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GEOMETRIC MECHANICS ON A STEP 4 SUBRIEMANNIAN
MANIFOLD

Ovidiu Calin and Der-Chen Chang*

Abstract. In this paper we study the behavior of subRiemannian geodesics
on a certain step 4 subRiemannian manifold. We compute the length of the
subRiemannian geodesics between the origin and any point on the ¢—axis,
where the conjugate locus is. We characterize the number of subRiemannian
geodesics between the origin and any other point.

1. INTRODUCTION AND RESULTS

2

In this paper we shall study geometric problems on H, = R(Il 29)

by the vector fields X = {X7, X7} where

x Ry given

0 0 0 0
1.1 X1 = —— +dwlal®=; Xy = — —day|z* =
(1.1) 1 e a2l gl 2= Feg || 2
with |z|? = 22 + 23. We shall give detailed discussion of the geometry induced by
the sub-Laplacian Ax = $(X? + XJ). As

0 0
[ X1, Xo] = —16|$|2§7 [ X1, [ Xy, Xol] = =322

(1.2) ot

and X7, [ X1, [ X7, Xo]]] = —322,

it is easy to see that 7, is a step 4 subRiemannian manifold. SubRiemannian
geometry starts with Carathéodory’s formalization of thermodynamics [10] where
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the quasi-static adiabatic processes are related to the integral curves of a Darboux
model. It is shown in [10] that any two points in this model can be joined by a
piecewise smooth integral curve. Later Chow [11] proves that this fact is true for
any two points in a model which involves a distribution with bracket-generating
property. This means that the full tangent space at any point can be spanned by
iterated Lie brackets of vector fields tangent to the distribution. The integral curves
in Chow’s connectivity theorem are piecewise smooth. However, we showed that
these piecewise smooth curves can be replaced by global curves for this model in
[9].

On a subRiemannian manifold the metric is given only on the distribution. Then
one may define the Carnot-Carathéodory distance between any two points as the
infimum of the length of integral curves joining the points (see [1]). On the other
hand these problems have been approached from the sub-elliptic operators point of
view. In this case the distribution is defined by a set of linear independent set of
vector fields. The subRiemannian metric can be chosen such that the vector fields
form an orthonormal system at any point. The sum of the squares of the vector
fields is a sub-elliptic operator. The number of the generating brackets +1 needed
to span the tangent space at any point is called the step of the operator.

Using the principal symbol of this sub-elliptic operator one may define a Hamil-
tonian and associate subRiemannian geodesics to it. The relation between the length
of these subRiemannian geodesic and the Carnot-Carathéodory distance has been an-
alyzed by Strichartz [15]. It turns out that the subRiemannian geodesics are integral
curves along the distribution and are locally length-minimizing integral curves. The
study of subRiemannian geodesics on the Heisenberg group was worked out by
Beals, Gaveau and Greiner [5], using Hamiltonian mechanics. They showed that
the conjugate points are along the {-axis. They also computed lengths of geodesics
and the Carnot-Carathé¢odory distance between the origin and points on the {-axis.

It has been shown that the Carnot-Carathéodory distance comes into the fun-
damental solution formula for the Heisenberg Laplacian. It plays the same role as
Riemannian distance plays for strongly elliptic operators (see [2-4] and [12]).

This article is one of a series (see [6-9]), whose aim is to give explicit calculation
for a step 4 subRiemannian manifold. The tools used are the variational calculus and
the theory of elliptic functions which make possible to write explicitly the equations
for the subRiemannian geodesics under given boundary conditions. We may state
our results as follows. Both theorems take place in the context of the vector fields

(1.1).

Theorem 1.1.  The subRiemannian geodesics that join the origin to a point
(0,0,1) have lengths dy, da, ds . .., where

m3K*

4
(13) () = =15

I
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with

G dt ~V2-V3
(9 K/o VA =21 - k22)’ I
05 o LIa/o) —

T AD(2/3)

For each length d,,, the geodesics of that length are parameterized by the circle S*.

A similar identity is proved in [5] for the Heisenberg group which is a step 2
subRiemannian manifold. They prove that (d,,,)> = mn|t|. One may observe how
the step influence the power of the distance. It is shown in [15] that in the case of
step 2 models the cut points can be as close as possible to the origin. In the present
step 4 example we get something similar, the cut locus being the {—axis.

