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ON A SYSTEM OF DIRAC-KLEIN-GORDON TYPE IN 1+1 DIMENSIONS

Tsai-Jung Chen and Yung-Fu Fang

Abstract. We establish a local and a global existence results for a Dirac-
Klein-Gordon type system in 1+1 dimensions with a pseudoscalar bilinear
form.

1. INTRODUCTION

In this paper, we consider the Cauchy problem for the type of Dirac-Klein-
Gordon equations

D) = np; (t, x) € R! x R,
(1.1) O¢ = Yy°Y;
Y(0) =10,  #(0)=¢o, Gd(0) = ¢,

where the vector function 1) takes values in C*, the scalar function ¢ takes values
in R!, the Dirac operator D := —iv*d,, u = 0,1,2,3, v° = i7%y'42+3, and ~*
are the Dirac matrices
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the wave operator 0 = —8y; + 0., and 1) = 1)1+, where 1 is the complex conjugate
transpose .

Chadam showed that the Cauchy problem for DKG equations has a global
unique solution if vy € H', ¢9 € H', and ¢; € L? in 1973, see [4]. In 1993
,Zheng proved that there exists a global weak solution with vy € L2, ¢g € H',
and ¢, € L?, see [9]. In 2000, Bournaveas gave a new proof of a global existence
for the DKG equations, by using a null form estimate, if 1y € L? , ¢ € H', and
¢ € L?, see [3]. In 2003, Fang obtained a simple direct proof for the problem and
the result is parallel to that of Bournaveas, see [5].

Our purpose of this paper is to demonstrate a proof of a variant null form
estimate, see [5]. The motivation for studying this type of nonlinearity, 1>,
comes from the fact that it is a bilinear covariant of Lorentz transformation, see [2].
Notice that the quadratic term can be rewritten in the following form:

(1.2) P = 23(1s + Patha),

i.e., the imaginary part of 2(¢1¢3 + ¢t4), Where the ¢, j = 1,2,3,4, are the
components of the vector ). We give an interpretation of the null form structure
different from that in [3]. The nonlinear term has the null form structure, see [6,
7]. Notice that the Dirac-Klein-Gordon equations in one space dimension can be
decoupled into two similar subsystems, in other words, ¢ can be taken as 2-spinors,
instead of 4-spinors, see [4, 9].

We adopt the approach and ideas in [3, 5] and make necessary modification.
First, we derive the conservation law of charge,

(1.3) / |4 (t)|*dx = constant,

which can be applied to derive the global solution existence for the DKG-type
equations. Next, we write down the direct solution representation and use it to
estimate the nonlinear form 1)1, and the derivations of some necessary estimates
become straight forward. Finally we can prove the local and global existence results
of DKG-type equations with data 1)y € L?, ¢g € H', and ¢, € L?, which are called
charge class solutions.

Theorem 1. (Global Existence) If the initial data of (1.1), ¢o € L? ¢ €
H', ¢1 € L?, then there is a unique global solution (¢, ¢) for (1.1) and (v, ¢) €

([0, 00) x L?) x (cl([o, o0) x HYYx C9([0, 00) x L2)>.

2. SOLUTION REPRESENTATION

Consider the Dirac equation,
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. 1 1
24) { D = G; (t,z) € R x R,

¥(0) = vo.

Using the equation
Lixa[h) = DDy = DG,

the solution is
(2.5)

x4+t t
20(t, ) =[wo(x+t> +wo(x—t>] T / 1208, do(y)dy +in® / Gls,o 41— )

T+t—s
G(sx—t—l—sds—l—z'y// G(s,y)dyds
r—t+s

= (" + ") oz + 1) + (V0 = ) oz — 1)

t

t
+i/ (’yo—i—'yl)G(s,x—l—t—s)ds—l—i/ (v° =41 G (s, x—t+s)ds.
0 0

Recall that , for the wave equation

26) { ¢D¢ = F,(t,z) € R! x R!,

(0) = o, 81:(0) = ¢1,

the solution of the equation is

T+t
20(t,) = dulir =) + o+ 0+ [ enlu)dy

r+t—s
/ / F(s,y)dyds.
r—t+s

3. EsTIMATES

2.7)

Lemma 1. We have the law of conservation of charge, i.e.,

/ |4(t)|2dt = constant.

Proof. The equation Dy = ¢ implies

(3.8) Y+ 707 Y, = iy

Multiplying (3.8) by « and it’s complex conjugate transpose by 1/, and then sum-
ming up, we get
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O (|¥]?) + 05 (¥Ty°y ) = 0.

