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A MODEL OF THE EFFECT OF ANTI-COMPETITOR TOXINS ON
PLASMID-BEARING, PLASMID-FREE COMPETITION®

Sze-Bi Hsu and Paul Waltman

Abstract. The usual modds of the chemostat assume that the competition is
purdy exploitative, the competition is only through the consumption of the nu-
trient. However, it is known that microorganisms can produce toxins against
its competitors. In this work, we consider a modd of competition in the
chemostat between plasmid-bearing, plasmid-free organisms for a single nutri-
ent where plasmid-bearing organism can produce a toxin (alldopathic agent)
against the plasmid-free organism & some cost to its reproductive abilities.
We give a characterization of the outcome of this competition in terms of the
relevant parameters in hyperbolic cases. The globa asymptotic behavior of
the solutions is proved by using the perturbation of a globally stable steady
state for a sufficiently small plasmid loss rate.

1. INTRODUCTION

Gendicdly dtered organisms are frequently used to manufacture products The
dteration is accomplished by the introduction of DNA into the cell in the form
of a plasmid. The metabolic load imposed by this production can reult in the
gendticdly dtered (the plasmid-bearing) organism being a less able competitor than
the plasmid free (or “wild” type) organism. Unfortunately, the plasmid can be lost
in the reproductive process. Since commercid production can teke place on a scale
of many generations, it is possible for the plasmid-free organism to teke over the
culture. One approach is for the plasmid to code for resigance to an antibiotic
which is then added to the medium. Our modd assumes that the plasmid codes for
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the production of and resstance to an dld opathic agent (heresfter referred to as a
“toxin” or as an inhibitor.)

The basic chemostat is a standard example of an open system with purely ex-
ploitative competition. It consists, essentially, of three vessds. The first contans
the nutrient which is pumped at a congant rate into the second vessd, the culture
veszel. This veszl is charged with micro-organisms which compete, in a purdy
exploitative manner, for the nutrient. The contents of the second vessel is pumped,
a aconstant rate, into the third or overflow vessd. The key assumptions are that
the culture vessel is wdl dirred, that temperature, pH, ec., are kept constant and
that the turnover of the vessel is sufficiently fas that no wall growth occurs and
that thereis no buildup of metabolic products In ecol ogy the chemostat is a mode
of asimple lake but in chemicd engineering it dso serves as a laboratory model of
a bio-reactor used to manufacture products with gendticdly dtered organisms. In
more complicated situations, it is often the starting point for congruction of mod-
es in wade water treament, Schuler and Kargi [15], or of the mammdian large
intestine, Freter [2]. Early anayses can be found in the articles of Levin and Stew-
art, [14], and Hau, Hubbdl and Waltman, [10]. The recent monogragph of Smith
and Waltmen, [17], provides a mathematical description of the chemostat and its
properties.

In a paper of Stephanopoulis and Lapius [20], a modd of competition between
plasmid-bearing and plasmid-free organisms in a chemostat was proposed. The
global analyss of the modd in case of uninhibited specific growth rate was provided
in the paper of Hsu, Wdtman and Wolkowicz, [11].

The above modes assume tha no agents are produced by one organism to
inhibit the other thus making for purdy exploitaive competition. However, in
natureit is known that micro-organisms produce inhibitors against ther rivals. In a
fundamenta pgper, Chao and Levin [1], provided basic experiments on anti-bacterid
toxins. In[9], Hsu and Wd tman proposed a model of competition in the chemosta
of two competitors for a single nutrient where one of the competitors can produce
atoxin against its opponent & some cog to its reproductive abilities. In this paper
we combine the modds in [8] and [9] to consider a new modd of competition
in the chemosta of plasmid-bearing, plasmid-free organism for a single nutrient
where plasmid-bearing organism can produce an dlelopathic agent (hereafter called
atoxin) against the plasmid-free organism a some cost to its reproductive abilities
The loss of the plasmid renders the organsim free from the metabolic burden it was
designed to carry but dso makes it susceptible to the toxin. The god of the paper is
to describe the asymptotic behavior of the model in terms of the system parameters
(the operating parameters of the chemostat and the parameters of the organisms.)
The utility of thisinformation will beillustrated in thedi scusson section. To put this
into perspective, we comment on some other models of inhibitors in the chemostat.



