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MEAN STABILITY OF SEMIGROUPS

Shmuel Kantorovitz and Serguei Piskarev

Abstract. Let T (·) be a bounded C0-semigroup on the Banach space X ,
with generator A. It is shown that the denseness of range A is necessary and

sufficient for the semigroup’s mean stability with respect to suitable weights.

Analogous results are valid for power bounded operators, tensor product semi-

groups, and cosine operator functions.

1. STATEMENT OF RESULTS

1.1. LetX be a complex Banach space, and let B(X) denote the Banach algebra
of all bounded linear operators from X into itself. A C0-semigroup T (·) : [0,∞) →
B(X) is (strongly) stable if T (t) → 0, as t → ∞, in the strong operator topology.
By the uniform boundedness theorem, a necessary condition for stability is the

boundedness of ‖T (·)‖, from which it follows in particular that the spectrum σ(A)
of the generator A is contained in the closed left half plane. A well-known sufficient

condition for stability is that σ(A)∩ iR be countable and that the residual spectrum
Rσ(A) do not meet the imaginary axis.

We consider here the weaker concept of mean stability of bounded semigroups

with respect to a suitable family of weight functions. A known (folklore) result of

this type is that if f ∈ L1(R+) has nonzero integral over R+, then the “averages”∫ ∞
0 t−1f(s/t)T (s)x ds converge strongly to zero as t → ∞ for all x ∈ X if and

only if A has dense range (here is a proof: since the averages are uniformly bounded

by M ‖x‖ ‖f‖1, whereM := sup ‖T (·)‖, the density of C1
c (R+) in L1(R+) and of

range A in X imply that the averages converge strongly to zero for all f ∈ L1(R+)
and x ∈ X if this is true for all f ∈ C1

c (R+), the C1-functions with compact

support in R+ := (0,∞), and for all x = Ay with y ∈ D(A), the domain of A.
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In this special case, since T (s)x = d
dsT (s)y, an integration by parts shows that the

averages equal −
∫ ∞
0 t−2f ′(s/t)T (s)y ds, and are therefore norm-bounded by

M‖y‖
∫ ∞

0
(1/t)|f ′(s/t)|d(s/t) ≤ M‖y‖t−1 sup |f ′| × |suppf |,

where |suppf | denotes the linear Lebesgue measure of the support of f .
On the other hand, if range A is not dense in X , there exists 0 6= x∗ ∈ X∗

such that 〈x∗, Ay〉 = 0 for all y ∈ D(A). Therefore 〈x∗, T (s)y〉 = 〈x∗, y〉,
and consequently 〈x∗,

∫ ∞
0 (1/t)f(s/t)T (s)y ds〉 = 〈x∗, y〉

∫∞
0 f(u)du. Since f has

nonzero integral, if the averages converge (even weakly) to zero, we have necessarily

〈x∗, y〉 = 0 for all y ∈ D(A), and the contradiction x∗ = 0 follows from the density
of D(A) in X .)

We show that this genre of result is true for averages
∫ ∞
0 h(t, s)T (s)x ds with

kernel h satisfying adequate conditions (although no attempt is made to get utmost

generality). The literature on asymptotics of semigroups is vast; our references list

only items explicitly used in the proofs.

1.2. Consider weight functions h(t, s) for 0 < s ≤ t with the following proper-
ties:

(1) for each t > 0, h(t, ·) ≥ 0 is monotonic on (0, t];
(2) K := supt>0

∫ t
0 h(t, s)ds < ∞;

(3) limt→∞ h(t, t) = 0;
(4) there exists δ > 0 such that limt→∞

∫ δ
0 h(t, s)ds = 0.

For some of the results, we consider also the condition

(5) lim inft→∞
∫ t
0 h(t, s) ds > 0.

