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GROUP THEORETIC METHOD ANALYSIS FOR UNSTEADY
BOUNDARY LAYER FLOW NEAR A STAGNATION POINT

I. A. Hassanien, A. A. Salama and H. A. Hosham

Abstract. An analysis of the problem of unsteady laminar boundary layer near
a stagnation point is presented. The transformation group theoretic approach
is applied to this problem. The application of two-parameter groups reduces
the number of independent variables in the governing system consisting of par-
tial differential equations and a set of auxiliary conditions from three to only
one independent variable, and consequently the system of governing partial
differential equations with boundary conditions reduces to a system of ordi-
nary differential equations with appropriate boundary conditions. The possible
forms of the main stream velocity and the surface temperature variations with
position and time are derived. It is shown how not only we recover many
of the previously known exact solutions but also find some completely new
forms.

1. INTRODUCTION

Almost a century ago Prandtl realised the key part that boundary layers play in
determining accurately the flow of certain fluids. He showed for slightly viscous
flows that although viscosity is negligible in the bulk of the flow, it assumes a vital
role near boundaries.

The quest for exact solutions of the boundary-layer equations has a long history.
Blasius (1908) used a scaling to obtain the similarity solution of the steady boundary
layer flow of a flat plate. Further work Burde’ (1990, 1994, 1995, 1996) obtained
similarity solution corresponding to stagnation point flows, flows past wedges, jets
and flows near an oscillating plate. Jones and Watson (1963) have given a compre-
hensive account of many of the classical exact solutions of the boundary-layer equa-
tions including Falkner-Skan forms and the asymptotic suction profile. The two-
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Nomenclature

A, B, C′s, m, n, r,
T0, U0, K

′s, α, β Real constants
a1, a2 Essential parameters
Pr Prandtl number
Re Reynolds number
x Distance along the surface
y Distance normal to the surface
t Time
u Velocity in x-direction
v Velocity in y-direction
T Temperature
U Potential velocity
F Dimensionless velocity

Greek symbols
η Dimensionless coordinate
θ Dimensionless temperature
ψ Stream function

Subscripts
w Surface conditions
∞ Conditions far a way form the surface

parameter groups provide a powerful tool because they are not based on linear
operators, superposition, or any other aspects of linear solution techniques. Ma and
Hui (1990) used the method of Lie group transformations to derive all possible
group-invariant similarity solutions to the problem of unsteady two-dimensional
boundary-layer flow of an incompressible fluid. This method is based on nonlinear
superposition is then used to generate further similarity solution which are not group-
invariant. Recently, the symmetry analysis applied to boundary layer equations is,
introduced by Cantwell (2003).

Variants of the two-parameter groups have been applied to several problems
within fluid mechanics. The new systematic formalism introduced here is well
studied for the similarity analysis of unsteady laminar boundary layer in an incom-
pressible stagnation point flow. This new systematic formalism reduces the number
of independent variables in the system which consists, in general, of a set of par-
tial differential equations and auxiliary conditions (such as boundary and/or initial
conditions) by two. These reduce the system of partial differential equations to a
system of ordinary differential equations with the appropriate boundary conditions.
The general analysis is developed in this study to cases of the wall temperature Tw
and potential velocity U in which they have several forms in the position and time.
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Throughout we make frequent contact with previously derived similarity solutions
and show that while the two-parameter groups recover many of these forms they
also find several completely new ones.

2. MATHEMATICAL ANALYSIS

Consider an unsteady, two-dimensional, laminar, boundary layer flow near a
stagnation point. We use Cartesian coordinate system oxyz, the governing equations
can be approximated by the dimensionless in the form:

(1)
∂u

∂x
+
∂v

∂y
= 0,

(2)
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
+
∂U

∂t
+ U

∂U

∂x
,

(3)
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1
Pr
∂2T

∂y2
,

with the boundary conditions

(4) y=0 : u=0, v=vw=Const., T =Tw(x, t), y→ ∞ : u=U(x, t), T=T∞,

where

(5)
x =

x̄

L
, y =

ȳ

L

√
Re, t =

U∗

L
t̄, u =

ū

U∗ , v =
v̄

U∗
√
Re,

T − T∞ =
L

U∗2 (T̄ − T̄∞), θ =
T − T∞
Tw − T∞

=
T − T∞
T1

.