P asmid-Bearing, Plasmid-Free Competition 137

Lenski and Hattingh [12] produced a model of the chemostat with an external
inhibitor and provi ded numerica experiments to illustrate the behavior of solutions.
Theintroduction of an inhibitor produces a sdective medium. The modd of Lenski
and Hattingh is appropriate for detoxification problems in that the external inhibitor
interferes with the growth of one competitor while being taken up without ill effect
by the other. The modd proposed by Lenski and Haitingh was analyzed by Hsu
and Waltman [7], where the possible outcomes were dassified in terms of the para-
meters of the system and the global asymptotic behavior of the sysem determined.
See dso Hau and Luo [6] for another approach. This is important in bio-reactors
because inhibitors are used to suppress the competitors of the organism manufac-
turing a product. If a competitor produces the inhibitor (the toxin) it aso produces
a Hective medium in the same sense as the external inhibitor only “naturally”.
We invedigate here whether a substance that inhibits the growth of a cdl produces
different qualitative behavior than one tha islethal to it.

A model for toxins in the chemogat was given by Levin [13]. He provided
numerica evidence of the presence of bi-gable attrators. See, in particular, Figure
1 of the above cited paper. In this case, the winner of the competition is determined
by the initial conditions.

A mathematicd andysis of the chemosta with an internally produced selective
medium can be found in Hsu and Waltman [8]. In this approach, the inhibitor
reduces the growth of the competitor rather than beng lethal. The modds there
focused on the effect of plasmid loss to create the competitor. In the modds of
Lenski and Hattingh. [12], Hsu and Watmean, [7], the inhibitor affected the nutrient
uptake-and consequently the growth-of the sensitive cell.

In section 2 we present the modd and the preliminary dability andysis of
“washout” date Ep and“plasmid-freg’ state E,. In Section 3 we study the existence
and stability of the coexistence states E.; and E.. In Section 4, we gply the
technique of perturbation of a globdly dable steady state [17] to show that the
globd dability of E.; and E, respectively for sufficiently small plasmid loss rate
q; 0 < q¢ 1: We note that biologically q % 101 2 » 10i 5=hr [16], and it is
gopropriae to assume tha q is small.

2. THE MoDEL

Let S(t) denote the concentration of nutrient in the vessd, let x(t) and y(t)
denote the concentration of the plasmid-bearing and plasmid-free organi ams at time
t, respectivey, and let P (t) denote the concentration of toxin present. The mode
takes the form:
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S = (SO gD S X, MBS Y

ai+Sn a2+Sr_2
X = x @iqik-" D
a +S
2.2) - . .
0 — L L |
y y G +S | ir qa1+SX
Pt = k™S . pp
a1+ S

where SO s the input concentration of nutrient, D is the washout rate, mj, the
maxima growth rates, a;, the Michadis-Menten constant and r;; theyield constant,
I =1;2:q, 0 < g <1 isthe fraction of plasmid-bearing organiams that loose
the plasmid in reproduction and so convert into plasmid-free organiams; k > 0 is
the fraction of growth tha the plasmid-bearing population sacrifices for producing
toxin, 0 <k < 1j q: We perform the usual scaling for the chemostat. Specifically,
let

= S  __ X . __ Yy =_ P
S = 50 X s YT so P T i,so
_ o mi. __ ai __ rrs@
¢ - Dt’ mI _Ba aI - S(O)a r= D .
Then (2.1) becomes
dé— mS . MRS _
—S = (1; S —X i —
q @i S)i Z+5 H+5
d_ - m]__S ®
—X = X (1;j k —i 1
o @iqi )a_1+S'
d_ _ ™S - mMS ri_
i e — 1 r =+ ——X
dz,y y _2+S| i qa_1+Sl’2
dp — M5 ng. o
d¢ L +Sr

If we drop the bars, and assume two plasmid populaions have the same yidd
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constants i.e, r; = r»: the system becomes

0 — 1_ . mlS . sz
S ( 'S)'a1+SX'a2+S
o= x (Ligi S
a; +S
2.2) e > ,
- mxs .. L
y a2+S'1'rP qa1+S
S
pl — my .
a]_+SX|

It is easy, from the form of the equations, to show that t;g solutions of (2.2) are
positive if x(0) >0,y(0)>0,S(0), 0,P@0), O:Lee ()=S+x+y+P:
Then