The monotonicity property in Condition (1), together with Conditions (3) and

(4), imply that

lim
t→∞

h(t, τ) = 0(*)

for all τ ≥ δ > 0. In fact, if a t > τ ≥ δ is such that h(t, ·) is non-decreasing
(resp., non-increasing), then 0 ≤ h(t, τ) ≤ h(t, t) (resp., 0 ≤ h(t, τ) ≤ h(t, δ) ≤
δ−1

∫ δ
0 h(t, s)ds). Thus (*) follows from Conditions (3) and (4).
Such weights arise for example (but not exclusively) from monotonic functions

of one real variable, say f : (0, 1] → [0,∞), such that 0 <
∫ 1
0 f(u)du := c < ∞,

by taking h(t, s) = t−1f(s/t) for 0 < s ≤ t. Then h satisfies Conditions (1-5), and
even the stronger Condition (2′) below instead of Conditions (2) and (5):

(2′) For all t > 0,
∫ t
0 h(t, s) ds = c, where c is a nonzero constant.

For example, if we choose f(u) = βuβ−1 with β > 0 the induced weights are
the classical weights h(t, s) = (β/tβ)sβ−1 of fractional integration.
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(Kernels generated as above are homogeneous of degree−1, and there are clearly
non-homogeneous kernels satisfying Conditions (1-5).)

The class of weights satisfying Conditions (1-4) will be denoted byW(1, 2, 3, 4)
(with a similar notation for other sets of conditions).

Define the W h-mean W h
t [F ] of the bounded strongly continuous function F :

[0,∞) → B(X) with respect to the given weight h ∈ W(1, 2) by

W h
t [F ]x =

∫ t

0
h(t, s)F (s)xds (t > 0).

If M := sup ||F (·)||, the norm of the integrand is dominated by M ‖x‖ h(t, s), and
it follows from Condition (2) that the integral converges strongly in X , and defines

bounded operators W h
t [F ] with norm ≤ MK for all t > 0.

We say that F is W h-mean stable if

lim
t→∞

W h
t [F ] = 0

in the strong operator topology.

Stability of F (i.e., limt→∞ F (t) = 0 in the strong operator topology) is stronger
than W h-mean stability of F for any h ∈ W(1, 2, 4). Indeed, for 0 < δ < τ < t

with δ as in Condition (4), we write

Wt[F ] =
[∫ δ

0
+

∫ τ

δ
+

∫ t

τ

]
h(t, s)F (s)ds.

Given x ∈ X and ε > 0, since lims→∞ ‖F (s)x‖ = 0, we fix τ > δ such that
K ‖F (s)x‖ < ε for s ≥ τ . Then the third integral has norm < ε for all t > τ . The

first integral has norm ≤ M‖x‖
∫ δ
0 h(t, s)ds → 0 (as t → ∞) by Condition (4).

Finally, since h(t, ·) is monotonic in (0, t], the middle integral has norm

≤ M‖x‖(τ − δ) max[h(t, τ), h(t, δ)]→ 0 as t → ∞, by (*).

Theorem 1. Let T (·) be a bounded C0-semigroup with generator A. The

following statements are equivalent:

( i ) A has dense range;

( ii ) T (·) is W h-mean stable for all weights h ∈ W(1, 2, 3, 4);

(iii) for some weight h0 ∈ W(1, 2, 5) and some positive sequence {tn} diverging
to ∞, limn W h0

tn [T (·)] = 0 in the weak operator topology.
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Note that Statement (i) in Theorem 1 can be formulated as the spectral condition

0 /∈ Pσ(A)∪Rσ(A), where Pσ(A) and Rσ(A) denote the point spectrum and the
residual spectrum of A, respectively.

Theorem 1 establishes in particular that for any weight h ∈ W(1, 2, 3, 4, 5),
weak and strong W h-mean stability of T (·) are equivalent.

The change of variables u = t− s yields an analogous result for weights h(t, s)
with 0 ≤ s < t (that is, undefined for s = t), satisfying the corresponding shifted

conditions. We omit the obvious details. This would apply for example to the usual

fractional integrals of T (·).

Theorem 1 is an obvious corollary of the following

Theorem 2. Let T (·) be a bounded C0-semigroup with generator A. Then the
following statements are equivalent for any given vector x ∈ X :

( i ) x ∈ range A;

( ii ) limt→∞ W h
t [T (·)]x = 0 strongly for all h ∈ W(1, 2, 3, 4);

(iii) limn W h0
tn [T (·)]x = 0 weakly for some h0 ∈ W(1, 2, 5) and some positive

sequence {tn} diverging to ∞.

