

Lemma 5.4. There is a large constant L1 such that for L ≥ L1, we have

(a) for ‖k‖∞ ∈ [0, π
4L+1 ], |D̂(k)| ≤ |G(‖k‖∞)| + 0.48L‖k‖∞,

(b) for ‖k‖∞ ∈ ( π
4L+1 ,

π
L ], |D̂(k)| ≤ ∣∣G(‖k‖∞)

∣∣ + 6
π3 + 3

Lπ2 , for ‖k‖∞ ∈
(nπ

L ,
(n+1)π

L ], with n = 1, 2, ..., L− 1, |D̂(k)| ≤ |G(‖k‖∞)| + 6
nπ3 + 3

Lπ2 ,

(c) | ∂
∂kν

D̂(k)| ≤ c| d
dkν

G(kν)| with k ∈ [−π, π]d, ν ∈ {1, 2, ..., d} and c > 0.

Proof. Clearly, D̂(0) = G(0) = 1. For any k ∈ [−π, π]d with ‖k‖∞ = |kµ|,
there exists k∞ such that k∞ = ‖k‖∞eµ. Clearly, |D̂(k)| ≤ |D̂(k∞)|. To estimate
the upper bound of |D̂(k)|, it is sufficient to estimate |D̂(k∞)|.

Let |kµ| = ‖k‖∞ for some µ ∈ {1, 2, ..., d} and k = ‖k‖∞eµ. Clearly, gl(kj) =
6

π2l2
for j 
= µ. Then, by (5.2),
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(5.10)

D̂(k) =
∞∑
l=1

gl(kµ)Jµ
l (k) +

∞∑
l=1

d∑
j=1,j 
=µ

gl(kj)J
j
l (k)

=
∞∑
l=1

gl(kµ)
( 1
2 + lL)d−µ

(
1
2 + (l− 1)L

)µ−1

Al

+
∞∑
l=1

6
l2π2

[
d∑

j=1,j 
=µ

J
j
l (k)]

=
∞∑
l=1

gl(kµ)
( 1
2 + Ll)d−1(rl)µ−1

Al
+

∞∑
l=1

6
l2π2

[
d∑

j=1,j 
=µ

Jj
l (k)],

where rl =
1
2
+(l−1)L
1
2
+lL

. By (5.2)-(5.3),

Jj
l (k) =

( 1
2 + (l− 1)L)j−1Kl(kµ)( 1

2 + lL)d−j−1

Al
for j < µ,

and

Jj
l (k) =

( 1
2 + (l− 1)L)j−2Kl−1(kµ)( 1

2 + lL)d−j

Al
for j > µ.

With 6
l2π2 [Kl(kµ) −Kl−1(kµ)] = Lgl(kµ) and 1 − rl = L

1
2
+lL

, we have

(5.11)

∞∑
l=1

6
l2π2

[
d∑

j=1,j 
=µ

J
j
l (k)]

=
∞∑
l=1

6
l2π2

{[µ−1∑
j=1

(
1
2

+ (l − 1)L)j−1Kl(kµ)(
1
2

+ lL)d−j−1
]

+
[ d∑
j=µ+1

(
1
2

+ (l− 1)L)j−2Kl−1(kµ)(
1
2

+ lL)d−j
]}

(Al)−1

=
∞∑
l=1

6
l2π2

{
[
µ−1∑
j=1

(
1
2
+(l−1)L)j−1

(
Kl(kµ)−Kl−1(kµ)

)
(
1
2
+lL)d−j−1

]
+
[d−1∑
j=1

(
1
2

+ (l− 1)L)j−1Kl−1(kµ)(
1
2

+ lL)d−j−1
]}

(Al)−1

=
∞∑
l=1

gl(kµ)
( 1
2 + lL)d−1(1− rµ−1

l )
Al

+ 6
l2π2L

( 1
2
+lL)d−1(1−rd−1

l )

Al
Kl−1(kµ).
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Since Al =
( 1
2
+lL)d(1−rd

l )

L , by (5.10)-(5.11), we have

(5.12)

D̂(k) =
∞∑
l=1

{
(1
2
+Ll)d−1

Al
gl(kµ)+

6
l2π2L

(1
2
+lL)d−1(1−rd−1

l )
Al

Kl−1(kµ)
}

=
∞∑

l=1

{
gl(kµ)L

(1
2 + lL)(1 − rd

l )
+

6
l2π2

(1 − rd−1
l )

(1
2 + lL)(1 − rd

l )
Kl−1(kµ)

}
.