Theorem 1.2. Let P be a point with the coordinates (x1, %2, 1).

(i) If || = 0 and t # O there are infinitely many geodesics between the origin
and P.

[/
(ii) If 0 < W < oo there are finitely many geodesics between the origin and
x

P. This number increases unbounded as t/|x|* — oc.

The paper is organized as follows. In section 2, we give some background on
elliptic functions. In section 3, we solve the Hamiltonian system in polar coordi-
nates and find all the conjugate points to the origin. We prove Theorems 1.1 and
1.2 in sections 4 and 5 respectively. In section 6, we discuss geodesics between the
origin and points away from the {-axis. SubRiemannian geodesics can be realized
as trajectories of charged particles in a certain magnetic field. A magnetic field
is given by a 2—form €2 which satisfies d{2 = 0. The trajectories of the charged
particles in the magnetic field () are given by the spatial component of the corre-
sponding subRiemannian geodesics. This shows the subRiemannian geometry is a
good environment for doing Quantum Mechanics. In our case Q = 16|x|?dxy A day
and comes from the potential w = dt + 4|z|*(x1dwy — x2dz1). We shall give a
detailed discussion in section 7.

The paper is based on a lecture given by the second author at the 12th Workshop
on Differential Equations and Mathematical Analysis which was held at National
Tsing Hua University, Hsinchu, Taiwan, January 9-11, 2004. The author takes great
pleasure in expressing his thanks to the organizing committee, especially Professor
Sze Bi Hsu for the invitation and the warm hospitality he has received while he
visited Taiwan.
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2. ErLvLreTic FUNCTIONS

As mentioned in section 1, the study of step 4 models requires the use of
elliptic functions. The Heisenberg group needs only elementary functions while
steps greater than 4 require hypergeometric functions. We shall provide in the
following the definitions of the elliptic functions used in the next sections. For a
detailed description the reader may consult Lawden [14].

The integral

|k| <1

‘/w dt
T Va-ea-re)

is called an elliptic integral of the first kind. The integral exists if w is real and
|w| < 1. Using the substitution £ = sin# and w = sin ¢

/¢ do
z = E—
0 v1—k2sin%6

If k= 0, then z = sin ! w or w = sin z. By analogy. the above integral is denoted
by sn*(w; k), where k # 0. k is called the modulus. Thus

o /w dt
T Voo ma e

The function w = sn z is called a Jacobian elliptic function.
By analogy with the trigonometric functions, it is convenient to define other
elliptic functions

cnz = /1 —sn?z, dnz = /1 — k?sn? 2.
A few properties of this functions are
sn(0) = 0, en(0) =1, dn(0) =1,
sn(—z) = sn(z), en(—z) = en(z),
d
d—snz =cnzdnz, Ecnz = —snzdnz, Ednz — —k*snzenz,

z
—1<enz<1l, —-1<snz<l1l, 0<dnz<1

Let

1 /2
dt do
K = K(k) = / = / —_—
o VA=) —k22) Jo /11— k2sin20
be the complete Jacobi integral. Then, as real functions, the elliptic functions sn
and cn are periodic functions of principal period 4K .
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Fig. 1. The graphs of functions sn(z, k), en(z, k) and dn(z, k) for k = 0.3 and 0.7.

3. HAMILTONIAN SYSTEM
Let us return to the vector fields defined by (1.1). Obviously, the operator
1
Ax = 5 (X7 + X3)

is non-elliptic. From (1.2), it is easy to see that A x is step 4 along the ¢-axis and step 2
elsewhere. By a well-known result of Hormander [13], one knows that the sub-Laplacian
Ax is hypoelliptic. The Hamiltonian H is defined as the principal symbol of Ax

1 2 1 2
H(E, 0, 2,t) — 5(51 4 4x2|x|29> 4 5(52 _ 4x1|x|29> .

Definition 3.1. The subRiemannian geodesics between the origin O and the point
P(x,t) are the projections on the (x,t)-plane of the solutions of the Hamiltonian system

& — OH/O¢
i—0H/0
§ = —O0H/dx
0— —0H/ot

with the boundary conditions
z(0) =¢(0) =0, =z(1) ==, t(1)=t1.