1.3. A slight variant of Theorem 1 that accommodates Abel and Gauss summa-

bility uses weights h satisfying the following conditions:

(a) for each t > 0, h(t, ·) : (0,∞) → [0,∞) is monotonic, and vanishes at ∞;

(b) K := supt>0

∫ ∞
0 h(t, s)ds < ∞;

(c) there exists δ > 0 such that limt→∞
∫ δ
0 h(t, s) = 0.

Examples of weights h satisfying Conditions (a)-(c) are the Abel summability
kernel h(t, s) = t−1e−s/t, the Gauss summability kernel h(t, s) = (2/t

√
π)e−(s/t)2 ,

and the Gamma-like kernels h(t, s) = (t−α/Γ(α))e−s/tsα−1 with 0 < α < 1.
These examples satisfy even the following Condition (b′) (stronger than (b) and (d)
below):

(b′)
∫ ∞
0 h(t, s) ds = c for all t > 0, where c is a nonzero constant.

Since h(t, ·) ≥ 0 is monotonic and vanishes at ∞, the only non-trivial h are nonin-
creasing. Hence for all v ≥ δ (with δ as in Condition (c)),

lim
t→∞

h(t, v) = 0(**)

(because h(t, v) ≤ h(t, δ) ≤ δ−1
∫ δ
0 h(t, s)ds → 0 as t → ∞, by Condition (c)).

We shall also consider the condition
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(d) lim inft→∞
∫ ∞
0 h(t, s)ds > 0.

The class of weights satisfying Conditions (a)-(c) will be denoted A(a, b, c)
(with similar meaning for other conditions).

Let F : [0,∞) → B(X) be bounded and strongly continuous. For any weight
h ∈ A(a, b, c), the Ah-means of F are the well-defined bounded operators given by

Ah
t [F ]x =

∫ ∞

0
h(t, s)F (s)x ds, x ∈ X, t > 0.

It follows from Condition (b) that ‖Ah
t [F ]‖ ≤ MK for all t > 0, where M :=

sup ‖F (·)‖. We say that F is Ah-mean stable if limt→∞ Ah
t [F ] = 0 in the strong

operator topology.

Theorem 3. Let T (·) be a bounded C0-semigroup with generator A. The

following statements are equivalent:

( i ) range A is dense in X ;

( ii ) T (·) is Ah-mean stable for all h ∈ A(a, b, c);
(iii) for some weight h0 ∈ A(a, b, d) and for some positive sequence tn diverging

to ∞, limn Ah0
tn [T (·)] = 0 in the weak operator topology.

If X is reflexive, we have the direct sum decomposition X = kerA ⊕ rangeA
(cf. [3, Theorem 8.20]). If P denotes the projection of X onto ker A (along

rangeA), then in the strong operator topology (s.o.t.), limt→∞ W h
t [T (·)] = P

(limt→∞ Ah
t [T (·)] = P ) for all h ∈ W(1, 2, 3, 4) (h ∈ A(a, b, c), respectively).

This follows trivially from Theorem 2 (and its version for Ah-means). For gen-

eral Banach spaces, we could add the following two properties to the equivalent

properties listed in [3, Theorem 8.23]:

(1) limt→∞ W h
t [T (·)] exists in the s.o.t. for all h ∈ W(1, 2, 3, 4) (this general-

izes Property (ii) of the reference, which corresponds to the special case h(t, s) =
1/t), and

(2) limt→∞ Ah
t [T (·)] exists in the s.o.t. for all h ∈ A(a, b, c) (this generalizes

Property (iii) of the reference, which corresponds to the special case h(t, s) =
(1/t)e−s/t).

1.4. The above results generalize easily to bounded pre-semigroups. A pre-

semigroup (or C-semigroup) is a strongly continuous function S(·) : [0,∞) →
B(X) such that S(0) is injective and S(t − u)S(u) is independent of u for all

0 ≤ u ≤ t. The latter property is equivalent to the identity

S(u)S(v) = S(0)S(u + v) (u, v ≥ 0).