Due to gl(kµ) =
6

l2π2L
[Kl(kµ) −Kl−1(kµ)], by (5.12),

(5.13)

D̂(k) = G(kµ)−
∞∑
l=1

{(
1− 1−rl

1−rd
l

)
gl(kµ) − 6

l2π2

(1−rd−1
l )

(1
2 +lL)(1−rd

l )
Kl−1(kµ)

}

= G(kµ) −
∞∑
l=1

{
rl(1−rd−1

l )
1−rd

l

gl(kµ)− 6
l2π2

(1−rl)(1−rd−1
l )

L(1−rd
l )

Kl−1(kµ)
}

= G(kµ) −
∞∑
l=1

{
6(1 − rd−1

l )
l2π2L(1 − rd

l )

[
rlKl(kµ) −Kl−1(kµ)

]}
.

Then

D̂(k)−G(kµ) =
6

l2π2L
S1(kµ) − S2(kµ),(5.14)

where

S1(kµ) =
∞∑
l=1

(1 − 1 − rd−1
l

1 − rd
l

)
[
rlKl(kµ) −Kl−1(kµ)

]
,

and

S2(kµ) =
∞∑
l=1

6
π2l2L

[
rlKl(kµ)−Kl−1(kµ)

]
.

From Kl(kµ) = sin(lL+1
2
)kµ

2 sin 1
2
kµ

,

(5.15)

rlKl(kµ)−Kl−1(kµ)

=
1
2

{
cot(

kµ

2
)
[
sin(lLkµ)(rl − cosLkµ) + cos(lLkµ) sin(Lkµ)

]
− sin(lLkµ) sin(Lkµ) + cos(lLkµ)(rl − cosLkµ)

}
.

For |kµ| ≤ π
4L+1 , we have rl − cos(Lkµ) = −L

1
2
+lL

+ 1 − cos(Lkµ). Then by
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(5.15), (5.6) and (5.7),

(5.16)

S2(kµ) =
∞∑

l=1

3
l2π2L

{
cot(

kµ

2
)
[
(

−L
1
2 + lL

+ 1 − cosLkµ) sin lLkµ

+sinLkµ cos lLkµ

]− sinLkµ sin lLkµ

+(
−L

1
2 + lL

+ 1 − cosLkµ) cos lLkµ

}

=
∞∑

l=1

3
l2π2L

{−L sin(lL + 1
2
)kµ

(1
2 + lL)(sin kµ

2 )
+ cot

kµ

2
[
(1 − cosLkµ) sin lLkµ

+sinLkµ cos lLkµ

]− sinLkµ sin lLkµ + (1 − cosLkµ) cos lLkµ

}

=

−
∫ kµ

0

[
∞∑
l=1

3
l2π2

cos(lL+
1
2
)t]dt

sin kµ

2

+
1

2L

{
cot

kµ

2
[
(1−cos Lkµ)f3(kµ)

+ sinLkµf1(kµ)
]− sinLkµf3(kµ) + (1 − cosLkµ)f1(kµ)

}

=
−
∫ kµ

0

[
f1(t) cos

t

2
−f3(t) sin

t

2
]
dt+

cos kµ

2

L
sinLkµf1(kµ)

2 sin kµ

2

+
(1 − cosLkµ)

2L
[
cot

kµ

2
f3(kµ) − sinLkµf3(kµ)

(1 − cosLkµ)
+ f1(kµ)

]

≥
−
∫ kµ

0

f1(t) cos
t

2
dt+

cos kµ

2

L
sinLkµf1(kµ)

2 sin kµ

2

≥
−[kµ − 3Lk2

µ

2π
+
L2k3

µ

6π2
] +

1
L

[Lkµ − (Lkµ)3

6
][1− 3Lkµ

π
+

3L2k2
µ

2π2
]

kµ

≥ −3Lkµ

2π
,

for |kµ| ≤ π
4L+1 . By the definition of the l-th Dirichlet’s kernel Kl(r) and rl, it is

easy to see that

r1K1(kµ) −K0(kµ) =
( 1

2
1
2 + L

)sin( 1
2 + L)kµ

2 sin kµ

2

− 1
2
≤ 0.