These equations are presented by Schlichting and Gersten [20]. If we introduce the
non-dimensional stream function ψ(x, y, t) such that u = ∂ψ

∂y , v = −∂ψ
∂x and the

non-dimensional temperature given by (5), Eqs. (1-3) become:

(6)
∂2ψ

∂y∂t
+
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
=
∂3ψ

∂y3
+
∂U

∂t
+ U

∂U

∂x
,

(7) T1
∂θ

∂t
+ θ

∂T1

∂t
+
∂ψ

∂y
(T1

∂θ

∂x
+ θ

∂T1

∂x
) − T1

∂ψ

∂x

∂θ

∂y
=

1
Pr

T1
∂2θ

∂y2
,

with the boundary conditions

(8) y = 0 :
∂ψ

∂y
= 0,

∂ψ

∂x
= −vw, θ = 1, y → ∞ :

∂ψ

∂y
= U(x, t), θ = 0.
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3. THE GROUP OF TRANSFORMATIONS

In this section, two-parameter transformation group is applied to the system of
Eqs.(6-7) with the boundary conditions (8). The system of equations reduces to a
system of ordinary differential equations in a single independent variable with the
appropriate boundary conditions. The procedure is initiated with the group G, a
class of two-parameter group of the form:

G : S̄ = CS (a1, a2)S +KS(a1, a2),(9)

where S stands for x, y, t, ψ, T1, U and θ and the CS and KS are real-
valued at least differentiable in their arguments (a1, a2) , the parameters of the
group. For more details about the transformation (9) see Moran and Gaggioli (1970),
Ovsiannikov (1982) and Abd-el-Malek and El-Mansi (2000). Thus, in the notation
of the given representation, the present analysis is initiated with a class CG of
two-parameter transformation group in the form

G :




S̄ :




x̄ = Cx(a1, a2)x+Kx(a1, a2)

ȳ = Cy(a1, a2)y +Ky(a1, a2)

t̄ = Ct(a1, a2)t+Kt(a1, a2)

ψ̄ = Cψ(a1, a2)ψ +Kψ(a1, a2)

θ̄ = Cθ(a1, a2)θ +Kθ(a1, a2)

T̄1 = CT1(a1, a2)T1 +KT1(a1, a2)

Ū = CU (a1, a2)U +KU(a1, a2),

(10)

which possesses complete sets of absolute invariants η(x, y, t) and χi(x, y, t, ψ, θ, T1), i =
1, 2, 3 where χi are the three absolute invariants corresponding to ψ, θ, U and T1. If
η is the absolute invariant of the independent variables, then χi = Fi(η), i = 1, 2, 3.

4. THE INVARIANCE ANALYSIS

The transformation for the derivatives of the differential equations (6-8), are
obtained directly from G via chain rule operations

(11) S̄x̄ = (CS/Cx)Sx, S̄x̄ȳ = (CS/CxCy)Sxy, ..., S̄x̄ȳz̄ = (CS/CxCyCz)Sxyz.

Eq. (6) is said to be invariantly transformed under (9) and (11) whenever

(12)
Ψ̄ȳt̄ + Ψ̄ȳΨ̄ȳx̄ − Ψ̄x̄Ψ̄ȳȳ − Ψ̄ȳȳȳ − Ūt̄ − Ū Ūx̄

= H(a1, a2)(Ψyt + ΨyΨyx − ΨxΨyy − Ψyyy − Ut − UUx),
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for some function H(a1, a2) which may be a constant. Substitution from Eqs. (9)
and (11) into the left-side of (12) and rearrangement yields

(13)

(CΨ/CyCt)Ψyt+[(CΨ)2/(Cy)2Cx](ΨyΨyx−ΨxΨyy)

−[CΨ/(Cy)3]Ψyyy−(CU/Ct)Ut−(CUU)(CU/Cx)Ux

= H1(a1, a2)(Ψyt + ΨyΨyx−ΨxΨyy−Ψyyy−Ut − UUx)+R1(a1, a2),

where

R1(a1, a2) = KU(CU/Cx)Ux.(14)

Thus, it follows that (13) is transformed invariantly whenever

(15)
(Cψ/CyCt) = [(Cψ)2/(Cy)2Cx] = [Cψ/(Cy)3] = (CU/Ct)

= [(CU )2/Cx] = H1(a1, a2).

The invariance of (13) implies R1 = 0 , which reduces to

(16) KU = 0.

In like manner the invariant transformation of (7) under (9) and (11) whenever there
is a function H2(a1, a2) such that:

(17)

CT1T1(Cθ/Ct)θt +Cθθ(CT1/Ct)(T1)t +CT1T1(Cψ/Cy)(Cθ/Cx)ψyθx

+Cθθ(Cψ/Cy)(CT1/Cx)ψy(T1)x −CT1T1(Cψ/Cx)(Cθ/Cy)ψyθy

− 1
Pr

CT1T1[Cθ/(Cy)2]θyy = H2(a1, a2)[T1θt + θ(T1)t

+T1ψyθx + θψy(T1)x − T1ψxθy − 1
Pr

T1θyy ] +R2(a1, a2),

where

(18)

R2(a1, a2) = (KT1Cθ/Ct)θt + (KθCT1/Ct)(T1)t

+(KT1CψCθ/CxCy)ψyθx + (KθCψCT1/CxCy)ψy(T1)x

−(KT1CψCθ/CxCy)ψxθy − 1
Pr

(KT1Cθ/(Cy)2)θyy.

For invariability, we should have

(19) (CT1Cθ/Ct) = (CT1CψCθ/CxCy) = (CT1Cθ/(Cy)2) = H2(a1, a2),
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implies R2 = 0 and hence

(20) KT1 = Kθ = 0.