The operator S(0) is usually denoted by C, and this convention is the origin of the

name “C-semigroup” in the literature.
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The generator of the pre-semigroup S(·) is closed and has domain D(A) (not
necessarily dense!) consisting of all x ∈ X for which the strong right derivative at

0, [S(·)x]′(0), exists and belongs to the range of S(0), and

Ax := S(0)−1[S(·)x]′(0) (x ∈ D(A)).

The generalized version of Theorem 1 goes as follows.

Theorem 4. Let S(·) be a bounded pre-semigroup with generator A. If A has

dense range, then S(·) is W h-mean stable for all h ∈ W(1, 2, 3, 4). Conversely, if
limn W h0

tn [S(·)] = 0 in the weak operator topology for some h0 ∈ W(1, 2, 5) and
some positive sequence {tn} diverging to ∞, and if S(0) has dense range, then A
has dense range.

Similar modifications in the proof of Theorems 3 show that Theorem 4 is valid

for the A-means as well.

1.5. Theorems 2 and 3 (or rather, their proofs) are applied to the tensor product

of bounded C0-semigroups (cf. [2]).

Let T (·) and S(·) be bounded C0-semigroups on the Banach space X , with
respective generatorsA and−B. Let∆ be the operator onB(X) with domainD(∆)
consisting of all V ∈ B(X) such that V D(B) ⊂ D(A) and ∆V := AV − V B

(with domain D(B) ⊂ X and range in X) is bounded (relative to the X-norm).
Since D(B) is dense in X , ∆V extends uniquely to an operator (also denoted by

∆V ) that belongs to B(X).

For V ∈ B(X) and t ≥ 0, set G(t)V := T (t)V S(t).

Clearly, G(·) is a semigroup of operators on B(X), such that G(·)V is continuous

in the s.o.t. on B(X) for each V ∈ B(X); it is called the tensor product of the
given semigroups (cf. [2]).

Theorem 5. Let T (·) and S(·) be bounded C0-semigroups on the Banach space

X, with respective generators A and −B. Then for all Z in the B(X)-closure of
the range of ∆, T (·)ZS(·) is W h-mean stable (Ah-mean stable) in the strong
operator topology, for all h ∈ W(1, 2, 3, 4) (h ∈ A(a, b, c), respectively).

Corollary 6. Let S(·) and T (·) be bounded C0-semigroups with respective

generators −B and B + C, where C ∈ B(X). Then T (·)CS(·) is W h-mean

(Ah-mean) stable in the strong operator topology for all h ∈ W(1, 2, 3, 4) (h ∈
A(a, b, c), respectively).

Related results were proved by S.-Y. Shaw [6].
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1.6. Discrete analogs of the preceding results are easily formulated. An operator

T ∈ B(X) is power bounded if M := supn≥1 ||Tn|| < ∞; it is (weakly) stable
if Tn → 0 in the (weak) strong operator topology. By the uniform boundedness
theorem, power boundedness is a necessary condition for (weak) stability.

If W is the infinite triangular matrix W = (wnk)1≤k≤n<∞, denote cn(W ) :=∑n
k=1 wnk , n ∈ N. Consider the following properties:

(a) for each n ∈ N, wnk ≥ 0 is monotonic with respect to k, 1 ≤ k ≤ n;

(b) K := supn cn(W ) < ∞;
(c) limn wn1 = limn wnn = 0.

For example, if f : (0, 1] → [0,∞) is any monotonic function such that
tf(t) → 0 as t → 0+ and

∫ 1
0 f(t) dt = c 6= 0 (f(t) = βtβ−1 is such a func-

tion for any β > 0), the matrix with entries wnk = f(k/n)/n (1 ≤ k ≤ n < ∞)
satisfies Conditions (a), (b), and (c), and even the following condition (b′) (stronger
than (b) and (d) below):

(b′) ∃ limn cn(W ) = c 6= 0.
We shall also consider the condition

(d) lim infn cn(W ) > 0.
The class of matrices W satisfying Conditions (a), (b), and (c) is denoted by

W(a, b, c) (with a similar notation for other sets of conditions; the present dis-
crete context will prevent confusion with the preceding notations). The W -means

Wn[T ] of the power sequence {T k} with respect to the weight matrixW are defined

by

Wn[T ] =
n∑

k=1

wnkT k (n ∈ N).