The Hamiltonian formalism is equivalent to the Lagrangian one; see [9]. The associated
Lagrangian is given by

. 1 .
L(x,t,0) = 5(@% +&3) + 0L + 40|x|X (w1 @y — &120).
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e The solution in polar coordinates
In polar coordinates x; = rcos ¢ , T3 = rsin ¢ one has

1 . . .
L= 50?4707 + 0L+ 400",
The Euler-Lagrange system of equations verified by r(s) and ¢(s) is
P = r(b((b + 166r2)

(3.6) r2(¢ + 40r2) = k(constant)

6 = constant
with the boundary conditions
r(0) =0, r()=p, (1) =20

which can be written as two boundary value problems

it = —480%r5 ¢ = —40r?
(3.7 6 = constant 6 = constant
r(0)=0, r(1)=p o(1) = 2.

The initial argument ¢(0) = ¢ depends on & and p.
The law of conservation of energy for the first equation in (3.7) is

(3.8) %fﬁ +V(@r)=FE

where F is the constant of the total energy and V (r) = 86275,

If 0 = 0 then r(s) = sp and ¢(s) = & = ¢g, s € [0, 1]. In the following discussion we
assume 6 > 0. Then ¢(s) will be decreasing and ¢¢ > P. Denoting by 7,4, the solution
of the equation V(r) = F, one has

E\1/6
(39) Ymar — (@) .
From (3.8) and second system in (3.7) we can write the simultaneous equations
d d
& RE 16006 ad 2 a2
ds ds

where r(s) is assumed increasing from 0 to 7,,,,,. By division and integration, the variation
of the angle ¢ is obtained

r(#) —40x?

— ¢ = ——dx
¢ = o o 28 — 1602°

. T
When r = ry,,, We obtain the angle w = ~5
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Similarly, when r(s) decreases between r = 7,4, and » = 0 the vectorial radius sweeps

an angle w = —m/6. This means the solution r(¢) is periodic with period g

Lemma 3.2. The solution in polar coordinates satisfies

(3.10) r()? =12, sin2/3(3(q5 — o).
If p#0 then rypar can be expressed as

P

sin?/3 (3@) - (bo)) .

(3.11) r: =

max

Proof.  When the radius r increases (decreases) ¢ satisfies the first (second) system
bellow.

dp  —dor? dé 40r*
(3.12) dr ~ RE—1602,0 dr ~ RE— 160210
(b(rmaac) = (bo - 7T/6 (ZS(Tmaac) = <Z50 - 7T/6

where ¢o > ¢ > ¢o — § 2 q~5 > ¢o — 7. The relation between the solutions of the systems

~ T

(.13) 6=2(00—2) =0

and then it is enough to solve just the first system. Integrating in the first system in (3.12)
between 0 and r(¢) we get

(3.14) ¢ — ¢pg = —% arcsin (Tg¢>3>7

rmax

which leads to (3.10). From (3.13) and (3.14) we obtain
7“2((;5> - r?naac Sin2/3<3<(;5 - ¢0>)
which is also (3.10). Relation (3.11) comes from the boundary condition r(¢) = p. [

e The t-component of the solution
Using one of the Hamiltonian equations, the ¢-component along the solution is

 OH

3.15 ==
(3.15) 20

= 4|x|2(a32d31 — xld?g) = —4’)“4(;.5.

Using Lemma 3.2 and integrating one obtains

4 3(¢—go)
(3.16) t(p) — t(go) = —grﬁwx / sin®/3 v dv.
0
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Hence t(¢) — t(¢o) depends on the difference ¢ — ¢ and the orbital period
(3.17) T =t(¢o +7/3) — t(¢o)

does not depend on ¢¢. From equation (3.16) one has

4 ™
T =t(¢o +7/3) —t(do) = —grﬁwx / sin®/3 v dv
0

It follows that

ri (YEDOONE
3 I'(2/3) e
This is an analogue of the third Kepler’s law.

e Conjugate points to the origin
Consider an initial geodesic (r(¢), t(¢)) which starts at origin with the initial argument
¢p. From (3.10) and (3.17) we get

r(dotg) =0, ot g)=T

A variation of ¢ corresponds to a rotation of the solution around the ¢-axis. The point
(0,0, T') remains fixed during this variation and belongs to all geodesics which are obtained
from the initial one by the variation of the initial angle ¢g. There are no conjugate points
outside Z-axis because under a variation in ¢ the conjugate point will describe a circle and
will not be a fixed point any more.