Moreover, following Birkhoff (1960), the boundary conditions (8) is also invariant
in form whenever the condition Ky = 0 is appended to (15), (16), (19) and (20);
that is

(21)
ȳ = 0 : ψ̄ȳ = 0, ψ̄x̄ = −v̄w̄, θ̄ = 1,

ȳ → ∞ : ψ̄ȳ = Ū(x̄, ȳ), θ̄ = 0.

It is obvious that when Ky = 0, the transformation of θ(x, 0, t) = 1 implies that
θ̄(x̄, 0, t̄) = 1 which is only satisfied if

(22) Cθ = 1.

Combining Eqs. (15) and (19) and invoking the result (22), we get:

(23) Cy = 1, Ct = 1, and Cψ = Cx = CU .

Thus, the foregoing restrictions indicate that groups which are of further interest are
those in the class CG , with the from:

(24) G :




S̄ :




x̄ = Cx(a1, a2)x+Kx(a1, a2)

ȳ = y

t̄ = t+Kt(a1, a2)

ψ̄ = Cx(a1, a2)ψ

θ̄ = θ

T̄1 = CT1(a1, a2)T1

Ū = Cx(a1, a2)U.

Thus, as may be directly verified, any two-parameter group with the form (24)
transform (1) to (4) invariantly in the sense described.

5. COMPLETE SETS OF ABSOLUTE INVARIANT

The key feature of the systematic technique to be presented is the application
of a basic theorem from group theory, Moran and Gaggioli (1968). To emphasize
the essential features of the theorem in a relatively uncomplicated form, it is now
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quoted for the case of two-parameter groups S̄ , (24). At first, a function η is an
absolute invariant of a two-parameter group

(25)

S̄ : [x̄ = Cx(a1, a2)x+Kx(a1, a2),

ȳ = Cy(a1, a2)y +Ky(a1, a2),

t̄ = Ct(a1, a2)t+Kt(a1, a2)],

if and only if η satisfies the first order linear partial differential equations

(26)
(α1x+ α2)

∂η

∂x
+ (α3y + α4)

∂η

∂y
+ (α5t+ α6)

∂η

∂t
= 0,

(β1x+ β2)
∂η

∂x
+ (β3y + β4)

∂η

∂y
+ (β5t+ β6)

∂η

∂t
= 0,

where

α1 = [
∂Cx

∂a1
](a0

1, a
0
2), β1 = [

∂Cx

∂a2
](a0

1, a
0
2),

α2 = [
∂Kx

∂a1
](a0

1, a
0
2), β2 = [

∂Kx

∂a2
](a0

1, a
0
2), ..., etc.

and wherein (a0
1, a

0
2) denote the values of a1 and a2 which yield the identity :

x̄ = x, ȳ = y and t̄ = t, see Moran and Gaggioli (1969) . By definition, for each
of two-parameter groups Ś in the class CǴ there is one and only one functionally
independent solution to (26), (the rank of the coefficient matrix for [∂η∂x ,

∂η
∂y ,

∂η
∂t ] is

two, the matrix has rank two whenever at least one of its two-by-two submatrices
has a non-vanishing determinant). Furthermore, if η �= Const., is a solution to (26),
for a group S , then every other solution to (26), for S, is given in the form H(η)
where H is a differentiable function. It may be seen from (26) and the definitions
of the constants αi, βi that differences between the group S are reflected by the α′

s
and β′

s that is, in general, any particular group S possesses a characteristic set of
α

′
s and β

′
s; and consequently a characteristic absolute invariant η is yielded by

(26). Since Ky = 0 , then α4 = β4 = 0. Therefore, Eqs. (26) become

(27)
(α1x+ α2)

∂η

∂x
+ α3y

∂η

∂y
+ (α5t+ α6)

∂η

∂t
= 0,

(β1x + β2)
∂η

∂x
+ β3y

∂η

∂y
+ (β5t+ β6)

∂η

∂t
= 0.

6. DERIVATION OF DISTINCT COMPLETE SETS

The similarity analysis of (6-8) now proceeds for the particular case of two-
parameter groups of the form (24). According to the basic theorem from group
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theory, Eq. (27) has one and only one solution, if at least one of the following
conditions is satisfied

(28) λ31x+ λ32 �= 0 or λ35t+ λ36 �= 0 or λ15xt+ λ16x+ λ25t+ λ26 �= 0,

where

(28) λij = αiβj − αjβi, i, j = 1, 2, ..., 6.

For convenience, then, the system (27) will be rewritten in terms of the quantities
given by (28); the result is:

(29)
(λ31x+ λ32)

∂η

∂x
+ (λ35t+ λ36)

∂η

∂t
= 0,

(λ31x+ λ32)y
∂η

∂y
− (λ15xt+ λ16x+ λ25t+ λ26)

∂η

∂t
= 0.

