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EXISTENCE OF GENERALIZED NEAREST POINTS∗

Renxing Ni

Abstract. The relation between directional derivatives of generalized
distance functions and the existence of generalized nearest points in Ba-
nach spaces is investigated. We show that if the generalized function
generated by a closed set has a one-sided directional derivative equal to
1 or -1, then the existence of generalized nearest points follows. We also
give a partial answer to an open problem proposed by S. Fitzpatrick.

1. INTRODUCTION

Let X be a real Banach space of dimension at least 2 and X∗ be the dual
of X. For a nonempty subset A ⊂ X, by int A, ∂A we mean the interior of A,
the boundary of A, respectively. We use B(x, r) to denote the closed ball in
X with center x and radius r > 0. In particular, we put B = B(0, 1).

Throughout this paper, C will denote a closed bounded convex subset of
X with 0∈ intC. Clearly C is an absorbing subset of X but not neessarily
symmetric. Recall that the Minkowski functional PC : X → R generated by
the set C is defined by

PC(x) = inf{α > 0 : x ∈ αC}.
For a closed nonempty subset G of X and x ∈ X,define the generalized distance
function by

dG(x) = inf
x∈G

PC(x− z).

A point z0 ∈ G with PC(x− z0) = dG(x) is called a generalized nearest point
(or generalized best approximation) of x from G. Moreover, if the one-side
directional derivative
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d′G(x)(y) = lim
t→0+

dG(x + ty)− dG(x)
t

exists,then −PC(−y) ≤ d′G(x)(y) ≤ PC(y).
Recently, De Blasi and Myjak [8] and Li [9] investigated the well posedness

of the generalized best approximation problems. Their results improve and
extend the corresponding results in [10, 11, 12, 13].

As shown in [1, 2, 3, 4, 5], in the case when PC(·) is the norm ‖ · ‖,
or equivalently, C = B, differentiability properties of dG(·) are related to
nonemptiness and continuity of the metric projection PG, defined by

PG(x) = {z ∈ G : PC(x− z) = dG(x)}.

In the present paper, we will investigate the relationship between directional
derivatives of the generalized distance function and the existence of generalized
nearest points in Banach spaces. It is proved that if the generalized distance
function to a closed set in a Banach space has a one-side directional derivative
equal to 1 or -1 then we have the existence of nearest points, which extends a
result due to S. Fitzpatrick [6]. Moreover, we also give a partial answer to an
open problem proposed by S. Fitzpatrick in [6].

2. PRELIMINARIES AND LEMMAS

First, we recall some well known properties of the Minkowski functional
which follow immediately from the definitions.

Proposition 2.1. Let C be as above. Then for every x, y ∈ X we have

( i ) PC(x) ≥ 0 and PC(x) = 0 if and only if x = 0;

( ii ) PC(x + y) ≤ PC(x) + PC(y);

(iii) −PC(y − x) ≤ PC(x)− PC(y) ≤ PC(x− y);

(iv) PC(λx) = λPC(x), if λ ≥ 0;

( v ) PC(−x) = P−C(x);

(vi) PC(x) = 1 if and only if x ∈ ∂C;

(vii) PC(x) < 1 if and only if x ∈ intC;

(viii) µ‖x‖ ≤ PC(x) ≤ ν‖x‖, where

µ = inf
x∈∂B

PC(x) and ν = sup
x∈∂B

PC(x).
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Proposition 2.2. Define

qc(x∗) = sup
x∈C

(x∗, x),∀x∗ ∈ X∗.

Then we have

( i ) qc(x∗ + y∗) ≤ qc(x∗) + qc(y∗) ∀x∗, y∗ ∈ X∗;

( ii ) qc(λx∗) = λqc(x∗), ∀λ ≥ 0 and x∗ ∈ X∗;

(iii) PC(x) = sup{〈x∗, x〉 : x∗ ∈ X∗, qc(x∗) ≤ 1}.

Proposition 2.3. Let G be a closed subset of X. Then for every x, y ∈ X,
we have

−PC(y − x) ≤ dG(x)− dG(y) ≤ PC(x− y),

and
| dG(x)− dG(y) |≤ ν‖x− y‖.