§' () =1i (S+x+y+P)jrPy- 1j5(D:

or,

limsup§(t) - 1:
tfa

The solution, (S(t);x(t);y(t); P (t)); is bounded for t , 0 Snce each component
is non-negative. The system (2.2) is dissipative and, thus, has a compact, global
atractor. To simplify (2.2), let

This change of variables yidds the sysem

2 = jz
s = (1i9)i arlniSSXi a;niss
23) W o= x (1iq] k)arln-ln-ss i N
y = aTiSs i Li riZ+1i—tiq ¢>+qar1nissx'

Clearly, z(t) ¥ 0; so the system (2.3) is an asymptoticdly autonomous sysgem with
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the following limiting system:

0 — i i m18 i mzs
S @i S)i a1+SX' 4+ S
m S ®
24 ) = liqgj Kk il
(2.4) X X (1iqj )a1+S'
m»,S r * myS
= ili +
y ya2+SI '1ikiq qa1+S

We shall study the behavior of solutions of (2.4), and from the work of Thieme,
[21], we obtain the asymptotic behavior of solutions of (2.3).
Let Fi(s) = ™S, i = 1; 2 and define 1, 2 to satisfy

a;+S’
1
(25 f1(,1) = m
(2.6) f2(,2) =1

The equilibrium point Eq = (1; 0; 0) dways exists. If 2 <1, thereis an equilib-
rium of (2.4) intheform Ex = (,2;0;1 j .2): Notice tha with g > 0; thereis no
equilibrium of (2.4) in the form E; = (a;b; 0) witha >0;b > 0:

In the following we discuss the local stability of the equilibria by evauating the
variational matrix of system (2.4) a each equilibrium.

Lemma2l. (1)If ,1>1;and > 1; then Eg islocal asymptotical ly stable;
itis unstable if ether inequality isreversed. (2) If E, existsand , 2 < . 1; then E>
islocal asynptotically stable; it is ungable if either inequality is reversed.

Proof. The variationd matrix of system (2.4) tekes the form

10 xFS) i YRS i fi(S) i £2(5)
1=8xWi qi WAEE) @i gi KAE) 1 0
yFi(S) + gxFi(S) i Ty Hafi(S)  F(S)i Li px

At Eo = (1;0;0);
2 il ifu(2) i T2(1)
Jo=40 (@Qigikh@®il 0
0 afi(2) )il

al
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The eigenvalues of Jp are on the diagonal and Ey is local asymptotically stable
if
1
M=k
and
fo(l)<1; orif; ,1>1 and 2> 1:
AtE2=(.2;0;1i .2);

2
M1 M2 M3

J2:4 0 myy O
Mgy Mgy O

where
mu=ili BC2DAi.2); me=ifi(2); ms=ijl

me2=@iqikKF(2)il ma=i.2F(2)

rk
M3z = j m(l i .2)+afi(.2)

The characteristic polynomid of J, is
OC)=det(,1iI)=( i mz)(,?i M1, i M3mz)

By the Routh-Hurwitz criterion, E; is local asymptotically stable if my, < 0,
my1 < 0; and my3m3; < 0: Clealy, m; <0 and myzm3; < 0: Moreover,

my <0
if and only if

1

f < —
1(.2) 1iqi k

that is, , 2 < .1 This completes the proof of Lemma 2.1.

Before proving the following global results for the washout state Eq and the
plasmid-free state E;, we date two lemmas

Lemma 2.2. [4] Let f:R* j ¥ R bedifferentiable. If
Iltn!1 Tf ft) < “T!Si]p T(v);
there are sequencest,, % 1 and s, % 1; such that for all m

; — i .0 —
n!l;]‘llf(tm) = Ilms:tlp f(t); F(tm) =0
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limy, F(sm) = lim inf £ ), F(sm) = 0:

Lemma23. [3] Leaa2Randf:[a;1) ;¥ R bedifferentiable. If
A o
exigs and the derivative f!(t) is uniformly continuous on (a; 1.); then
TS PRGNS
t“!n:}_f ®=0:
Next the basic globd results for Eq and E;, are esablished.
Lemma24. (1)If .1 >1; then
t"!nl x(t) =0:
Moreover; if; in addition; ,» < 1; then E> is global asymptotically stable.
(2) If Ep islocal asynmptotically gable, then Eq is global asymptotically sable.