For l > 1, since 1
rl

= 1 + L
1
2
+(l−1)L

, let u = Lkµ ∈ (0, π
4 ], we have
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1 − 1− rd−1
l

1 − rd
l

=
rd−1
l

1 + rl + r2l + · · · + rd−1
l

=
L

[ 12 + (l− 1)L]
[
(1 + L

1
2
+(l−1)L

)d − 1
]

=
1

d+ cl
,

with cl ≥ 0. For |Lkµ| = |u| ≤ π
4 , we have, by (5.15),

(5.17)

S1(kµ) ≤
∞∑

l=2

L

u(d+ cl)

{
sin lu(

−1
l

+
u2

2
) + cos lu

[
u+

u

L
(
−1
l

+
u2

2
)
]}

≤
[ π

u ]∑
l=2

L

ud

{
sin lu(

−1
l

+
u2

2
) + cos lu

[
u+

u

L
(
−1
l

+
u2

2
)
]}

+
∞∑

n=1

(−1)n

{ [ π
u ]∑

l=1

L

u(d+ cn[π
u ]+l)

× [sin lu(
−1

n[π
u ] + l

+
u2

2
)

+ cos lu
(
u+

u

L
(

−1
n[π

u ] + l
+
u2

2
)
)]}

=

[
π

u
]∑

l=2

L

ud

{
sin lu(

−1
l

+
u2

2
) + cos lu

[
u+

u

L
(
−1
l

+
u2

2
)
]}

+
∞∑

n=1

(−1)nRn(u).

For lu ≤ π with l > 1, we have

sin lu(
−1
l

+
u2

2
) + cos lu

[
u+

u

L
(
−1
l

+
u2

2
)]

≤ (lu− l3u3

6
)(
−1
l

+
u2

2
) + u(1− u2l2

2
+
u4l4

24
) < 0.

Similarly, we have
∑∞

n=1(−1)nRn(u) < 0 since Rn(u) is positive and strictly
decreasing of n. This implies S1(kµ) < 0, by (5.17). Therefore, for 0 < kµ ≤ π

4L+1
and large L, we have, by (5.14) and (5.16)-(5.17),

|D̂(k) −G(kµ)| ≤ 3Lkµ

2π
≤ 0.48Lkµ.(5.18)

This completes the proof of (a).
To show (b), since

rl
l2

(
1 − rd−1

l

1 − rd
l

) − 1
(l + 1)2

(
1 − rd−1

l+1

1 − rd
l+1

)

=
1
l2

[1− 1
1 + rl + · · ·+ rd−1

l

] − 1
(l+ 1)2

[1− rd
l+1

1 + rl+1 + · · ·+ rd−1
l+1

],
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we get

1
l2

− 1
(l+ 1)2

≥ rl
l2

(
1 − rd−1

l

1 − rd
l

) − 1
(l + 1)2

(
1 − rd−1

l+1

1 − rd
l+1

)

≥ 1
l2

− 1
(l+ 1)2

− 1
l2[1 + rl + · · ·+ rd−1

l ]
.

This implies rl
l2

( 1−rd−1
l

1−rd
l

)− 1
(l+1)2

(
1−rd−1

l+1

1−rd
l+1

) is non-negative and monotone decreasing
sequence. For k = ‖k‖∞eµ and ‖k‖∞ ∈ ( π

4L+1 ,
π
L), we have, by (5.13),

(5.19)

|D̂(k) −G(kµ)| =
∣∣∣∣− ∞∑

l=1

6(1− rd−1
l )

π2(1− rd
l )l2L

[rlKl(kµ) −Kl−1(kµ)]
∣∣∣∣

=
∣∣∣∣ 3
Lπ2

1 − rd−1
1

1 − rd
1

− 6
Lπ2

∞∑
l=1

[rl
l2

(
1− rd−1

l

1 − rd
l

)

− 1
(l + 1)2

(
1 − rd−1

l+1

1 − rd
l+1

)
]× sin(lL+ 1

2 )kµ

2 sin 1
2kµ

∣∣∣∣
≤ 3
Lπ2

+
6
Lπ2

∞∑
l=2

[ 1
l2

− 1
(l+ 1)2

]
1
kµ

≤ 3
Lπ2

+
6
π3
.