The following result states that the conjugate points to origin along the geodesics is the
t-axis.

Theorem 3.3. Given the point P = (0,0, w) on the t-axis, u # 0, there is a geodesic
v which starts at the origin, such that P is the first point conjugate to O along .

Proof.  The proof is based on the construction of such a geodesic.
(i) case u < 0. We choose 6 < 0 and require 7' = w. Again, equation (3.16) yields

4 s
T =t(¢o +1/3) — t(do) = —grﬁwx / sin*® v dv.
0

It follows that
4 3w

Tmazx = _E7
where ) = foﬂ sin*® v dv. The desired geodesic will be given by
3lul\1/4
r(¢) = (4'—62') sin'/? (3(¢ — ¢0)).

3(¢—¢o)
tlp) = %/0 sin®/3 v dv.
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It is easy to see that the point P = (0,0, ) belongs to the above geodesic. Performing a
rotation in the x-plane of the initial velocity, all the geodesics obtained will pass through
P, and hence P will be the first conjugate point with the origin.

(ii) case w > 0. In this case 6 > 0 and the rest of the proof is similar to the 8 < 0 case. m

4. PROOF OF THEOREM 1.1

We need to find the Hamiltonian path connecting the origin to (0, 0,¢), ¢ > 0. The path
is considered to be parametrized by [0, 1]. The boundary conditions are r(0) = (1) = 0,
t(0) = 0 and (1) = ¢. Using the first system in (3.7) one obtains that the constant 6
verifies the following boundary value problem

{ i = —480%r°
(4.18)
r(0) =r(1) =0.

Writing A\? = 486 then the conservation of energy leads to

1 1
57;'2 + 6}\27"6 = F

?

where IV is the constant value of the Hamiltonian along the solutions. By separation and
integration we get
/ " dx
— —,
0 4 /2E — £\2z6

which can be written as

o g 2
4.19 2 _(2EN)/3s,
*+19) 0 t(1 — 3) 31/6< )
where

A2\ 1/6
o(r) = <@> 7.
The left hand side in (4.19) can be expressed in terms of elliptic functions. This will be

done in the following.

Lemma 4.1. We have

G'T2

—F— = ——5N
0 V(I =13) 314

V3

o2 + 1+2M§

where b=2— /3, k = /b/2 and g(o) =
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2

7 d
Proof.  We need to evaluate the integral / “_ Where flx) = (1 — 3).
o /(@)
Making the substitution x = % where p = _1%\/5 , q= _1+\/§, the function
f equals to
f= ST (§ +V3) 2 = b)) (2 + 1)
t+1)*r 2 "2
V3

where b = 2 — /3. Denoting g(o) = — 1 the integral becomes

o2 + 1+2¢3

/”2 dx 2 b 1

- dt
o V@) VB+2V3 Joo) VB2 -2+ 1)
Using the formula (see [14] chapter 3)

b2 — 22 b

—1
e T e

|

b 1
/x \/(CLQ +t2)(b2 _ t2) dt

one obtains

2
7 d 2 b
/ Y3 sno 41— 9(02) , i] ]
o f(x) b 7 2
Using Lemma 4.1 the relation (4.19) becomes
g9(0)? 4/3 ol/12 1/3
(4.20) 11— o n [2%° .3V (EXN) s, K.