Proof. (1) First, we prove that lim¢x 1. X(t) exist by contradiction. If x(t) does
not tend to a limit, then the lim sup and the lim inf are different, i.e.,,

0 - Iitn!1 i:[lf x(t) < Iiin!silp X(t) =«

Then, from Lemma 2.2, we can choose a sequence tm % 1 such that X'(tm) = 0;
for all m, and
n!l!m1 X(tm) = IlnsJL_Jp X(t) =£>0:

It follows that
. o miS(m) T
Jim x(tm) (L ai k)—a1+S(tm) i 1 = lim X(tm) =0
Thus, .
: . . mls(tm) . b_ .
dim @i qi k)a1+—S(tm)' 1 =0

This implies limm iy 1. S(tm) = ,1 > 1; and this a contradiction to the fact tha
limsup;y 1 8(1) - L

Next, weprovelim¢x 1 X(t) = 0: If not, thenlim¢x 1 X(t) exigsand limy s 1 X(t) >
0: From Lemma 2.3, we obtain

S = 0
tIérT:}_x(t)—O.
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Hence, . .
g xO @iai Ry L =)

This leads to a contradiction, limgs 1. S(t) = ,1 > 1:

nixo(t) =0;

Consider the flow in the invariant set, x = 0: For x = 0; system (2.4) is atwo
dimensiond system:

m»,S

) — (1: Q) - :
S 1i S)i a2+8y F(S1y)
_ myS 7. .

y = 2 +S | 17 G(Sy):

From [5], it follow thet lim¢wq S(t) = ,2; and limge 1 y(t) = 1§ 2 Udng
Thieme [ 21], it follows that

Jim (SO;x@;y(®) = (2,0, 1i .2):
Thus the proof of (1) is complete.

(2) Since Ep is local asymptoticdly steble i.e, ,1 > 1and 2 > 1; amilar
arguments as in the proof of (1) establishes (2). We omit the detalls.

3. THE EXISTENCE AND STABILITY OF INTERIOR EQUILIBRIA

In this section, we consider the existence and stabi lity of the interior equilibrium
Ec = (Sc; Xc; Ye): From the equation for X in (2.4), one has directly that S¢ = | 1:
From the equation for S it follow that

1i.,1i f(L)Xci 2(LD)yc=0;

or that
(3.1) Yo = : Qi Lai Fu(La)xe):
200" ’
From the equation for vy, it follows that
32) V20§ i i) +aR (% =0

From (3.1) and (3.2) one has

k ¢
—Il—(li 1 F(Caxo)(F(L1)i 1 r—Xc +qf1(, )X =0:
T2 .1) 1i kigq
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Define the function

1
(1)

Fird consider thecase 0 < 1 < .2 < 1. It will be shown tha the equation
H(xX) = 0 has a unique root X which liesbetween 0 and 1. As a consequence, one
has that

¢
H(x) = 1 i .10 L)X i 1 x +qfi( )X

rk
1ikig

1
=——@i.1i f Xc) > 0;
Ye fz(,l)( iL1i F(L1)xe)
or that L
O< <|—51:
* =)

In this case there is a unique interior equilibrium Ec = (S¢; Xc; Ye):
Obvioudy,

mo, 1 .
H(0 =il <0 if ,1<_,pand 1<1
©0) = f() )a2+,1' 1.2 .1
and u 1
it _qai )>0if <1
f1(.1) : :
Notethat 0 < i~ = (1 .1)(@i ki q) <1: From the Intermediate-Value

(1)
theorem, there is a point X. between 0 and f—ll'(—fg auch tha H(xc;) = 0: Next, we
show that the X isuniqueand y. > 0: Thegraphof y = H(x) isaparabolawith a
positive coefficient of the x2 term. Since H (0) < 0 and H(—'*) >0y =H®X)
intersects the x-axis in exactly one point. From the discussion above the following
lemma holds.

Lemma 3.1 Supposethat 0< 1 <1 If [ 1<,2<1; (ice;; E2 isungable);
then the interior equilibrium E¢ = (, 1; Xc;Yc) exists and is unique.