Definition 2.1. (i) C is said to be compact locally uniformly convex at
y ∈ ∂C, if every sequence {yn} ⊂ ∂C with limn→∞ PC(yn + y) = 2 implies
that {yn} has a converging subsequence.

(ii) C is said to be locally uniformly convex at y ∈ ∂C, if for every sequence
{yn} ⊂ ∂C, limn→∞ PC(yn + y) = 2 implies that limn→∞ PC(yn − y) = 0.

(iii) C is said to be (compact) locally uniformly convex, if C is (compact)
locally uniformly convex at y for every y ∈ ∂C.

Definition 2.2. C is called strictly convex, if for every x, y ∈ ∂C, PC(x+
y) = PC(x) + PC(y) implies x = y.

Definition 2.3. C is said to be (sequentially) Kadec if every sequence
{xn} ⊂ ∂C, with xn → x0 ∈ ∂C weakly, converges strongly to x0.

The following calculation is useful for constructing examples.

Lemma 2.1. Let G be a closed nonempty subset of X, x ∈ X\G, and
y ∈ ∂C. Suppose that

lim
t→0+

sup
dG(x + ty)− dG(x)

t
= 1.

If {zn} is a minimizing sequence for x(i.e.{zn} ⊂ G satisfies limn→∞ PC(x−
zn) = dG(x)), then limn→∞ PC(yn + y) = 2, where yn = x−xn

PC(x−zn) .

Proof. Let tn → 0+ such that

lim
n→∞

dG(x + tny)− dG(x)
tn

= 1.
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We may assume that 0 < tn < dG(x) ≤ PC(x−zn) and t2n > PC(x−zn)−dG(x).
Note that the function h(t) defined by

(1) h(t) =
PC(x− zn + ty)− PC(x− zn)

t

is nondecreasing with respect to t. It follows that

dG(x + tny)− dG(x)
tn

≤ PC(x + tny − zn)− PC(x− zn) + t2n
tn

≤ PC [(x− zn) + PC(x− zn)y]− PC(x− zn)
PC(x− zn)

+ tn

= PC(yn + y)− 1 + tn,

and
2≤ lim

n→∞ inf PC(yn + y)

≤ lim
n→∞ sup PC(yn + y)

≤ lim
n→∞ sup PC(yn) + PC(y) = 2.

This implies that
lim

n→∞PC(yn + y) = 2.

Thus we complete the proof.

Lemma 2.2. Let {yn} ⊂ ∂C, y ∈ ∂C, be such that limn→∞ PC(yn+y) = 2.
Let

G0 =
{

zn = −
(
1 +

1
n

) yn + y

PC(yn + y)
: n = 1, 2, · · ·

}
.

Then d′G0
(0)(y) = 1 and d′G0

(0)(−y) = −1.

Proof. For every t > 0, we have

dG0(ty)− dG0(0)= inf
n

PC(ty − zn)− 1

= inf
n

{
PC(ty − zn)− PC(−zn) +

1
n

}
.

Let nt ∈ {1, 2, · · · } be such that

inf
n

[
PC(ty − zn)− PC(−zn) +

1
n

]
≥ PC(ty − znt)− PC(−znt) +

1
nt
− t2.
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From the last inequality, we have limt→0+ nt = +∞, (otherwise the last for-
mula gives 0 ≥ 0 + lim

t→0+

1
nt

, a contradiction). By virtue of the convexity of

PC(·), it follows that

PC [(−t)(−y)− zn]− PC(−zn)
−t

≤ PC [αn(−y)− zn]− PC(−zn)
αn

,

whenever −t < αn = 1+ 1
n

PC(yn+y) and t > 0. Thus

PC(ty − zn)− PC(−zn)
t

≥ PC(−αny − zn)− PC(−zn)
−αn

.