By the same way, we have |D̂(k) − G(kµ)| ≤ 3
Lπ2 + 6

nπ3 for k = ‖k‖∞eµ and
‖k‖∞ ∈ (nπ

L ,
(n+1)π

L ] with n = 1, 2, ..., L− 1. This completes the proof of (b).
To prove (c), for ν ∈ {1, 2, ..., d}, clearly, | ∂

∂ν D̂(k)| ≤ | ∂
∂ν D̂(kν)|, where

kν = kνeν . Since 6
π2Kl−1(r) = L[ 6

2π2 +
∑l−1

m=l gm(r)m2], by (5.12) and Fubini’s
theorem, we have

| ∂
∂ν
D̂(kν)| =

∣∣∣∣ ddν

{ ∞∑
l=1

gl(kν)L
( 1
2 + lL)(1− rd

l )
+

6
l2π2

(1− rd−1
l )

( 1
2 + lL)(1− rd

l )
Kl−1(kν)

}∣∣∣∣
=
∣∣∣∣ ddν

{ ∞∑
l=1

gl(kν)L
( 1
2 + lL)(1− rd

l )
+

L(1 − rd−1
l )

l2( 1
2 + lL)(1− rd

l )
[

6
2π2

+
l−1∑
m=1

gm(kν)m2]
}∣∣∣∣

≤
∣∣∣∣ ddν

{ ∞∑
l=1

gl(kν)L
( 1
2 + lL)(1− rd

l )
+

∞∑
m=1

[cgm(kν) + c′]
}∣∣∣∣ ≤ c1| d

dν
G(kν)|
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with some positive constants c, c′ and c1. This completes the proof of (c).

Proof of Proposition 1.4. By Lemma 5.1− 5.2, we have

|G(kj)|
≤ [1 − 21

8π
L|kj|

][
1 − 0.156(L− 1)2k2

j

]
+

3|kj|2L(L− 1)
π2

[
1.2− log |Lkj|

]
≤ 1 − 0.6L|kj|

for k ∈ {k : ‖k‖∞ ≤ π
4L+1}. By Lemma 5.4 (a), there exists L1 > 0, for any

L ≥ L1,

|D̂(k)| ≤ 1− 0.6L‖kj‖∞ + 0.48L‖kj‖∞ = 1 − 0.12L‖k‖∞ ≤ 1 − 0.12L
d

‖k‖1.

Similarly, by Lemma 5.4 and Lemma 5.3,

|D̂(k)| ≤ sup
j∈{1,2,...,d}

|G(kj)| + 3
Lπ2

+
6
π3

≤ (
1
2
)[

√
2

2
π
4 (1− 1

L2 )
+

1
2L

] + 0.64(
1 −

√
2

2
π
4 (1− 1

L2 )
) +

3
Lπ2

+
6
π3

< 0.95

with k ∈ {k : π
4L+1 < ‖k‖∞ < π

L}, and

|D̂(k)| ≤ |G(‖k‖∞)|+ 6
nπ3

≤ |f2(‖k‖∞)| + |f4(‖k‖∞)| + 6
nπ3

2
nπ

+
1

2L
+

6
nπ3

≤ 9
10n

with ‖k‖∞ ∈ (nπ
L ,

(n+1)π
L ], n = 1, ..., L− 1. This completes the proof.

6. ESTIMATES FOR Π̂λ(k, z)

Proof of Proposition 1.5.We use the the following propositions to prove Propo-
sition 1.5.

Proposition 6.1. For any dimension d > 2, there exist constants L 0, c1, c2
and c3 such that for L ≥ L0 and n = 1, 2, we have∫ |D̂(k)|

(1− |D̂(k)|)n
dk ≤ c1 logL

L
,(6.1)
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∫ |D̂(k)|2
(1 − |D̂(k)|)n

dk ≤ c2
L
.(6.2)