Remark 3.1. WfiteEc Ec(@) = (Sc(@); Xc(a); ye(@): If g = 0 then S¢(0) =

,1(0) where f1(,1(0)) = g %e(0) = 1228 and ye(0) = 0: Hence
Ec(q) i L] El

asq ¥ 0; where E; = (, 1(0);%.(0);0):

Because of Remark 3.1, we denote the interior equilibrium by E.1 as areminder
that Iimq voEc1(q) = Ex:
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To determine the gability of Ec1, we investigate the eigenvalues of the Jacobian
matrix, 2
M1 M2 Mi3
Jeo = 4 mo1 O 0 )
M31 Ma2 M33

where ! !
mi = jli fi)%ci HGYe<0;
ma = (Ligi KF(1)x >0;
ma = T3 1)Ye +aqfi( )% >0;
mp = jfi(L1)<0;
rk
Mg = j————Ye+qfi(L1) =F1( 1)@ i rkyc);
1igqik
mi = jT(.1)<0; y
r M .
ma = Ta(,1)i 1i mxc <0 if,1<.2:
Snce
1
Hxc) = m(l i .10 FCo)x)(P(L1)i i F1()rkxe) +afi(L1)Xc=0;
it follows tha
1 qfa(, 1)X%c
(@i i f = = :
fa(, 1)( a1 o) rkfi(, )xc +1i f2(, 1)
and
Vo = qfi(, )% :
T rkfi (L)X + 1 oL 1)
Hence,
i f i f ¢
Moz = F1(,1)(@ 0 rkye) = qFa(,1)" 2(, 2) i Tol,) >0

rkfi(( Oxec + (F2(,2) i F2(,1))

if>1<=22

Lemma 3.2 If0< 1<, <1;then Ey exist andis local asymptotically
dable.

Proof. By the Routh-Hurwitz criterion, Ec; is locd asymptotically stable if and
only if

(33) A1 > 0;Az >0
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(34) A1A2 > Az
where the characteristic polynomial of Jc is

FQ)=3+A2+A;, +A;

with
Ar = i (MpMgz); Ay =My Mgz j MygMg j MMy
Az = my(mMizMmsz j M1ams2)
) _ L2 ) 2
AdAz i Az = mMumioMzg j MipMz3 + MiMaiMaz j Mimss

+M31M13M33 + M21M13M32!
Clearly, (3.3) holds. Since ,1 < ,»2; and since

My My + MsMgy = F1( )[L+ F( )X+ T 1)y
+H( D) C)kye i 9)
= ()L + FC )X+ B )ye + Fa( L D)rkye
i T2(.0)d]
> HCIME0 f2(l1)d]
= T D[f2(.2) i f2(, )]
> fa( . D[f2(.2) i F2(0 )] >0

it follows that
M11M12M21 + M2 M13M32 = Mp1 (M1 M2 + MizMmszz) > 0:

Since the remainder of the terms in AjA2 j Ag are positive, it follows that (3.4)
holds which completes the proof of Lemma 3.2.

Next, for the case 0 < > < ,1 < 1; we consider the existence of interior
equilibria and their stability properties. As dovefor thecae 0 < .2 < .1 < 1;
the interior equilibrium Ec = (Sc; Xc; Yc) saisfies S¢ = | 1; H(xc) =0,0<x; <
f( Ob\/|oudy|f0< 1 < 2<1thenH(0)>OandH(f())>O Since
H(x) is a quadratic polynomial, the minimum of H (x) isdtained & x* = X (q)
(RLIDEHCDLM1): From H(0) > 0 and H({E-%) > 0;if 0 <x° < Jimi 5
and H(x") < 0; then there are two roots X.; X1, of H(X) = 0 satisfying 0 < x; <

XT < Xpe < f—l(—-J— Equivdently, there are two interior equilibria which we denote
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by Ec = (.1;%e:Ye), and Ec1 = (. 1;Xe1; Yer): We note that 0 < x° < il is
equivalent to

(3.5) 20D i D+Ai .0)>aqfRG)>MG)i i rk(li 1)
and H(x") <0 is equivdent to

rk@i 1) i (F2C1)i D +afa())((F2(L1) i 1)
(36) i rk(1i 1) +afa(,2) +29((F2(L2) i D +rk@i .1)
iqf2(,1)) <0
If one of (3.5) and (3.6) isviolaed, then there are no interi or equilibria. We note
that when g = 0; (3.6) is automaticdly satisfied and condition (3.5) isreduced to the

condition ,; < 7 in[8] where” isunique root of g(x) = f,(X)i 1i rk(lj x) = 0:
For g > 0 sufficently amdl, (3.6) holds. Thus (3.5) isviolated if and only if