The operator T is W -mean stable if Wn[T ] → 0 in the strong operator topology.
The discrete analog of Theorem 1 is the following.

Theorem 7. Let T ∈ B(X) be power bounded. Then the following statements
are equivalent:

( i ) I − T has dense range.

( ii ) For all W ∈ W(a, b, c), the operator T is W -mean stable.

(iii) For some W̃ ∈ W(a, b, d), some subsequence {W̃nk
[T ]} converges to zero

in the weak operator topology.

Theorem 7 follows trivially from the following

Theorem 8. Let T ∈ B(X) be power bounded. Then the following statements
are equivalent for a vector x ∈ X :
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( i ) x ∈ range (I − T ).

( ii ) For all W ∈ W(a, b, c), the sequence {Wn[T ]x} converges strongly to zero.

(iii) For some W̃ ∈ W(a, b, d), some subsequence {W̃nk
[T ]x} converges weakly

to zero.

In case of infinite square weight matrices A = (ank)n,k∈N, we consider the
following properties:

(a) For each n ∈ N, 0 ≤ ank is monotonic with respect to k ∈ N, and limk ank =
0.

(b) If cn(A) :=
∑∞

k=1 ank , then K := supn cn(A) < ∞.
(c) limn an1 = 0.

The class of square matrices A with Properties (a), (b), and (c) will be denoted

by A(a, b, c) (with similar notation for other sets of conditions).
For example, if f : (0,∞) → [0,∞) is a non-increasing function such that

f(∞) = 0, tf(t) → 0 as t → 0+, and
∫ ∞
0 f(t)dt = c 6= 0, the matrix A with

entries ank = f(k/n)/n belongs to A(a, b, c). Actually, A ∈ A(a, b′, c), where (b′)
is the following condition (stronger than (b) and (d) below):

(b′) ∃ limn cn(A) = c 6= 0.

Taking, e.g., f(t) = e−t, or f(t) = (2/
√

π)e−t2 , or f(t) = Γ(α)−1tα−1e−t,

the induced weight matrices are the classical Abel, Gauss, and Gamma matrices,

respectively.

As before, we shall also consider the condition

(d) lim infn cn(A) > 0.

If T ∈ B(X) is power bounded and the matrix A of nonnegative weights

satisfies (b), the weighted averages An[T ] are well-defined by

An[T ] =
∞∑

k=1

ankT k (n ∈ N),

the series converges in operator-norm, and ‖An[T ]‖ ≤ MK for all n ∈ N. We say
that T is A-mean stable if An[T ] → 0 in the strong operator topology. The version
of Theorem 7 for square matrices is Theorem 9 below. A similar restatement of

Theorem 8 in this case is valid (we shall omit the obvious details).

Theorem 9. Let T ∈ B(X) be power bounded. Then the following statements
are equivalent:

( i ) I − T has dense range.
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( ii ) For all A ∈ A(a, b, c), the operator T is A-mean stable.

(iii) For some Ã ∈ A(a, b, d), some subsequence {Ãnk
[T ]} converges to zero in

the weak operator topology.

1.7. A version of Theorem 1 for cosine operator functions can be obtained for an

adequate family of weights. To avoid technicalities, we consider only the fractional

integration weight hβ(t, s) := (β/tβ)sβ−1 (β > 0), and we write W
β
t instead of

W
hβ

t .

Theorem 10. Let C(·) be a boundedC0-cosine operator function with generator

A. The following statements are equivalent:

( i ) A has dense range;

( ii ) C(·) is W β-mean stable for all β > 0;
(iii) limn W β0

tn [C(·)] = 0 in the weak operator topology for some β0 > 0 and
some positive sequence {tn} diverging to ∞.