Using the boundary values from (4.18) one may verify that for s = 0, 1 the left hand side
in (4.20) is zero and hence

4.21) 2473 3VI(EN)YE = o9mK | m=1,2,3...

where k = \/5/ 2 and

! dt
h= /0 JA-B)1_ke)

From (4.21) one has

and hence
E el L3
(4.22) = (23 <m2K2> .
Then (3.16) becomes
m F\2/3
4.23 t= — (—) 7
(4.23) =) @
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with @ = / sin*®wdu. We used a decreasing ¢ because # was assumed positive,
0 .
according to the formula ¢ = —460r2. Using (4.22) and (4.23) one obtains
m3K*
4.24 2F)? = ——¢ =1,2,3...
( ) ( ) 4Q ? m bt

The physical interpretation of the above relation is the fact that the energy is discrete and
depends on ¢. Geometrically this means the subRiemannian geodesics joining the origin O
to P(0,0,t) have discrete lengths. Let « : [0, 1] — R? be a geodesic between O and P. As
|7| is constant in the subRiemannian metric, we have identity in the Cauchy’s inequality

@29 = [ henas=( [ a)" ([ rers)” - veE

Using (4.24) and (4.25) one obtains that the lengths of the solution « are quantified, namely,
I(v) = d,, where

B m3 K4

(4.26) (dm)* = t

Q

The constant () can be expressed in terms of gamma functions as follows.

m=1,2,3..

Lemma 4.2,
I'(1/6)

1
T AT(2/3) 4

Q

Proof. Making the substitution ¢ = sin« one gets

™ = 1
Q= / sin®/ % wdu = 2 /2 sin®/® wdu = 2 / 31 — 2712 at.
0 0 0

With the substitution t2 = z the integral becomes a beta function which can be expressed
in terms of gamma functions

I(7/6)1'(1/2)

Q/O 281 — 2)"' % dx = B(7/8, 1/2):m.

Using T'(1/2) — /7. T'(7/6) — éF(l/G) and T(7/6 1 1/2) — gr(z/z),) one obtains

1 T(1/6)

@=1rem)

v .

Remark 4.3. These lengths do not depend on the angle ¢g. When this angle is varied
the solution is rotating around t-axis having the same length all the time.

Remark 4.4.  The shortest solution corresponds to m = 1 which is the Carnot-
Carathéodory distance between O and P(0,0,t). One has

K4
(dy)' = EW
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5. PROOF OF THEOREM 1.2

Let P be a point with polar coordinates p, ¢ and ¢-component ¢ and consider a solution
which joins the origin and P. The ¢-component is computed by integration in (3.15) between

¢o and P
4 3(®—¢o)
t—= rt / sin®/3 v dv.
0

_g mazx

Applying the relation for r,,, given in Lemma 3.2 we get
3 ¢ 3(®—¢o)
(5.27) 157 sin/? (3@) — (bo)) = — / sin?/? v dv.
0

Define N
F(z) = / sin®/% w du,
0

which is an unbounded, increasing and odd function. Denoting 1 = 3(¢g — P) the relation
(5.27) can be written as

31

1A sin®/? = F(p).
As the left hand side is a periodic and bounded function in g, the above equation has only
a finite numbers of roots x. This means that for p # 0 there are only a finite number
of subRiemannian geodesics joining the origin O and the point P. This number increases
unbounded as the quotient ¢/p* increases.

Remark 5.1. For ¢ = 0 the only solution is the segment line OP.

6. GEODESICS BETWEEN THE ORIGIN AND POINTS AWAY FROM THE 7-AXIS

We have seen that if [x| = 0 and ¢ # 0, there are infinitely many geodesics between
the origin and P. In this section we shall study the |z| # 0 case. Let us start with an easy
case.

Theorem 6.1.  Given a point P(x,0) € R3, there is a unique geodesic between the
origin and P. It is a straight line in the x-plane of length |x|.

Proof.  Tn this case 6 = 0, the Hamiltonian is H (§) = 1¢2 + &5, From Hamiltonian
equation t = 9H/96 = 0, t(s) is constant. As £(0) = 0, it follows that ¢(s) = 0 for
s € [0, 1] and the solution belongs to the x-plane. Using the equations # = 0 and =0, it
follows the solution is a straight line. ]

Theorem 6.2. Let P(x,t) € R3 be a point such that x # 0 and t > 0. There are
finitely many geodesics between the origin and P. This number increases unbounded as
t/|x]* — .