It follows that

1 = PC(y)≥ lim sup
t→0+

dG0
(ty)−dG0

(0)

t

≥ lim
t→0+

inf dG0
(ty)−dG0

(0)

t

≥ lim
t→0+

inf
(PC(ty−znt )−PC(−znt )+

1
nt

t − t
)

≥ lim
t→0+

inf
(PC(ty−znt )−PC(−znt )

t − t
)

≥ lim
t→0+

inf
(PC(−αnty−znt )−PC(−znt )

−αnt
− t

)

≥ lim
t→0+

inf
(PC(−αnty−znt )−PC(−znt )

−αnt
− t

)
+ lim

t→0+
inf(−t)

≥ lim
nt→∞

(PC [−αnty+αnt (ynt+y)]−PC [αnt (ynt+y)]
−αnt

)

= lim
nt→∞

inf(−PC(ynt) + PC(ynt + y)) = 2− 1 = 1,

so that d′G0
(0)(y) = 1.

Now let us prove that d′G0
(0)(−y) = −1. Take αn = 1+ 1

n
PC(yn+y) . Note that

the function h(t) is nondecreasing with respect to t. We have

h(−zn, t) ≤ h(−zn, αn), ∀0 < t ≤ αn,

i.e.,
PC(−ty − zn)− PC(−zn)

t
≤ PC(−αny − zn)− PC(−zn)

αn
.
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It follows that

−1= −PC(y)

≤ lim
t→0+

inf dG0
(−ty)−dG0

(0)

t

≤ lim
t→0+

sup dG0
(−ty)−dG0

(0)

t

= lim
t→0+

sup infn PC(−ty−zn)−1
t

≤ lim
t→0+

infn
PC(−ty−zn)−1

t

= lim
t→0+

sup infn
[PC(−ty−zn)−PC(−zn)+ 1

n
t

]

≤ lim
t→0+

sup PC(−αny−zn)−PC(−zn)
αn

+ lim
n→∞

1
n

αn

= lim
n→∞[PC(yn)− PC(yn + y)] + 0 = −1.

This implies that d′G0
(0)(−y) = −1 and completes the proof.

Remark 2.1. Set

G0 =
{

zn = −
(
1 +

1
n

) yn − y

PC(yn − y)
: n = 1, 2, · · ·

}
,

where {yn} ⊂ ∂C and −y ∈ ∂C. If limn→∞ PC(yn − y) = 2 then d′G0
(0)(y) =

−1 by Lemma 2.2.

Remark 2.2. In the case when PC(·) is a norm, Lemma 2.2 was given
by S. Fitzpatrick [6], but the author did not show that d′G0

(0)(−y) = −1. In
Lemma 2.2 of [7], the authors gave a proof of this fact using the homogeneity of
d′G0

(0)(y) with respect to y. However, d′G0
(0)(y) is not homogenous, in general.

Hence we could not deduce d′G0
(0)(−y) = −1 directly from d′G0

(0)(y) = 1.

3. MAIN RESULTS

Theorem 3.1. Let X be a Banach space, y ∈ ∂C. Then the following
statements are equivalent:
( i ) for any nonempty closed subset G of X and x ∈ X\G, if

lim
t→0+

sup
dG(x + ty)− dG(x)

t
= 1,

then G is approximatively compact for x, in the sense that any sequence
{xn} ⊂ G satisfying limn→∞PC(x − zn) = dG(x) has a converging sub-
sequence;
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( ii ) for any nonempty closed subset G of X and x ∈ X\G, if d′G(x)(y) = 1,
then G is approximatively compact for x;

(iii) C is compact locally uniformly convex at y.

Proof. (i)⇒(ii). It is obvious.

(ii)⇒(iii). Suppose (iii) does not hold. Then there exists a sequence {yn} ⊂
∂C such that limn→∞PC(yn+y) = 2, but {yn} has no converging subsequence.
Let

G =
{

x−
(
1 +

1
n

) yn + y

PC(yn + y)
: n = 1, 2, · · ·

}
.

Then G is closed and

dG(x) = inf
z∈G

PC(x− z) = 1 < 1 +
1
n

= PC(x− z)

for every n and z ∈ G so that x has no nearest point in G. From Lemma 2.2
we have that d′G(x)(y) = d′G0

(0)(y) = 1, which contradicts (ii).
(iii)⇒(i). Assume that (iii) holds and x ∈ X\G satisfies

lim
t→0+

sup
dG(x + ty)− dG(x)

t
= 1.