According to conditions (28) the following cases arise.

6.1. The first case
From the transformations (24) and definitions of the α′

s, β
′
s and λ′

s, we have
the result

λ31 = λ32 = λ35 = λ36 = λ15 = λ25 = 0,

which imply

(30) λ31x+ λ32 = 0, λ35t+ λ36 = 0,

then the condition (29) reduces to

(31) λ16x+ λ26 �= 0.

Applying Eqs. (30-31) to Eqs. (29), we get
(i) the first equation of (29) is identically satisfied,
(ii) the second equation of (29) reduces to

(32)
∂η

∂t
= 0.

For convenience, Eq. (27) can be rewritten in the form

(33) (λ16x+ λ26)
∂η

∂x
= 0,

and from (31), then Eq. (33) gives:
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(34)
∂η

∂x
= 0.

From Eqs. (32) and (34) we have

(35) η = f(y).

Without loss of generality the independent absolute invariant in Eq. (35) may be
assumed of the form:

(36) η = Ay.

6.2. The second case

According to Eqs.(29), we study the following sub-cases:

6.2.1. Sub-case (λ31x+λ32 = 0, λ35t+λ36 �= 0, λ15xt+λ16x+λ25t+λ26 �= 0)

From Eq. (29) yields the solutions corresponding to this case is ∂η/∂t= 0, i.e.,
from Eq. (27) this yields a solution η = η(x, y) and

(α1x+ α2)
∂η

∂x
+ α3y

∂η

∂y
= 0,

(β1x+ β2)
∂η

∂x
+ β3y

∂η

∂y
= 0,

then

η = y(Ax+B)r , r = −α3

α1
= −β3

β1
, A = α1 = β1, B = α3 = β3.

6.2.2. Sub-case (λ31x+λ32 �= 0, λ35t+λ36 = 0, λ15xt+λ16x+λ25t+λ26 �= 0)

From Eq. (29) this yields a solution η = η(y, t) and

λ32 y
∂η

∂y
− (λ25t+ λ26)

∂η

∂t
= 0,

or

α3 y
∂η

∂y
− (α5t+ α6)

∂η

∂t
= 0,

β3 y
∂η

∂y
− (β5t+ β6)

∂η

∂t
= 0,

then

η = y(Bt+ A)r, r =
α3

α5
=
β3

β5
, A = α6, B = α5.
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6.2.3. Sub-case (λ31x+λ32 �= 0, λ35t+λ36 �= 0, λ15xt+λ16x+λ25t+λ26 = 0)

From Eq. (29), the solution η is a function of x and y (independent of y ) .
This solution is unacceptable regarding the boundary conditions.

6.3. The third case
In this case, we suppose that some of the coefficients in (29) vanish

6.3.1. Sub-case (λ31 = λ35 = 0, λ32 �= 0, λ36 �= 0)

In this sub-case Eqs. (29) become:

(37)
λ32

∂η
∂x + λ36

∂η
∂t = 0,

λ32 y
∂η
∂y − (λ15xt+ λ16x+ λ25t+ λ26)

∂η
∂t = 0.

According to a well-known standard technique for linear partial differential equa-
tions, the first equation of (37) has the general solution

(38) η = f(y, ξ(x, t)),

where f is an arbitrary function and

(39) ξ(x, t) = λ36x− λ32t = Const.

From (38) and (39), the second equation of (37) becomes:

(40) y
∂f

∂y
+ (λ15xt+ λ16x+ λ25t+ λ26)

∂f

∂ξ
= 0.

From (39) and if λ15 = 0, Eq. (40) is written in the form

(41) y
∂f

∂y
+ [(

λ16

λ36
)ξ + λ26]

∂f

∂ξ
= 0.

The solutions of (41) are readily found in the form

(42) f = φ(yH(ξ)),

where H(ξ) is given via the ordinary differential equation

(43) −[(
λ16

λ36
)ξ + λ26]

dlnH

dξ
= 1,

obtained by substitution of (42) into (43). Now, two distinct solutions may be
obtained from (43) as special cases.

6.3.1a. Sub-case (λ16 �= 0)
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In this special sub-case, we have

(44) H = [(
λ16

λ36
)ξ + λ26]−λ36/λ16.

From (38), (42) and (44), the solution η is written in the form

η = φ(y(Ax+Bt+ C)m),

where m = −λ36
λ16

and A,B and C are constants stand for λ16, λ25 and λ26

respectively. Without loss of generality, the function φ can be taken to be the
identity function. Thus

η = y(Ax+Bt+ C)m.

6.3.1b. Sub-case (λ16 = 0)

For this special sub-case equation (43) yields the solution

H = exp(−ξ/λ26).

From (38), (42) and (44), the solution is written in the form

η = φ(y exp(mx) exp(−rt)),

where

m = −λ36

λ26
, r = −λ32

λ26
.

In a similar manner, we get:

η = y exp(mx) exp(−rt).