Geometric Mechanics on a Step 4 SubRiemannian Manifold 273

Proof.  Let p and ® be the polar coordinates for the end point (x,x3). Consider
a geodesic which joins the origin and P. The ¢-component is computed by integration
between ¢y and P as in Section 2:

4 3(2—¢o)
(6.28) t=——rd / sin/? v dv.
0

3 max
Writing p = r(®) in Proposition 3.2, yields

(6.29) 0? =12, sin?? (3@) - (;50)>.

Eliminating 7,,,, from equations (6.28) and (6.29) yields

3 t . 4/3 3(<I>7¢0) . 4/3
(6.30) 157 sin (3@) — (bo)) = — sin®/° v dv.
0

Denote .
F(z) = / sin®/® w du.
0

It is easy to see that F'(z) is an increasing, unbounded and odd function. Let 3) = 3(¢o—P).
The relation (6.30) becomes

(6.31) 25_451“4/% — F(y).

As the left hand side is a periodic and bounded function of variable ¢, the above equation

has only a finite numbers of solutions; see Figure 1. This means that for p # 0 there are

only a finite number of subRiemannian geodesics joining the origin O and the point P.

This number increases unbounded as the quotient ¢/p* increases. ]
A detailed analysis of the number of solutions of equation (6.31) is done in the following

lemmas.

Let \(v) = %% sin?/34). The functions A(¢)) and F(¢)) start from the origin and their

graphs are tangent at 1) = 0. The following lemma shows that the graph of F'(2/) is below

the graph of A(¢)) on a small neighborhood.

s Fly)
3t Tt
—% - - et
4}1'1 | I i
f/.;”'
0 2 T n+m/2 2n 2m+m/2  3nm

Fig. 2. The functions A(¢)) = %p% sin®/3 ¢ and F(1).
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Lemma 6.3. Lett > 0 and p # 0. There is ¢ > 0 such that
0<AW) < F(¥), for 0<v¢<e

Hence, there are no solutions for the equation (6.31) on the interval (0, ¢).

Proof. The derivatives of A at ¢» = 0 blow up faster than the derivatives of F', as the
following computation shows

F'(p) = sin®®4y = F'(0) =0,
4
F'(y) = 3 sin'/3 ) cos i == F"'(0) = 0,
4 4cos®yp —3
" " -
N(©) = o, N'(0) = +oo. |
Lemma 64. Lett >0 and p # 0.
(i) Let n € N* be an integer such that
1 3t 1
6.32 - )@ < —— -
632) (n-3)Q< 35 <t 0,
where
11/

Q VT~ 1.82.

T AT(2/3)
Then equation (6.31) has no more than 2n + 1 solutions and no less than 2n — 1. All
solutions belong to the interval (07 (n+ %)W)

(ii) If there is n € N* such that

t 1
17 (n+5)Q,
there are exactly 2n+ 1 nonzero solutions for equation (6.31), and they belong to (07 (n+

)w|. The largest solution is (n+ ).

(iii) If there is n € N* such that
1

31
__> —
15 (n+2)Q7

then in the interval (07 (n + %)W} there are 2n distinct solutions for equation (6.31).

However, equation (6.31) may have other solutions outside of the above interval.
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Proof. () The function x — sin®/? z is positive and periodic with the principal period
7. Let n € N* be the smallest positive integer such that
31 e
Then equation (6.31) has no solutions on the interval (nm + §, +00).
Hence, if

™ 3 ™
(6.33) F((n—l)w+§> < Zp—4<F<n7r+ §>7

there are three cases:

(1) If the graph of F'(1)) is above the graph of A(z)) on the interval (nm,n + $7), there
are exactly 2n — 1 nonzero solutions. See Figure 2.

(2) If the graph of F'(v) is tangent to the graph of A(y)) on the interval (nm,n + $m),
there are 2n nonzero solutions. The largest solution is a double solution. See Figure
3(a).

3) If<t12e graph of F'(¢) intersects the graph of A(t)) twice on the interval (na, n+ ),
there are exactly 2n + 1 nonzero solutions. See Figure 3(b).

(a) t (b) 1
3t Flw) ¢ 3t F(y) /
0 nr nE-+m'2 : 0 nn nR+mn/2
Fig. 3.