3.7) 200 i i rk(li .1)>0

Lemma 33. If .o <1 then

(i) If(3.5) and(3.6) holdthen these exig two interior equilibriaEc1 = ( 1; X1¢; Y1c)
and Ec = (L 1;Xc; Ye) Where 0 < X3¢ < X° < X¢ < f—lll(a—b The equilibrium
E>=(.2;0;1f .»)islocally asymptatically stable.

(ii) If oneof (3.5), (3.6) is violated; then no interior equilibrium exids. Ez isthe
only eguilibrium which is locally asymptotically sable.

Remark 3.2. We conjecture that Ec; is locdly stable and E. is unstable with
atwo dimensional gable manifold. The conjecture is true for the case g =0 [8].

4, GLoBAL CONVERGENCE

The previous sections dl provide locd reaults, the existence and locd stability
of rest points. The more intereding question is that of globd behavior. Unfortu-
nately, for three dimensional sysems that isa major difficulty. We turn ingead to
a perturbation in the parameter g which we have dready observed is samdl. We
outline the basc approach.

Consider

@.1) X =F(x;.)

where f : U£ o § R" is continuous and where U % R™ and & % RK and
Dxf(x; ,) iscontinuous on U £ @ : Suppose that solutions of initial va ue problems
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are unique and remain inU for dl t >0 and , 2 »: Denote the solution of (4.1)
by x(t;z; ,) where x(0) = z: Thefollowing is Corollary 2.3 of [18].

Theorem 4.1. Assune that (Xg;,0) 2U £ 8; Xy 2 Int U; T(Xq;, o) = 0; all
egenvalues of Dxf(Xo; ,0) have negative real part; and X is globally attracting
for solutions of (4:1) with , = _o. If

(H1) there exists a compact et D % U such that for each , 2 & and each
z2U; x(t;z;,) 2 D for all larget;

then there exists 2 >0 and a unique point ®(,) 2 U for , 2 Ba(,0; 2 such that
FR(,);.)=0andx(t;z;,) ¥ ®(,)ast ¥ A foralz?2U:

While the statement of the theorem seems complex, in our case it is farly
graightforward. The role of _ in the theorem is played by g and ,o = 0. We will
goply it in the case that we have aglobdly sable res point, ether E¢; or E» for
q =0, The2restrictsq 0 that the rest point continuesto exist (with perhaps different
coordinaes) and — the important conclusion in the last phrase of the gaement —
that the rest point retains its global stability. The difficulty is to satidy (H1) which
we will do usng known results on pergstence. Since the definition of | 1 givenin
(2.5) depended on q we will write it as , 1(q) but retain , ; instead of  1(0).

Theorem 4.2. For q > 0 sufficiently small
(i) If ,1(q) <, 2 then E; isglobal asymptotically stable.

(i) If ,2 < ,1(q) and @ther one of (3.5), (3.6) does not hold then E; is global
asynmptotical ly stable.

Before beginning the proof, we meke a few comments. We have already noted
that all trajectories with initial conditions in the non-negative orthant eventudly
liein the compact set Q = f(S;x;y)jS ., 0, x, O,y ., 0;S+x+vy - 1g.
Congructing the compact set required in Theorem 4.1 will be aquestion of uniform
persistence uniformly in the parameter ¢. Finally, in order not to interrupt the flow
of the proof, we note that the sandard comparison theorem dlows one to compare

H
0, MAiAiy) .
a+1i21iyll +%

with solutions of the equality

W

mliziy)
4.3 "= -
(4.3) Y=Y axiiagy!

ll
1 +3:
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For 21 and % small, the form of the equation (4.3) yields aunique interior rest point
and the linearization shows it to be gable. Global ability follows from naural
monotonicity sSnce it is first order. Smoothness in the parameters shows that the
res point tends to that of

H 1
y=y MLiY) .,
a+1ljy'
asthe Zsend to zero. Thelimiting rest point is given by 1 j ﬁ A similar result

goplies to the reversed inequality with the dgnsin front of the 2's reversed.