2. PROOFS

Proof of Theorem 2. (i) implies (ii). Since ‖W h
t [T (·)]‖ ≤ MK (where M =

sup ‖T (·)‖) for all t > 0 and h ∈ W(1, 2), it follows from (i) that it suffices to
prove the relation

lim
t→∞

W h
t [T (·)] Ay = 0 for all y ∈ D(A).

With δ as in Condition (4) and t > δ, we write

W h
t [T (·)] Ay =

(∫ δ

0
+

∫ t

δ

)
h(t, s)T (s)Ay ds = J1 + J2.

Clearly,

‖J1‖ ≤ M ‖Ay‖
∫ δ

0
h(t, s)ds.(1)

Since T (s)Ay = d
dsT (s)y for y ∈ D(A), an integration by parts shows that

J2 = h(t, t)T (t)y − h(t, δ)T (δ)y −
∫ t

δ
T (s)ydsh(t, s).(2)

By the monotonicity assumption on h (Condition (1)), the Stieltjes integral in (2)

has norm ≤ M ‖y‖ |h(t, t)− h(t, δ)|. Therefore, by (1) and (2),

‖W h
t [T (·)]Ay‖ ≤ M ‖Ay‖

∫ δ

0
h(t, s)ds + 2M ‖y‖

(
h(t, t) + h(t, δ)

)
→ 0
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as t → ∞, by Conditions (3) and (4) on the weight h and by (*).

(ii) implies (iii). Obvious, because W(1, 2, 3, 4, 5) is nonempty.

(iii) implies (i). Assume that (iii) is valid for some h0 and {tn} as described, and
some x = x0 /∈ range A. By the Hahn-Banach theorem, there exists x∗

0 ∈ X∗ such

that 〈x∗
0, Ax〉 = 0 for all x ∈ D(A) and 〈x∗

0, x0〉 = 1. Hence, for all x ∈ D(A),

d

dt
〈x∗

0, T (t)x〉 = 〈x∗
0, AT (t)x〉 = 0,

and therefore 〈x∗
0, T (t)x〉 = 〈x∗

0, T (0)x〉 = 〈x∗
0, x〉. Thus (for all x ∈ D(A) and

t > 0)

〈x∗
0, W

h0
t [T (·)]x〉 = 〈x∗

0, x〉
∫ t

0

h0(t, s)ds.(3)

Since D(A) is dense in X , it follows by continuity that (3) is valid for all x ∈ X

and t > 0. Taking x = x0 and t = tn in (3), and then letting n → ∞, we obtain
from (iii) that limn

∫ tn
0 h0(tn, s)ds = 0, contradicting Condition (5).

Proof of Theorem 3. (i) implies (ii). As before, it suffices to prove that

lim
t→∞

‖Ah
t [T (·)] Ay‖ = 0 (y ∈ D(A))

for all h ∈ A(a, b, c).
Let h ∈ A(a, b, c). We write

Ah
t [T (·)] Ay =

∫ δ

0
h(t, s)T (s)Ay ds + lim

v→∞

∫ v

δ
h(t, s)(T (s)y)′sds

(with δ as in Condition (c)). The first summand has norm ≤ M ‖Ay‖
∫ δ
0 h(t, s)ds.

For v > δ, the integral over [δ, v] can be written as

h(t, v)T (v)y − h(t, δ)T (δ)y −
∫ v

δ
T (s)y dsh(t, s).

By the monotonicity of h(t, ·), we can estimate the norm of the above expression
by

M ‖y‖
(
h(t, v) + h(t, δ) + |h(t, v)− h(t, δ)|

)
,

and therefore the integral over [δ, v] has norm ≤ 2M ‖y‖
(
h(t, v)+h(t, δ)

)
. Letting

v → ∞ and recalling that h(t, ·) vanishes at ∞ (Condition (a)), we conclude that

‖Ah
t [T (·)] Ay‖ ≤ M ‖Ay‖

∫ δ

0
h(t, s)ds + 2M ‖y‖ h(t, δ) → 0
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as t → ∞, by (**) and Condition (c).
The implication (iii) implies (i) is proved as in Theorem 2, with the averaging

operators Ah
t replacing W h

t .