All solutions belong to the interval (07 (n+ %)w) In the following we shall show that

1
(6.34) F(mr + g) = (n + 5)@
Using the properties of the integral of a periodic function,
nr+ 5
F(mrJrE) = / sin? x du
2 0

™

5
= (2n+1)/ sin? x da
0

= (2n-+ 1)% = <n+ %)Q
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Replacing n by n — 1, yields

(6.35) Fn=1)m+2) = (n—l+%>@z(n—%)@.

Substituting (6.34) and (6.35) in (6.33) yields (6.32).
(22) If there is an integer n € N* such that

then

and there is one more solution, equal to nm + 7.

(24¢) The condition %% > (n+ 1)Q = F(nm + Z) implies that the graph of F is below
the line y = —4 on the interval [0, nm + Z| . The graph of F' intersects the graph of A
right before and after each turning point such as w,...,nm. Hence are n -+ n intersections,
which corresponds to 2n solutions in the interval [07 nm+ w/2]. See Figure 2. ]
As a conclusion, one may state the following theorem.

Theorem 6.5. Let P(x,t) be a point of R3, away from the t-axis and x-plane. There
are not less than 2n — 1 and not more than 2n + 1 subRiemannian geodesics between the
origin and the point P, where the integer n is defined by

1 3 ¢ 1
(6.36) (n— 5)Q < ZW <(n+ 5)Q.

Proof.  The number of subRiemannian geodesics is equal to the number of solutions
of equation (6.31), and apply Lemma 6.4. ]

e The limit case |x| — 0
One may see from the Figure 2 that the solutions of equation (6.31) become

0<¢1:¢2:W<¢3:¢4:27T<¢5:¢6:37T<...7

and hence we have an infinite number of geodesics joining the origin and P(z,t).

7. PHYSICAL INTERPRETATION

A magnetic field on R® = {(z,t) = (x1, 22, 23)} is given by a two form 2 which
satisfies the Maxwell equation:
dQ=10.

The case of concern is when the magnetic field comes from a potential

Q= dw,
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where w = Z?:1 w; da; and
Q= Ql dxg A dxg + QQ d:)cl A dxg + Qg d:)cl A da?g.

The equation of motion for a particle with charge e, speed ¢ and mass m is given by the
Lorentz equation

(7.37) mZ = Cix &
C

where (3 = (4, o, Q3) is the magnetic vector field. Equation (7.37) is the Euler-Lagrange
equation for the following Lagrangian

’ 1
Lz, &) = %x%ﬂaaﬂ — citu(@) = gmli]? - cw(@).

The associate Hamiltonian is

H(w:€,0) = 5= 3 (6 + waln)0)”

In our case, the vector fields are given by (1.1). It follows that span{X;, Xa} = kerw
where w = dt + 4|z|*(x1 dxy — x2dxy). The magnetic field is given by the 2-form
Q = dw = 16|x|?dz1 A dzy. The corresponding Lagrangian is

1 :
(7.38) L= 5(:be+d:§) + 0(t + d|z X (12 — z2i1)).

The Euler-Lagrange equations for the Lagrangian (7.38) are

(7.39) &1 = 160|x|*ty, &2 = —160|z|*%;, 6 = constant.

Let ¢(s) = (x1(s), x2(s)). Then (7.39) becomes

190) i) x 6,

which is the Lorentz equation (7.37) with mass m = 1, charge e = # and magnetic field
oriented along the t-axis {3 = (07 0, 16|:Jc|2). This magnetic vector field vanishes at the
origin and it has spherical symmetry. The trajectories for the charged particles depend
whether the particle passes through the origin. Theorem 1.1 states the energy levels for a
charged particle which bounces back in the time ¢ are quantified by formula (1.3), taking
into account (4.25). The first part of Theorem 1.2 states the particle can bounce back in
any time ¢ > 0. The second part deals with some finite number of energy levels if certain
boundary conditions are satisfied. Figure 4 represents the trajectory of a charged particle
which passes through the origin. The trajectory is a union of loops of angle 7/3 at the
origin (see Lemma 3.2).
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The particle remains all the time between two circles. Using a result of [7], the particle
will never leave the circular crown.
If the trajectory is not passing through the origin, it looks like in Figures 5 and 6.

Fig. 5. Trajectories outside of the origin.
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Fig. 6. Trajectories outside of the origin.
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