Proof of Theorem 4.2. For part (i), we note that from Theorem 3.2 in [9],
if @ = 0, then the equilibium E; = (, 1;X";0) is global asymptoticaly stable
We have already noted that Eci1(q) i ¥ E1 asq ¥ 0: To goply the concluson
of Theorem 4.1, it suffices to show tha there exists ~ > 0 and qo > 0 such
tha if 0 < q < qo; then liminfyx 1 X(t) > “: Equivdently, the system (2.4) is
uniformly pergstent, uniformly in g near 0. Theorem 5 in [19] shows that one
can prove liminfys 4 X(t) > ": provided that one can prove limsup; y 4 X(t) > 2
for some 2 > 0, uniformly in q. Suppose on the contrary, there exists g, ¥ 0,
0n = 0 such that the corresponding solutions (Sp; Xn; Yn), Of (24) with g = g,
stidy limpe 1 limsupgs 4 Xn(t) = 0: We may assume, after shifting the dart
time forward if necessary and adding a % that limp » 2.supg_ o Xn(t) = 0:

From (2.4), it follows that

dSn _ . . mZSn . -
” o = LiSai mYnl n(t)
. dyn _ - myS, ., °
it M m+s, ! L +n()
where Su()
. _ Mon
n(t) = a1+Sn(t)Xn(t)
M1Sn (E)Xn(t) rk
t) = i Xn(t t):
M = 0n a1 + Sn(t) i 1i Ki gn n(Dyn(t)
For 2> 0 and n aufficiently large,
45) "n@®©=0; limsup ,(t) <my limsupX,(t) <22
tea te
and
o® < 20 Xa(OYn() <2
1i Kign
4.6 . rk
) Xin® > i Xa®yn() > § Cxnl)

"1 ki g
> =2
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From (4.4), (4.5) and (4.6), we have that for n , Np, No large,
(Sn+yn) = 1j (Sn+yn)+ n()i »(t)

@7 1i (Sn+yn)+2
and that
(4.8) (Sn "'yn)O Lli Gn*yni 2

By the differentid inequalities (4.7) and (4.8), for 2 2 > 0 and Np as above,
thereexidss T = T(Z &; Np) such that
(4.9 li2ia- Sa()+yn(®) - 1+2+2; t, T

Using the second equation in (4.4), and (4.9) for t ., T, one has

(4.10) dyn my(l+2+2 i yn()) = ", >

at Yn a+(A+2+2 Yn(t))l

dyn S ma(li 2§20 ye®) L L L
(1) it " m+ (i 2l Ay L

By the differential inequalities (4.10), (4.11) and the standard comparison theo-
rem, we have
(4.12) B(t) - yn(t) - Ba(t); t, Tz;

5

and
t"!nl Bn(t) = ¥n; tIl!rr:1L En(t) =g

b, (t) and B, are solutions of the corresponding equalities and, as noted above,
these solutions have limits. For n sufficiently large, the limits ¥, and g, are dose
toy® =1j ,2. From(4.12) and (4.9), Sn(t) isdoseto , . However the assumption
.1(q) < .2 and the second equation of (2.4) imply tha, in this case, x,(t) ¥ 1
ast ¥ 1 contradicting boundedness of xn(t).

To prove part (ii), we note that, from Theorem 3.4in [9], if g =0 and if _ 1 >
(which exactly violates of (3.5) when g = 0), then E> is globally asymptoticdly
dable. We begin by restrictingg by 0 - 1 k. Under the conditions in (ii), there
are exactly two equilibria Eg = (1;0;0) and E> = (, 2;0;y") if g > 0: To find
the compact set needed to apply Theorem 4.1, it suffices to show tha there exigs
“>0andqg>0suchthatif 0 <q<qp then

Iltrr!1 |:rL]fy(t) >
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As we have done in part (i), it suffices to show that
limsupy(t) >"
tra
for some ™ > 0 uniformly in q, that is, for some go, 0 < g < go. Suppose on the
contrary, thereexigsqn i ¥ 0, gn > 0 and the corresponding soluti ons (Sn; Xn; Yn)
of (2.4) with g = g, such that
nIl!m1 Ilnsinyn(t) =0:
Assume, without loss of generality,
Jim Stfjgy”(t) =0
From (2.4) it follows that
dSn mlsl’l

g = LliSni a, +5, <N (1)
4.13 dx - S .
n _ . . 19n
rra (1IQn|k)al+Sn|
where Su(0)
Moon
+ = — >
satidfies that, given 2> 0, there is an Np such that for n > Ng
4.19 limsup£,(t) < mz limsup yn(t) <2
tna toa
Let 1
Bn(t) = ————Xxu(b):
n(0= 1o e
Then (4.13) is converted into the followi ng equations
ds M1S .
=0 = 1§ Sni 2B n(D)
(4.15) dt R R
- de, _ L MiS,
dt n a]_ +Sn !