This completes the proof. ]

Lemma 2. For the solution of the Dirac equation, we have

T
39) 10l < (oo + [ 1165 12d5)

This can be shown straightforward, using the solution representation (2.3), so we
skip the proof.
Consider the Dirac equations

{ Dy; =G, j=1,2
¥;(0) = tho;.
Lemma 3. (Null Form Estimate)

HE’Y5¢2‘ ‘LQ([O,T),LQ)

(3.10) T T
<C<H¢01HL2+ / HG1<s>Hdes)(meum / HGz<s>HL2ds)

Proof.  For simplicity, we prove a special case when ; = 9, and then the
general case will follow. Consider the linear Dirac equation and write its solution as

(311) 2w(t, l‘) = U_|_ +U_ + ’LV+ + iV_,

where

(3.12) Us(t,z) = (70 £ 97 %0 (x £ 1),

(3.13) Vi(tz) = /t(fyoi'yl)G(s,xi (t — 5))ds.
0

Through some elementary calculations, we get
(3.14) Usy’Us = Vi 'Va = ULy’Vi = Vir’Us = 0.
Thus

(3.15) HUi'YE)UqEHLQ([o,T),m) < C‘WOH%%
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T
(3.16) V497U | 2oy, < Cllollz /0 1G(s)]| ads,
o T
(3.17) T 7"Vl 2oy 22y < Cll¥ol 22 /0 1G(5)]| adis,
618 Ve Vel < C( [ 166 ds)

The calculations for these cases are analogous. Among these cases, we only demon-
strate the case of U, ~°U_, V~+°U_, and V_~°V_. For convenience, we denote
v=0"=7""(" = ~"). Since
_ T :
U7 U—|L2(po,7),22) = (/ /I%(Ht)vowowo(x —t)Idedt>
0
T 3
<o [ [t + 0Pt ~ 0ot ) = Cllunl

0

If we use Minkovski inequality, we get

IV v°U_ L2(o,1).12)

— (/OT/‘/OtGT(s,x+t_ S)W%O(x—t)dsrdxdt)%

T T %
gc/o (/0 /\GT(s,x—i—t—s)\2\w0(x—t)\2dxdt> ds

T
< Clloll 1z /0 1G(8)]] ods.

Finally, for the nonhomogeneous term, we have

‘ ‘V+’YSV— ‘ ‘LQ([O,T),LQ)

T t ot , .
— (/ /(/ / \GT(s,x—Ft—s)’yG(r,x—t—i—r)\drds) dwdt)
OT T ‘ TO .
SC/ / </ /‘GT(S’x—'—t_3)‘2‘G(ra$—t+7“)‘2dxdt>2drds
0o Jo 0

T T
<c /O /0 1G22 1G ()| odrds
T

<cf /O 1G(@)|2ds)”

This completes the proof of the lemma. |
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Lemma 4. For the wave equation, we have the energy estimate

T
(3.19) [16(®)llzrs + o)l 2 < @) (IIoller + Il 2 + /0 [1(5) | 2ds)
Proof. For the solution of wave equation (1.9), we have
20(t,x) =
r+t—s
do(z+1t) + Po(x —t) + / &1y dy—l—// F(s,y)dyds.

t+s

Differentiating ¢(¢, x) with respect to ¢ and x, respectively, give

20,0(t, ) = Opdo(x — t) + Oppo(x + 1) + (P1(z + t) — px — 1))
—f—/tF(s,x—i—t—s)+F(s,x—t+s)ds

20,6(t, 3) = Duro(w — ) + Auola + 1) + 61(w +1) + 1w — )

t
—|—/ F(s,z+t—s)+ F(s,x —t+ s)ds).
0

The above equations imply (3.19). [ |

4. EXISTENCE

Let (¢, ¢) and (¢', ¢') be two charge class solutions of the DKG-type equations.
We define the following quantities:

(4200 J(0) = [[%oll> + ol + [|da] ]2

421)  J0) =l¥oll2 + ligolla +1léa]|2

4.22)  J(T) = m(\wu)um el + o)1 2)

423) J(T)= [801’1%(\\1#’(75)\&2 'O + 110" (O]]22)

(4.24)  A(0) = [lvo — ¥ollzz + lléo — &l + [|d1 — ]2

(4.25)  A(T)=sup(|[v(t) =o' (t)l 2 +16(t) =& (O)|| i1 +1 1 (t) — S4(£)] | 2)-

[0,T)

Lemma 5. For the equations (1.1), we have
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(4.26) o)L ) < C(T, J(0)).

Proof. Write ¢ = ¢, + ¢ Where ¢y, is the solution of
O¢r =0, ¢1(0,z) = ¢o, Gror(0,2) = ¢1,
and ¢ is a solution of
Do = 7°¢, én(0,2) =0, Bipn(0,x) = 0.
Apply the standard energy estimate and the Sobolev inequality to get
oLz y < Cllor®lla( )
C(T) (ol y + llallzzc ) < C(T)J(0).

We use the law of conservation of charge here to get

a:—i—ts
lon(t,z)| < C

(s,9)7°0 (s, y)dyds
rx—t+s

<C// sy2dyds

scﬁwwwma)@50ﬂwma)
Since ¢on + ¢ = ¢, we have
6] [ ) < C(T, J(0)). .

Lemma 6. LetT > 0 and let (¢, ¢) be a charge class solution of the DKG
equations. Then there exists a constant C' > 0, depending only on T and J(0),
such that J(T') < C(T', J(0)).