6.3.2. Sub-case (λ31 �= 0, λ35 �= 0)

In like manner, the formula of dimensionless coordinate η is as the following:

η = y(x+A)m(t+ B)r,

where

A =
λ32

λ31
, B =

λ16

λ15
, m = −λ35

λ15
and r =

λ31

λ15
.

6.3.3. Sub-case (λ31 = 0, λ35 �= 0, λ32 �= 0)

For this sub-case, we have
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η = y (t+B)r exp(mx),

where

B =
λ36

λ35
, r =

λ32

λ25
and m = −λ35

λ25
.

6.3.4. Sub-case (λ31 �= 0, λ35 = 0, λ36 �= 0)
For this sub-case, we have

η = y (x+A)m exp(−rt),
where

A =
λ32

λ31
, m = −λ36, and r = −λ31.

For the absolute invariants corresponding to the dependent variables ψ, T1, U and
θ. From (22), θ is itself an absolute invariant. Thus

(45) χ1(x, y, t; θ) = θ(η).

A function χ2(x, y;ψ) is absolute invariant of two-parameter group if it satisfies
the two first-order linear differential equations:

(α1x+ α2)
∂χ2

∂x
+ (α3t+ α4)

∂χ2

∂t
+ (α5ψ + α6)

∂χ2

∂ψ
= 0,

(β1x+ β2)
∂χ2

∂x
+ (β3t+ β4)

∂χ2

∂t
+ (β5ψ + β6)

∂χ2

∂ψ
= 0.

The solution of these equations gives

(46) χ2(x, t;ψ) = Φ1(ψ/Γ1(x, t)) = F (η).

In similar manner, we get

(47) χ3(x, t; T1) = Φ2(T1/Γ2(x, t)) = E(η),

(48) χ4(x, t;U) = Φ3(U/Γ3(x, t)) = H(η),

where Γ1(x, t), Γ2(x, t) and Γ3(x, t) are functions to be determined. Without loss
of generality, the Φ

′
s in (46) to (48) are selected to be the identity functions. Then

we can express the functions ψ(x, y, t), T1(x, t) and U(x, t) in terms of the absolute
invariants F (η), E(η) and H(η) in the form.

(49) ψ(x, y, t)=Γ1(x, t)F (η), T1(x, t)=Γ2(x, t)E(η), U(x, t)=Γ3(x, t)H(η).



Group Method for Unsteady Boundary Layer Flow 651

Since Γ2(x, t), Γ3(x, t), T1(x, t) and U(x, t) are independent of y, whereas η
depends on y, it follows that E and H in (49) must be equal to a constant. Then

(50) ψ(x, y, t) = Γ1(x, t)F (η), T1(x, t) = T0Γ2(x, t), U(x, t) = U0Γ3(x, t).

The forms of the functions Γ1, Γ2 and Γ3 are those for which the governing
equations (6-8) reduce to ordinary differential equations.

7. THE REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

By substituting of (50) into Eqs. (6-8) and if η = yπ(x, t), we have the
following

(51) F
′′′

+ C1(FF
′′ − F

′2) −C2F
′2 −C3(ηF

′′
+ F

′
) −C4F

′ + C5 + C6 = 0,

(52)
1
Pr

θ
′′

+C1Fθ
′ −C3ηθ

′ −C7F
′θ − C8θ = 0,

with the boundary conditions:

(53)
η = 0 : F ′ = 0, F = −γ, θ = 1,

η = ∞ : F ′ = C9, θ = 0,

where the primes refer to differentiation with respect to η and

(54)

C1 =
1
π

∂Γ1

∂x
, C2 =

Γ1

π2

∂π

∂x
, C3 =

1
π3

∂π

∂t
, C4 =

1
π2Γ1

∂Γ1

∂t
,

C5 =
U0

π3Γ1

∂Γ3

∂t
, C6 =

U2
0 Γ3

π3Γ1

∂Γ3

∂x
, C7 =

Γ1

πΓ2

∂Γ2

∂x
, C8 =

1
π2Γ2

∂Γ2

∂t
,

C9 =
U0Γ3

πΓ1
, γ =

vw
πC1

.

The Equations (51-53) to be ordinary differential equations, the C ′s are constants to
be determined for each individual case corresponding to each set of absolute invari-
ants and γ is an arbitrary constant; see Mulolani and Rahman (2002). It remains to
utilize each of the η ′s in turn with (54) to evaluate the appearing C ′s in the ordi-
nary differential equations (51-53) and consequently to evaluate the corresponding
expressions of the functions Γ1, Γ2 and Γ3.