where M1 =m1(1j gn i K): From (4.13), (4.15), we have that

(Sh+en) = 1i (Sn+en)i tn(t)

(4.16) 1§ (Sn+En)
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and
(4.17) (Sn+ En)0 L1li Gnt+®y)i 2

Given 2 > 0, and gmall, usng the differentid inequalities (4.16) and (4.17), there
exists T =T (% 2; Np) such that
(4.18) 1i 2§ 2 - Spt)+e(t)- 1+2; t, Tz

5

Cond der the second equation in (4.15); from (4.18), for t . T, one has that

d®y, ML +2 ry(D) | C
(4.19 W' Bn a+@A+2] B(D) il
(4.20 dey T ML 200 R(®)

R
dt > " a +(1i 2 2 Ba()
By the differential inequdities (4.19) and (4.20) we have

(4.21) A)n(t) - Bn(t) - Ap(t); t, T

5

and

Jim Ba(t) = n: Jim An(t) =%
For n sufficiently large, thelimits Bn, and X, arecloetox® =1 j M—i‘:—l =1j .o
From (4.18), (4.21), Sn(t) iscloseto . ;.

0.2 0.4 0.6 0.8 1

X

Figure 4.1. Bistable Attractors. Projection on the x j y plane.
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Given2> 0, definethe neighborhood - = f(S; x;y) 1 jSi ,1j <2Z jxi Xjj <
2 0<y <?2g: Theeexids Np such that for n , Np, the corresponding trgectory
(Sn(@); Xn(V); yn(t)) staysin - for t aufficiently large. Then from thethird equation
of (2.4), it follows that

. 1
mp, 1 . ) rk . . df
4.22) . agt | 1i 1 X 1% Yn
(4.23) =[F2C0i i rk@i.10)i 2y

Since (3.7) holds, one may choose 2 > 0 sufficiently small such that f2(, 1) j
1irk(lij .1)i 2 >0. Since - contans no res points, the trajectory cannot
reman in - . This contradiction establishes the theorem.

Of course, it can happen that ,» < _1 and both (3.5) and (3.6) hold so that
there are two interior res points, one locdly gable and one locdly unstable, and,
in addition, E; is locally stable. This is the case of bigable attractors and the
outcome depends on the initid conditions. The usual case of bistable atractors is
such that extinction of one population results; however, since one of the dtractors
is an interior reg point, it represents a co-exigdence stae. Inuitivdy, the stable
manifold of the unstable interior rest point divides E* into two region where the
trajectories tend to the regpective res points. We are unable to provethis However,
the choicem; = 2:5, my = 2,a1 = a = :3, k=:2, g =:1, r = 12, produces
such acase Figure 4.1 is a projection onto the x j y plane of the flow in E3 with
these parameters.

5. DiscussioN

We have considered competition in the chemostat between plasmid-bearing and
plasmid-free organisms where the plagmid codes for the production of atoxin (an
dldopahic agent) against the plasmid-free organism. We have given a rigorous
mahematica description, sometimes with the assumption that q is small, of all of
the outcomes in terms of the parameters of the system except that we cannot prove
the extent of convergence in the case of bistable attractors The bistable case here
is different from other chemodat systems in that one of the attractorsis an interior
res point and 0 does not represent an extinction stete.

The results should be of interes in biotechnology. Since plasmids are used
to code for the manufacture of a product, the loss of the plasmid results in an
organism that is a better competitor. To guard against such, the results here suggest
that coding for an anti-competitor toxin in addition is a vigble rategy. The can
never be a steady date congsting of only the plasmid-bearing organism since the
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of the plasmid creates its competitor, o the best the engineer can hope for is a

coexigence gate where the plasmid-bearing organism dominates

10.

11.

12.

13.

14.
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