Proof.  Since |[|¢(t, x)|| 12 = ||¢(0, z)|| .2 and

@I mr + [l (D)2 < C(T)<H¢0HH1 + |61l 2 +/O HF(S)Hmd8>,

we compute T

T
[ PG seas = [ 1% 0(6)liaas < T Wlazgoon
0 2
<Cﬁ(wmm+/\w ﬂm@)

fgﬁ(ﬂm+A wwmmMW$mm§
< O(T, J(0))T?

(4.27)
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Now we can get

T
@.28) \wwmp+wwmpscwmﬂm+A\W@mwQ
< (T, J(0)).
This completes the proof of the lemma. |

Lemma 7. LetT >0 and (¢, ¢) and (¢', ¢') be two charge class solutions
of the DKG equations. Then there exists a constant ¢ > 0, C' > 0, depending only
on T and J(0) and J’(0), such that if " < ¢, then

(4.29) A(T) < CA(0).
Proof.  Consider the difference of the two solutions, we have
D —o)=(¢p— )+ ¢ (¥ —1)
O(¢ — ¢') =% — D"y + 9" (% — ).
Recall that the quantity

A(T) = [Siou%(\\w(t) = Oz + lle(t) = " Ol + [16e(t) — Gl |12)

(4.30)

We compute the first term of A(T'). Since

(4.31) ID(4 — ") (s)]] 2
(4.32) < [16(s) = &' ()l |1 (s)llz2 + 16 ()| ool 1o (5) — ¥ (s)]| 2
(4.33) < ll¢(s) = ¢ ()l llol 2 + ¢ ()l L= lleb () = 9'(s) |2

(4.34) < C(T, J(0), J'(0))A(T),

we can get

106) = 0Ol < (1o = wlzz + | 1D =)o) lods)
< C(A(0) + C(T, J(0), J'(0)TA(T).

(4.35)

For the other two terms, by invoking Lemma 3, we first calculate
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[ T
[T =l < C (1o = v5llzz + [ 11D = )(s)lads):
(4.36)

(Wolls + [ 120 6)lzsds).

and the calculation for |[¢"y° (¢ — ¢')|| 2 is the same. Then we compute

T
/0 I0(¢ — &) (5)]| L2ds

T - I
< /0 @7 (3) 122 + ([T — ') (5)]] eds
< T%(H(lﬁ - ¢')V5¢HL2([0,T];L2) + HW’PW - wl)HLQ([O,T];LQ))-

Therefore, applying (3.19), we get
(4.38)
p(t) = &' (Ol + [[(t) — D4 (1)]] 2

T)(|go — ol + 161 — éill22 + Jy [10(6 — ¢'(s))]| 2ds)
T)(A(0) + T=C(T, J(0), J'(0))(A(0) + TA(T))
J(0), J'(0))(A(0) + TA(T)).

Now we assume 7" < 1 to get

(
< C(
<O
< C(T,

(4.39) C(T, J(0), J'(0)) < C(J(0), J/(0)) = C(1, J(0), J/(0))

and

(4.40) A(T) < C(J(0), J(0))(A(0) + TA(T)).

This concludes the proof. »

Theorem 8. (Local Existence) Let vy € L?(R), ¢pg € HY(R), ¢ € L*(R) then
there exists a 7' > 0,dependent only on J(0) and a unique charge class solution of
DKG-type equations defined on [0,7") x R

Proof. Let (1°, ¢%) be the solution of
Dy = 0; (t,x) e Rx R!
(4.41) ¢ = 0;

$(0) = vo, ¢(0) = do, 9p(0) = ¢u,
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(41, ') be the solution of
Dy = ¢%"; (t,z) e R x R!
(4.42) 0p = 0y
¥(0) =vo, ¢(0) =do, 0¢(0) = o1,
and (¢*1, ¢**1) be the solution of

Dy = ¢Fyk;  (t,e) eRx R!

(4.43) Op = FyPyh;

P(0) = o,  ¢(0) = ¢o, B1¢(0) = ¢1,

where k =1,2,3,---. Thus we have

[F(t) = 2 (0)]| 2 < TH1O(T, J(0) + TH2C(T, J(0)), k€N,
@F(t) — * L ()| g < THLC(T, J(0)) + TH2C(T, J(0)), k€N,
|0:0* (1) — 0;* ()| 2 < TF1C(T, J(0)) + T+2C(T, J(0)), k€N.

So we can get, for m > n

Sinc
is a

[7(8) — ()12 + [|6™() — ™ (0)] 111 + [|9r6™ () — Dug™(2)] [ 12
< QT (T, 9 (0))).

e T < 1, we get |[¢)"™ — ¢"||2 — 0 as m,n — oco. We obtain that {*}
Cauchy sequence in L?, thus its limiting function ¢ is the solution. Similarly

we can get {¢*} to be a Cauchy sequence in H' and its limiting function ¢ is the
solution. Thus if 0 < T' < 1, then there exists a solution (v, ¢) for (1.1). Finally
Lemma 7 gives us the uniqueness of the solution. ]

The existence of the global solution is ensured by the law of the conservation
of the charge.

w N
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