7.1. Reductions to ordinary differential equations. (η = yπ, π = A = 1)

In this section, we give the following sub-cases of Γ1 and Γ2.
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7.1.1. Solution when Γ1 = Γ1(x), Γ2 = Γ2(x)

For this sub-case and Eqs. (54), we have

Γ1 = C1x+K1, C2 = C3 = C4 = C8 = 0,

where K1 is an integral constant. By considering C9 may be taken to be unity, we
get the following

U0Γ3 = Γ1, C5 = 0, C6 = C1,

Γ2 = K2(C1x+K1)m, m =
C7

C1
,

where K2 is an integral constant. By substituting the above-obtained values of the
constants into Eqs. (51-53), we get:

(55) F
′′′

+ C1(FF
′′ − F

′2) +C1 = 0,

(56)
1
Pr

θ
′′

+C1Fθ
′ −C7F

′θ = 0,

with the boundary conditions

(57)
η = 0 : F ′ = 0, F = −γ, θ = 1,

η = ∞ : F ′ = 1, θ = 0.

The forms of ψ, Tw and U are as the following:

(58) ψ = (C1x+K1)F (η), Tw = T∞ + T0K2(C1x+K1)m, U = C1x+K1.

By considering C7 = 0, then Eqs. (55-57) become

(59) F
′′′

+ C1(FF
′′ − F

′2) +C1 = 0,

(60)
1
Pr

θ
′′

+ C1Fθ
′
= 0,

with the boundary conditions given by (57) and Tw = Const.
When C1 = 1, Eqs.(59-60) are reduced to special case of heat transfer for the

Falkner- Skan flows, see Falkner and Skan (1931) and Frank (1991) .
In this sub-case, the velocity components u and v are the following:

u = (C1x+K1)F
′
(η), v = −C1F.

7.1.2. Solution when Γ1 = Γ1(x), Γ2 = Γ2(t)

For this sub-case and Eqs. (54), we have
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Γ1 = C1x+K1, C2 = C3 = C4 = C7 = 0,

U0Γ3 = Γ1, C5 = 0, C6 = C1, Γ2 = K2 exp(C8t).

By substituting the above-obtained values of the constants into Eqs. (51-53), we
get:

(61) F
′′′

+C1(FF
′′ − F

′2) + C1 = 0,

(62)
1
Pr

θ
′′

+C1Fθ
′ −C8θ = 0,

with the boundary conditions (57). The forms of ψ, Tw and U are as the following:

(63) ψ = (C1x+K1)F (η), Tw = T∞ + T0K2 exp(C8t), U = C1x+K1.

This results will be referred to as the Hiemenz (1911) stagnation-point solution.

7.1.3. Solution when Γ1 = Γ1(t), Γ2 = Γ2(t)

For this sub-case, we have the following

C1 = C2 = C3 = 0, Γ1 = K1 exp(C4t), C4 = C5,

U0Γ3 = Γ1, C6 = C7 = 0, Γ2 = K2 exp(C8t).

By substituting the above-obtained values of the constants into Eqs. (51-53), we
get:

(64) F
′′′ −C4(F

′ − 1) = 0,

(65)
1
Pr

θ
′′ − C8θ = 0,

with the boundary conditions, let vw = 0,

(66)
η = 0 : F ′ = 0, F = 0, θ = 1,

η = ∞ : F ′ = 1, θ = 0.

The forms of ψ, Tw and U are as the following:

ψ = K1 exp(C4t)F (η), Tw = T∞ + T0K2 exp(C8t), U = K1 exp(C4t),

where K1 and K2 are integral constants.
This sub-case referred to an exact analytic solution
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u = K1 exp(C4t)(1 − exp(−
√
C4 y), v = 0,

T = T∞ + T0K2 exp(C8t) exp(−
√
PrC8 y).

It is also satisfies the full Navier-Stokes equation, see Ma and Hui (1990).

7.1.4. Solution when Γ1 = Γ1(t), Γ2 = Γ2(x)

For this sub-case, we have the following

C1 = C2 = C3 = 0, Γ1 = K1 exp(C4t), C4 = C5,

U0Γ3 = Γ1, C6 = C8 = 0, Γ2 = K2 exp(C7x/K1 exp(C4t)).

By substituting the above-obtained values of the constants into Eqs. (51-53), we
get:

F
′′′ − C4(F

′ − 1) = 0,
1
Pr

θ
′′ − C7F

′
θ = 0.

The forms of ψ, Tw and U are as the following:

ψ = K1 exp(C4t)F (η), Tw = T∞ + T0K2 exp(C7x/K1 exp(C4t)), U = K1 exp(C4t).

7.2. Reductions to ordinary differential equations. (η = yπ, π = π(x, t))

7.2.1. Solution when π = (Ax+B)r

The conditions (54) are satisfied only in the case of Γ1 = Γ1(x) and Γ2 = Γ2(x).
For this case, we have the following

C1 = KA(r+ 1), C2 = KAr, C6 = KA(2r+ 1), C9 = 1,
C3 = C4 = C5 = C8 = 0,

where K is a constant. By substituting the above-obtained values of the constants
into Eqs. (51-53), we get:

(67) F
′′′

+ C1[FF
′′ − (2r+ 1)