Then by virtue of Lemma 2.1, it follow that limn→∞ PC(yn + y) = 2 exists
for any minimizing sequence {zn} for x, where yn = x−zn

PC(x−zn) . Observe that
C is compact locally uniformly convex at y. Then {yn} has a converging
subsequence, again denoted by {yn}. Hence {zn} has a converging subsequence
too because limn→∞ PC(x− zn) = dG(x) > 0. Thus we complete the proof.

Corollary 3.1. The following statements are equivalent :
( i ) For each closed nonempty subset G of X and x ∈ X\G, if there is y ∈ ∂C

with d′G(x)(y) = 1, then G is approximatively compact for x;
( ii ) C is compact locally uniformly convex.

Theorem 3.2. Let y ∈ ∂C. The following statements are equivalent :
( i ) For each nonempty closed subset G of X and x ∈ X\G, if

lim
t→0+

sup
dG(x + ty)− dG(x)

t
= 1,

then G is approximatively compact for x and PG(x) = {x− dG(x)y};
( ii ) For each nonempty closed subset G of X and x ∈ X\G, if d′G(x)(y) = 1,

then G is approximatively compact for x and PG(x) = {x− dG(x)y};
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(iii) C is locally uniformly convex at y.

Proof. (i)⇒(ii). It is obvious.

(ii)⇒(iii). Suppose C is not locally uniformly convex at y. Then there is
{yn} ⊂ ∂C such that

lim
n→∞PC(yn + y) = 2 and PC(yn − y) ≥ δ > 0

for all n. By virtue of Theorem 3.1, {yn} has a converging subsequence,
again denoted by {yn}. Let y0 ∈ ∂C such that PC(yn − y0) → 0. Clearly,
PC(y0 − y) ≥ δ and PC(y0 + y) = 2. Let

G = {x− y, x− y0}.

Thus, for each t > 0, we have PC(ty + y0) = 1 + t. Indeed, by Hahn-Banach
Theorem, we may choose x∗ ∈ X∗ with qc(x∗) ≤ 1 such that

〈
x∗,

y0 + y

2

〉
= PC

(y0 + y

2

)
= 1,

and so 〈x∗, y0〉 = 〈x∗, y〉 = 1. It follows that

1 + t= tPC(y) + PC(y0)

≥ PC(ty + y0)

≥ 〈x∗, ty + y0〉
= 〈x∗, y0〉+ t〈x∗, y〉
= 1 + t.

This implies that

PC [(x + ty)− (x− y0)] = PC(ty + y0) = 1 + t,

and
PC [(x + ty)− (x− y)] = PC((t + 1)y) = 1 + t,

so that dG(x + ty) = 1 + t, dG(x) = 1. From this, we have

d′G(x)(y) = lim
t→0+

dG(x + ty)− dG(x)
t

= 1.

But PG(x) = {x− y, x− y0} = G, contradicting (ii).



Existence of Generalized Nearest Points 123

(iii)⇒(i). Suppose that x ∈ X\G and

lim
t→0+

sup
dG(x + ty)− dG(x)

t
= 1.

By Lemma 2.1, it follows that any minimizing sequence {zn} for x satisfies
limn→∞ PC(yn + y) = 2, where yn = x−zn

PC(x−zn) . Observe that C is locally
uniformly convex at y. We have limn→∞ PC(yn − y) = 0 so that zn → x −
dG(x)y because limn→∞ PC(x − zn) = dG(x). Therefore (i) holds and we
completes the proof.

Corollary 3.2. The following statements are equivalent :

( i ) For each closed nonempty subset G of X and x ∈ X\G, if there is
y ∈ ∂C
such that d′G(x)(y) = 1, then G is approximatively compact for x and
PG(x) = {x− dG(x)y};

( ii ) C is locally uniformly convex.

Theorem 3.3. Let −y ∈ ∂C. The following statements are equivalent :

( i ) If G is nonempty closed subset of X and x ∈ X\G with lim
t→0+

inf dG(x+ty)−dG(x)
t

= 1, then PG(x) 6= ∅;
( ii ) If G is nonempty closed subset of X and x ∈ X\G with d′G(x)(y) = −1,

then PG(x) = ∅;
(iii) C is compact locally uniformly convex at −y

Proof. (i)⇒(ii). It is obvious.