Proof. Let R1 = [− π
4L+1 ,

π
4L+1 ]d, R2 = [−π

L ,
π
L ]d, by Proposition 1.6, for

d > 2 there exists σ ∈ (0, 1) such that∫ |D̂(k)|
1 − |D̂(k)|dk = (

1
2π

)d

{∫
k∈R2

|D̂(k)|
1 − |D̂(k)|dk +

∫
k∈[−π,π]d\R2

|D̂(k)|
1 − |D̂(k)|dk

}

≤ (
1
2π

)d

{∫
k∈R1

1
0.12L

d ‖k‖1

dk +
1

1 − 0.95

∫
k∈R2\R1

|D̂(k)|dk

+
L−1∑
l=1

2
∫ (l+1)π

L

lπ
L

(
9(2π)d−1

10l(1− 9
10l )

)dkµ

}

≤ c
logL
L

,

and ∫ |D̂(k)|
(1− |D̂(k)|)2dk ≤ c

Ld
+

L−1∑
l=1

9
10l(1− 9

10l )
2L

≤ c
logL
L

.

By above argument, we obtain the inequalities (6.2) for d > 2. This completes the
proof.

Proposition 6.2. For any dimension d > 2, there exists L1 > 0 and universal
constant c such that for L ≥ L1, r > 1 n = 1, 2 and ν ∈ {1, 2, ..., d}, we have∫ | ∂

∂kν
D̂(k)|r

(1− |D̂(k)|)n
dk ≤ c

L
,

∫ | ∂
∂kν

D̂(k)|
(1− |D̂(k)|)n

dk ≤ c logL
L

Proof. By (5.6)-(5.9), for |r| ∈ [nπ
L ,

(n+1)π
L ],n ∈ {0, 1, ..., L− 1}, we have

fj(r) ≤ 1 with j = 2, 4

|fj(r)| ≤ min{ c

Lr
, 1}, |f ′j(r)| ≤

c

|Lr|2 ,

|f ′1(r)| ≤ cL, |f ′3(r)| ≤ cL+ c′L| logL(r − nπ

L
)|.

Therefore, for |r| ≤ π
L , we have | d

drG(r)| ≤ c1 + c2| logLr| with some constants
c1, c2. For nπ

L ≤ r ≤ (n+1)π
L , we have | d

drG(r)| ≤ c′1
n + c′2

| logL(r−nπ
L

)|
n , n ∈
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{1, ..., L−1} . Then by Lemma 5.4 (c) and Proposition 1.6, for d > 2, there exists
σ1 > 0, such that∫ | ∂

∂kν
D̂(k)|r

1 − |D̂(k)| |dk ≤ (
1
π

)d

∫
k∈[0, π

L
]d

(c1 + c2| logLkν|)r

σ1L‖k‖1

d

dk

+c
L−1∑
l=1

∫ (l+1)π
L

lπ
L

[c′1 + c′2| logL(kν − lπ
L )|]r

lr(1− 9
10l)

dkν

≤ c

L

{∫ π

0

td−2[(c1) + (c2)| log t|]dt+
L−1∑
l=1

∫ π

0

(c′1 + c′2| log t|)r

lr(1− 9
10l)

dt

}

≤ c

L−1∑
l=1

1
lr

(L)−1.

By above argument, this lemma follows.

Let S(x, n) denote the two-point function of the random walk on Zd with 1-
step transition function D(x) for n ∈ N, S(x, n) = 0 for all x ∈ Z

d, n ≤ 0 and
S0(x, n) = S(x, n) + δ(x, n). For λ = λ0, we have, by Hölder’s inequality,

(6.3)

sup
(y,m)

δkµQ̂
(λ,1)
(y,m)(0, 0) = sup

(y,m)

∑
(x,n)

|xµ|ϕλ(x− y, n−m)ϕλ(x, n)

≤ ‖ϕλ(x, n)‖ 3
2
‖xµϕλ(x, n)‖3

≤ ‖S0(x, n)‖ 3
2
‖xµS0(x, n)‖3.

Since
∑

x S(x, n) = 1 for all n∑
(x,n)

S(x, n)
3
2 =

∞∑
n=1

[
∑

x

S(x, n)
3
2 ] ≤

∞∑
n=1

{sup
x
S(x, n)

1
2} =

∞∑
n=1

{sup
x
S(x, n)} 1

2 ,

by Hausdorff-Young’s inequality, let R1 = [− π
4L+1 ,

π
4L+1 ]d and R2 = [−π

L ,
π
L ]d,

we have, for d > 2,

(6.4)

∑
(x,n)