(r + 1)
(F

′2 − 1)] = 0,

(68)
1
Pr

θ
′′

+C1Fθ
′ − C7F

′
θ = 0,

with the boundary conditions

(69)
η = 0 : F ′ = 0, F = −γ, θ = 1,

η = ∞ : F ′ = 1, θ = 0.
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The forms of ψ, Tw and U are as the following:

ψ = K(Ax+B)(r+1)F (η), Tw = T∞ + T0K1(Ax+ B)C7/AK ,

U = K(Ax+ B)(2r+1),

where K1 is an integral constant.
When C1 = 1, B = 0, r = (n− 1)/2 and Λ = KAn, the present problem reduces
to the general Falkner- Skan equation

F
′′′

+ FF
′′

+ Br(1 − F
′2) = 0,

1
Pr

θ
′′

+ Fθ
′ −C7F

′
θ = 0,

with Br = 2n
n+1 , γ = 0 and the boundary conditions

η = 0 : F ′ = 0, F = 0, θ = 1,
η = ∞ : F ′ = 1, θ = 0.

The forms of ψ, Tw and U are as the following:

ψ = K(Ax)(n+1)/2F (η), Tw = T∞ + T0K1(Ax)C7/AK , U = Λxn.

The Falkner-Skan equation as well as the famous Blasius (1908) solution when
n = 0 and the Hiemenz (1911) stagnation point flow when n = 1. The latter is
also an exact solution to the full Navier-Stokes equations, see Ma and Hui (1990)
and Schlichting and Gersten (2000).

7.2.2. Solution when π = (Bt+ A)r

The conditions (54) are satisfied only in the case of Γ1 = Γ1(x, t), Γ2 = Γ2(x, t)
and r = −1

2 . For this sub-case, we have the following

C2 = 0, C6 = C1, C9 = 1,

C3 = C4 =
C5

2
= −B

2
and C8 = 0.

By substituting the above-obtained values of the constants into Eqs.(51-53),we get:

(70) F
′′′

+C1(FF
′′ − F

′2 + 1) +
B

2
(ηF

′′
+ 2F

′ − 2) = 0,

(71)
1
Pr

θ
′′

+C1Fθ
′ −C7F

′θ +
B

2
ηθ

′
= 0,

with the boundary conditions:
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(72)
η = 0 : F ′ = 0, F = −γ, θ = 1,

η = ∞ : F ′ = 1, θ = 0.

The forms of ψ, Tw and U are as the following:

ψ = C1
(x+K1)√
Bt+ A

F (η), Tw = T∞ + T0K2(x+K1)C7/C1, U = C1
(x+K1)
(Bt+A)

,

where K1 and K2 are integral constants.
When C1 = 1 and C7 = 0, the present problem reduces to problem of nonsteady
plane stagnation point flow with hard blowing, see Rajappa (1979), where B is
called the acceleration parameter. The forms of ψ, Tw and U are as the following:

ψ =
(x+K1)√
Bt+ A

F (η), Tw = Const., U =
(x+K1)
(Bt+A)

.

For the above sub-case, the boundary-layer characteristics are, the velocity compo-
nents u and v are the following:

u =
(x+K1)
(Bt+A)

F
′
(η), v = − x√

Bt+ A
F (η).

When B = 1 and γ = 0, the present problem (70-72) referred to as the unsteady
separated stagnation point flow, see Ma and Hui (1990).

7.2.3. Solution when π = (Ax+Bt +C)m

The conditions (54) are satisfied only in the case of Γ1 = Γ1(x, t), Γ2 = Γ2(x, t)
and m = −1

2 . For this sub-case, we have the following

C1 =
KA

2
, C2 = −KA

2
, C3 = −B

2
, C4 =

B

2
,

C5 = 0, C6 = 0, C8 =
BC7

AK
, C9 = 1,

where K is a constant. By substituting the above-obtained values of the constants
into Eqs. (51-53), we get:

(73) F
′′′

+
KA

2
FF

′′
+
B

2
ηF

′′
= 0,

(74)
1
Pr

θ
′′

+ (
KA

2
F +

B

2
η)θ

′ − C7(F
′
+

B

AK
)θ = 0,

with the boundary conditions

(75)
η = 0 : F ′ = 0, F = −γ, θ = 1,

η = ∞ : F ′ = 1, θ = 0.
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The forms of ψ, Tw and U are as the following:

(76)
ψ = K

√
(Ax+Bt +C)F (η),

Tw= T∞ + T0K1(Ax+Bt+ C)C7/AK , U = Const.

For steady case (B = 0, C7 = 0), we assume that K = 1, A = 1 , the ordinary
differential equations (73-76) retrieve Blasius’s equation, see Blasius (1908).

F
′′′

+
1
2
FF

′′
= 0,

1
Pr

θ
′′

+
1
2
Fθ

′
= 0,

with the boundary conditions

η = 0 : F ′ = 0, F = −γ, θ = 1,
η = ∞ : F ′ = 1, θ = 0.

The forms of ψ, Tw and U are as the following:

ψ =
√
x+ C F (η), Tw = Const., U = Const.