(ii)⇒(iii). Suppose C is not compact locally uniformly convex at −y,
then there is {yn} ⊂ ∂C such that limn→∞ PC(yn − y) = 2, but {yn} has no
converging subsequence. Let

G =
{

x−
(
1 +

1
n

) yn − y

PC(yn − y)
: n = 1, 2, · · ·

}
.

Then G is closed and

dG(x) = inf
z∈G

PC(x− z) = 1 < 1 +
1
n

= PC(x− z),

for every n and z ∈ G so that PG(x) = ∅. However Remark 2.1 yields that
d′G(x)(y) = d′G0

(0)(y) = −1, contradicting (ii).
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(iii)⇒(i). Let tn → 0+ with limn→∞
dG(x+tny)−dG(x)

tn
= −1. Choose {zn} ⊂

G such that
PC(x + tny − zn) < dG(x + tny) + t2n.

Note that h(t) given by (1) is nondecreasing with respect to t and tn >
−PC(x− zn). We have

PC(x + tny − zn)− PC(x− zn)
tn

≥ PC [x− PC(x− zn)y − zn]− PC(x− zn)
−PC(x− zn)

,

and so
dG(x + tny)− dG(x)

tn

≥ PC(x + tny − zn)− PC(x− zn)
tn

− tn

≥−tn +
PC(x− zn)− PC [(x− zn)− PC(x− zn)y]

PC(x− zn)
=−tn + 1− PC(yn − y),

where yn = x−zn
PC(x−zn) . Thus ,{yn} ⊂ ∂C and limn→∞PC(yn − y) = 2, which

implies that {yn} has a converging subsequence, say, {yn}. Observe that

dG(x)≤ PC(x− zn)

≤ PC(x + tny − zn) + PC(−tny)

≤ (dG(x + tny) + t2n) + tn

≤ dG(x) + νtn‖y‖+ t2n + tn.

We have
lim

n→∞PC(x− zn) = dG(x).

Thus limn→∞zn = z0 ∈ G and PC(x−z0) = dG(x). (i) holds and we complete
the proof.

Corollary 3.3. The following statements are equivalent :
( i ) for each closed nonempty subset G of X and x ∈ X\G, there is −y ∈ ∂C

with d′G(x)(y) = −1, if and only if PG(x) 6= ∅;
( ii ) C is compact locally uniformly convex.

Proof. By virtue of Theorem 3.3, it suffices to show that there is −y ∈
∂C with d′G(x)(y) = −1, if PG(x) 6= ∅. For this purpose, choose g0 ∈
PG(x), i.e., 0 < dG(x) = PC(x − g0). Then g0 ∈ PG(g0 + t(x − g0)) for
every t ∈ (0, 1]. Put y = g0−x

PC(x−g0) . We have dG(x + ty) = PC(x− g0)− t and
−y ∈ ∂C.
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Thus

d′G(x)(y)= lim
t→0+

dG(x + ty)− dG(x)
t

= lim
t→0+

(PC(x−g0)−t)−PC(x−g0)
t

= −1,

and we complete the proof.

Corollary 3.4. Let G be a closed nonempty subset of a Banach space
X and C be compact locally uniformly convex. Then G is proximinal set
(i.e., PG(x) 6= ∅ for every x ∈ X) if and only if for every x ∈ X\G, there is
−y ∈ ∂C with d′G(x)(y) = −1.

Remark 3.1. In the case when PC(·) = ‖ · ‖, it is easy to show that C
is compact locally uniformly convex at −y ∈ ∂C if and only if C is compact
locally uniformly convex at y ∈ ∂C.

Remark 3.2. In Theorem 3.1 and Corollaries 3.3 and 3.4, the assumption
that G is proximinal cannot be replaced by the condition that G is approxi-
matively compact Furthermore, even in the case that C is locally uniformly
convex, we cannot obtain that G is a Chebyshev set. For example, let X be an
arbitrary locally uniformly convex infinite dimensional Banach space, and let
C be the closed unit ball in X. Define G = {x ∈ X; ‖x‖ ≥ 1}. Obviously, G
is a proximinal set, but G is neither a Chebyshev set nor an approximatively
compact set. But, from Corollary 3.4, there is −y ∈ ∂C with d′G(x)(y) = −1
for any x ∈ X\G.