S(x, n)
3
2 ≤

∞∑
n=1

{
∫

|D̂(k)|ndk} 1
2

=
∞∑

n=1

(
1
2π

)d

{∫
kµ∈R1

|D̂(k)|ndk +
∫

kµ∈R2\R1

|D̂(k)|ndk

+
∫

kµ∈[−π,π]d\R2

|D̂(k)|ndk
} 1

2
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≤
∞∑

n=1

{
c0

Ld(n+ 1) · · · (n+ d)
+
c1(0.95)n

Ld
+
c2
L

L∑
l=1

(
9

10l
)n

} 1
2

≤
∞∑

n=1

(
c

ndLd
)

1
2 + (

c′ logL
L

)
1
2 ≤ c(

logL
L

)
1
2

with universal constants c. From (6.3), (6.4) and Hausdorff-Young’s inequality, we
have

(6.5)

sup(y,m) δkµQ̂
(λ,1)
(y,m)(0, 0) ≤

{
1+τ 3

2

(
logL
L

)
1
3

}
‖xµS0(x, n)‖3

≤
{

1+τ 3
2

(
logL
L

)
1
3

}{∫∫
| ∂
∂kµ

Ŝ0(k, it)| 32 dkdt
}2

3

for some universal constants τ 3
2
. By the same argument, we also have

(6.6) sup
(y,m)

δkµQ̂
(λ,j)
(y,m)

(0, 0) ≤ τ 3
2

(
logL
L

) 1
3
{∫∫

| ∂
∂kµ

Ŝ0(k, it)| 32dkdt
} 2

3

.

with j = 2, 3.

Remark 6.1. In (6.5), we obtain the upper bound of δkµQ̂
(λ,1)
(y,m)(0, 0) which is

different from the upper bound of δzQ̂
(λ,1)
(y,m)(0, 0) in Lemma 3.5. If we follows this

method, we have

sup
(y,m)

δkµQ̂
(λ,j)
(y,m)

(0, 0) = sup
(y,m)

ϕµ
λ ∗ ϕλ(y,m) ≤

∫∫
|ϕ̂µ

λ(k, it)ϕ̂λ(k, it)|dkdt,

where ϕµ
λ(x, n) = |xµ|ϕλ(x, n). We can not control ϕ̂µ

λ(k, it) since ϕ̂µ
λ(k, it) is

not equal to ∂
∂kµ

ϕ̂λ(k, it) for any µ ∈ {1, 2, ..., d}. If we use Hausdorff-Young
inequality

sup
(y,m)

δkµQ̂
(λ,j)
(y,m)

(0, 0) ≤ {
∫∫

|ϕ̂λ(k, it)|2dkdt} 1
2{
∫∫

| ∂
∂kµ

ϕ̂λ(k, it)|2dkdt} 1
2 ,

this right hand side is divergence for the dimension d = 3.

Proof of Proposition 1.5 For λ = λ0, by Proposition 6.2, (6.5)-(6.6) and Lemma
3.4−3.5, for any d > 2 there exists an L1 (depending on d) and universal constant
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c such that

sup(y,m) Q̂
(λ,1)
(y,m)

(0, 0) ≤ c, sup
(y,m)

T̂
(λ,1)
(y,m)

(0, 0) ≤ c,

sup(y,m) δzQ̂
(λ,1)
(y,m)

(0, 0) ≤ c
logL
L

, sup
(y,m)

δkµQ̂
(λ,1)
(y,m)

(0, 0) ≤ c

L
2
3

,

sup(y,m) Q̂
(λ,j)
(y,m)

(0, 0) ≤ c
logL
L

, sup
(y,m)

T̂
(λ,j)
(y,m)

(0, 0) ≤ c

L
,

sup(y,m) δzQ̂
(λ,j)
(y,m)

(0, 0) ≤ c

L
, sup

(y,m)

δkµQ̂
(λ,j)
(y,m)

(0, 0) ≤ c
(logL)

1
3

L
,

and

sup
(y,m)

T̂
(λ,j)
(y,m)

(0, 0) ≤ c

∫
D̂(k)2

[1 − D̂(k)]2
dk ≤ c

L1
<

1
2
,

for j ∈ {2, 3}. By Lemma 3.1 − 3.3, we obtain Proposition 1.5. This completes
the proof.