7.2.4. Solution when π = exp(mx) exp(−rt)
The conditions (54) are satisfied only in the case of Γ1 = Γ1(x), Γ2 = Γ2(x)

and r = 0. For this sub-case, we have the following

C1 = Km, C2 = Km, C3 = C4 = C5 = 0,

C6 = 2Km, C8 =
BC7

AK
, C9 = 1,

where K is a constant. For this case, Eqs. (51-53) will take the following form:

F
′′′

+Km(FF
′′ − 2F

′2 + 2) = 0,
1
Pr

θ
′′

+KmFθ
′ −C7F

′
θ = 0,

with the boundary conditions:

η = 0 : F ′ = 0, F = −γ, θ = 1,

η = ∞ : F ′ = 1, θ = 0,

and the forms of ψ, Tw and U are as the following:

ψ = K exp(mx)F (η), Tw = T∞ + T0K1 exp(C7x/K), U = K exp(2mx).
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When m = 1, K = 1 and C1 = 1, this well-known reduction of the steady
boundary-layer equations, which has an associated external velocity field given U =
exp(2x), is a limiting case of the Falkner-Skan solutions.

7.2.5. Solution when π = (x+A)m(t+B)r

The conditions (54) are satisfied only in the case of Γ1 = Γ1(x, t), Γ2 = Γ2(x, t)
and r = −1

2 , m = 0 or case of Γ1 = Γ1(x), Γ2 = Γ2(x) and r = 0.

7.2.6. Solution when π = (t+ B)r exp(mx)

The conditions (54) are satisfied only in the case of Γ1 = Γ1(x, t), Γ2 = Γ2(x, t)
r = −1

2and m = 0 or case of Γ1 = Γ1(x), Γ2 = Γ2(x) and r = 0.

7.2.7. Solution when π = (x+A)m exp(−rt)
The conditions (54) are satisfied only in the case of Γ1 = Γ1(x), Γ2 = Γ2(x)

and r = 0.

8. DISCUSSIONS

In this work we have used the full form of the two-parameter group to present
a comprehensive account of the forms of similarity reductions that can arise from
unsteady laminar boundary-layer flow near a stagnation point. Solutions are obtained
for the main stream patterns and wall temperature variation for boundary layer flow
with or without mass transfer from the wall.

The solutions are considered complete for the sake of this investigation when the
steady and unsteady boundary layer equations have been transformed into ordinary
differential equations. The ordinary differential equations so derived are the aim of
this work.

There are many configurations of the main stream flow and variation of wall
temperature for which the similarity variable η,(η = yπ) here could be obtained.
The solution with π = A = 1, (Sub-sections 7.1.1 and 7.1.2) represents the simi-
larity solution for the steady-state flows which agreement with the results given by
Birkhoff (1960). Further, the solution with π = (Ax+B)r represents the similarity
solution for the steady flow and heat transfer in the boundary layer near a stagnation
point (see Sub-section 7.2.1). As a special case when C1 = r = 1 and C7 = 1, the
equations (67-69) reduce to Hiemenz flow (see Schlichting and Gersten (2000)).

The similarity solutions for unsteady stagnation point flow are obtained when
π = (Bt + A)r, with r = − 1

2 , C1 = 1 and C7 = 0 with hard blowing Fw =
−vw

√
Bt+A. The similarity variables of unsteady case under these conditions

are agreement with Birkhoff (1960) and Rajappa (1979). Also, the uniform wall
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temperature (Tw = Const. ). When B = 1 and γ = 0, the results referred to as the
unsteady separated stagnation point flow, see Ma and Hui (1990), and steady case
(B = 0) are included as special cases.

A new forms for the similarity representations are also obtained for both steady
and unsteady in which the similarity variables π = (Ax+Bt+C)m. Whenm = −1

2
refers to nonsteady case with the wall temperature Tw = T∞ + T0K1(Ax + Bt +
C)C7/AK , and the main stream is constant and when (B = 0, C7 = 0), refer to
the steady case, the system of equations reduce to the Blasius’s equations with heat
transfer (see Blasius (1908)).

For the solution when π = exp(mx) exp(−rt). The similarity solution is ob-
tained when r=0. This refers to steady state with the wall temperature Tw=T∞+T0

K1 exp(C7x/K and the main stream is U=K exp(2mx). This may also be regarded
as the limiting case of U =Λxn as n→ ∞, see Ma and Hui (1990).

To close we have used the invariance of Eqs. (6-8) under the two parameter
group of transformations to reduces Eqs.(1-4) to an ordinary differential equation.
We have shown that our solutions include all the previously known solutions as
special cases . In addition many new solutions are found which are also solutions
to the full Navier-Stokes equation. In works reported elsewhere we have under-
taken examinations into the possible forms of similarity solutions of the unsteady
incompressible Navier-Stokes equations. The possible forms of ordinary differential
equation can not be solved analytically, a numerical solution can be obtained using
a fourth-order Runge-Kutta scheme and the gradient method.
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