Theorem 3.4. Let G be a nonempty closed subset of Banach space X.
If G is approximatively compact for x ∈ X\G and PG(x) = {g0}, then there
exists y ∈ ∂C with d′G(x)(y) = 1.

Proof. Let xt = x + t(x− g0), t ∈ (0, 1). By virtue of definition of dG(xt),
there is gt ∈ G with PC(xt − gt) < dG(xt) + t2. Clearly, xt → x as t → 0+

and PC(x− gt)− PC(x− g0) ≥ 0. Choose x∗t ∈ X∗ with qc(x∗t ) = 1 satisfying
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〈x∗t , x− gt〉 = PC(x− gt). We have

dG(xt)− dG(x)
t

− PC(x− g0)

≥ PC(xt − gt)− PC(x− g0)
t

− PC(x− g0)− t

=
〈x∗t , xt − gt〉 − PC(x− g0)

t
− PC(x− g0)− t

=
〈x∗t , xt − x〉

t
+

PC(x− gt)− PC(x− g0)
t

− PC(x− g0)− t

≥〈x∗t , xt − g0〉 − PC(x− g0)− t

=(〈x∗t − gt〉+ 〈x∗t , gt − g0〉)− PC(x− g0)− t

≥ (PC(x− gt)− PC(x− g0))− PC(gt − g0)− t

≥−PC(gt − g0)− t.

Thus

(2)
dG(xt)− dG(x)

t
≥ PC(x− g0)− PC(gt − g0)− t.

Since
dG(x)≤ PC(x− gt)

= PC [xt − t(x− g0)− gt]

≤ PC(xt − gt) + tPC [−(x− g0)]

≤ dG(xt) + t2 + tν‖x− g0‖
≤ dG(x) + νt‖x− g0‖+ t2 + tν‖x− g0‖
= dG(x) + 2νt‖x− g0‖+ t2,

it follows that

lim
t→0+

PC(x− gt) = dG(x) = PC(x− g0) > 0.

Note that G is approximatively compact for x and PG(x) = {g0}. Then
limt→0+ PC(xt

− g0) = 0. From this and (2), we have

lim
t→0+

inf
dG(xt)− dG(x)

t
≥ PC(x− g0).

Obviously,

lim
t→0+

sup
dG(xt)− dG(x)

t
≤ PC(x− g0).
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Thus d′G(x)(x − g0) = PC(x − g0). By virtue of the positive homogeneity of
d′G(x)(u) with respect to u, we have d′G(x)(y) = 1 for y = x−g0

PC(x−g0) . This
completes the proof.

Corollary 3.5. Let C be locally uniformly convex and G nonempty closed
subset of X. Then for every x ∈ X\G there exists a y ∈ ∂C such that
d′G(x)(y) = 1 if and only if G is approximatively compact and Chebyshev
subset of X.

Proof. This follows from Corollary 3.2 and Theorem 3.4.

Theorem 3.5. Let G be a nonempty closed subset of X. If X is reflexive
and C is both strictly convex and Kadec, then the set

D = {x ∈ X\G;∃ y ∈ ∂C with d′G(x)(y) = 1}

is residual in X\G.

Proof. Let X0(G) be the set of all point x ∈ X\G such that problem
minC(x,G) is well posed, by which we mean that there exists a unique point
z ∈ G satisfying PC(x − z) = dG(x) and every minimizing sequence for x
converges strongly to z. From Theorem 3.3 in [9], X0(G) is residual in X\G.
Furthermore, for every x ∈ X0(G), G is approximatively compact for x and
PG(x) has exactly one element. Thus, by Theorem 3.4, there exists y ∈ ∂C
with d′G(x)(y) = 1. It follows that X0(G) ⊂ D. This completes the proof.

Remark 3.3. In the case when PC(·) = ‖ · ‖, S. Fitzpatrick [6] put forth
the following open problem:

Problem F. If G is a closed subset of reflexive Banach space X, is the
set D residual in X\G? Our Theorem 3.5 gives a partial answer to the above
problem when C is both strictly convex and Kadec. We do not know whether
it remains true without this assumption.
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