Proof of Proposition 1.6

Since (P4) is satisfied, from (1.5), (2.7) and (6.3), |ϕ̂λ(k,mλ − s + it)| ≤
c|Ŝ0(k,−s + it)| and |ψ̂λ(k,mλ − s + it)| ≤ c|Ŝ(k,−s + it)|, moreover, from
(1.17), we have

(6.7)

| ∂
∂kµ

ϕ̂λ(k,mλ − s+ it)| = | ∂
∂kµ

[1 + Π̂λ(k,mλ − s+ it)
F (k,mλ − s+ it)

]|
≤ c

|1 − D̂(k)e−s+it|2

≤ c| ∂
∂kµ

Ŝ(k,−s+ it)|

with universal constant c for any k ∈ [−π, π]d and s ∈ (0, 1). By Hölder’s inequal-
ity,

(6.8)

sup(y,m) δkµQ̂
(λ,1)
(y,m)

(0, mλ − s)

= sup
(y,m)

∑
(x,n)

|xµ|ϕλ(x− y, n−m)ϕλ(x, n)e(mλ−s)n

≤ ‖ϕλ(x, n)‖ 3
2
‖xµϕλ(x, n)e(mλ−s)n‖3.

Since mλ > 0 for λ ∈ (0, λc), from (6.4),
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(6.9)

∑
(x,n)

ψλ(x, n)
3
2 = lim

s↑mλ

∑
(x,n)

{ψλ(x, n)e(mλ−s)n} 3
2

≤ c lim
s↑mλ

∑
(x,n)

{S(x, n)e−sn} 3
2

= c
∑
(x,n)

{S(x, n)e−mλn} 3
2

≤ c
∑
(x,n)

{S(x, n)} 3
2 ≤ c(

logL
L

)
1
2 ,

By (6.7)-(6.9), we have

(6.10)
sup
(y,m)

δkµQ̂
(λ,1)
(y,m)(0, mλ−s) ≤

{
1 + τ 3

2

}( logL
L

) 1
3
{∫∫

| ∂

∂kµ
Ŝ0(k, it)| 32 dkdt

}
2
3

sup
(y,m)

δkµQ̂
(λ,j)
(y,m)(0, mλ−s) ≤ τ 3

2

(
logL
L

) 1
3
{∫∫

| ∂
∂kµ

Ŝ0(k, it)| 32 dkdt
} 2

3

with j = 2, 3. By Lemma 3.4− 3.5, (6.7)-(6.9) and Proposition 6.2, for any d > 2,
we have

sup(y,m) Q̂
(λ,1)
(y,m)(0, 0) ≤ c, sup

(y,m)
T̂

(λ,1)
(y,m)(0, 0) ≤ c,

sup(y,m) δzQ̂
(λ,1)
(y,m)(0, 0) ≤ c

logL
L

, sup
(y,m)

δkµQ̂
(λ,1)
(y,m)(0, 0) ≤ c

L
2
3

,

sup(y,m) Q̂
(λ,j)
(y,m)(0, 0) ≤ c

L
, sup

(y,m)
T̂

(λ,j)
(y,m)(0, 0) ≤ c

L
,

sup(y,m) δzQ̂
(λ,j)
(y,m)

(0, 0) ≤ c

L
, sup

(y,m)
δkµQ̂

(λ,j)
(y,m)

(0, 0) ≤ c
(logL)

1
3

L
,

with j ∈ {2, 3} and µ = 1, 2, ..., d. Let L0 ≥ L1 sufficiently large such that

sup
(y,m)

T̂
(λ,j)
(y,m)

(0, r) ≤ c

L
<

1
2
,

for any L ≥ L0 and j = 2, 3. From Lemma 3.1− 3.3, we have∑
(x,n)

|Πλ(x, n)ern| ≤ c0
L
,

∑
(x,n)

|nΠλ(x, n)ern| ≤ c1
L
,

∑
(x,n)

|xµΠλ(x, n)ern| ≤ c2(logL)
1
3

L
,
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where c0, c1 and c2 are constants which are independent of τ ′0, τ ′1, τ ′2 for any r < mλ

and λ ∈ (0, λc). Let

τ ′0 = max{τ0, c02 }, τ ′1 = max{τ1, c12 }, and τ ′2 = {τ2, c22 },

where ci as in the Proposition 1.6. Therefore (P4) implies (P2). This completes
the proof.
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