Proof of Theorem 4. The first part of the proof is identical to the proof of

the implication (i) implies (ii) in Theorem 2, because S ′(t)x = S(t)Ax for any
x ∈ D(A) (see [1] or [5, Theorem 2.3]).

On the other hand, if range A is not dense in X , then there exists x∗
0 6= 0 in

X∗ such that 〈x∗
0, Ax〉 = 0 for all x ∈ D(A). Therefore

d

dt
〈x∗

0, S(t)x〉 = 〈x∗
0, AS(t)x〉 = 0 (x ∈ D(A)),

since S(t)D(A) ⊂ D(A) for all t ≥ 0. Hence 〈x∗
0, S(t)x〉 = 〈x∗

0, S(0)x〉 for all
t ≥ 0, and so (for h0 and {tn} as in the theorem)

〈x∗
0, S(0)x〉

∫ tn

0
h0(tn, s)ds = 〈x∗

0, W
h0
tn [S(·)]x〉 → 0

as n → ∞. Consequently, 〈x∗
0, S(0)x〉 = 0 for all x ∈ D(A) by Condition (5).

Since range S(0) ⊂ D(A) (cf. [5, Theorem 2.3]) and range S(0) is dense, it follows
that D(A) is dense as well, and therefore, by continuity, 〈x∗

0, S(0)x〉 = 0 for all
x ∈ X . Using again the density of range S(0), we reach the contradiction x∗

0 = 0.

Similar modifications in the proof of Theorems 3 show that Theorem 4 is valid

for the A-means as well.

Proof of Theorem 5. Let M = M1M2, where Mk are bounds for the given

semigroups. Then ||W h[T (·)ZS(·)]|| ≤ MK||Z||, and it suffices therefore to prove
W h-mean stability (in the s.o.t.) of the operator function T (·)ZS(·) for Z in the

range of ∆, say Z = ∆V with V ∈ D(∆). By [2, Proposition 5], G(·)V is

differentiable in the s.o.t. for all t ≥ 0, with (s.o.t.-)derivative equal to G(·)Z =
T (·)ZS(·). The integration by parts argument in the proof of Theorem 2 (resp.,
Theorem 3) yields the result for W h-means (resp., Ah-means).

Corollary 6 follows from the observation that since C ∈ B(X), the identity
operator I belongs to D(∆), and ∆I = (B + C) − B = C.

Proof of Theorem 8. (i) implies (ii). Let W ∈ W(a, b, c). For n ≥ 2, we have,
by Abel’s summation formula,

Wn[T ](I − T )=
n∑

k=1

wnk(T k − T k+1)

= wn1T − wnnTn+1 +
n∑

k=2

(wnk − wn,k−1)T k.
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By the monotonicity condition in (a),

∥∥∥
n∑

k=2

(...)
∥∥∥ ≤ M

n∑

k=2

|wnk − wn,k−1|= M
∣∣∣

n∑

k=2

(wnk − wn,k−1)
∣∣∣

= M |wnn − wn1|,

where M := supk ‖T k‖.
Therefore, ∥∥∥Wn[T ](I − T )

∥∥∥ ≤ 2M(wn1 + wnn) → 0

as n → ∞ by Property (c).

This shows that

lim
n

||Wn[T ]x|| = 0 (x ∈ range (I − T )).

Since ‖Wn[T ]‖ ≤ MK (n ∈ N) by Property (b), it follows that

lim
n

‖Wn[T ]x‖ = 0 (x ∈ range (I − T )),(4)

and consequently (i) implies (ii).

(ii) implies (iii). Trivial, since W(a, b, c, d) 6= ∅.

(iii) implies (i). Suppose (iii) holds for some x0, but x0 /∈ range (I − T ). By
the Hahn-Banach theorem, there exists x∗

0 ∈ X∗ such that for all x ∈ X ,

〈x∗
0, (I − T )x〉 = 0 and 〈x∗

0, x0〉 = 1.

Therefore T ∗x∗
0 = x∗

0, and it follows that for any matrix W

Wn[T ]∗x∗
0 = cn(W )x∗

0 (n ∈ N).

Consequently,

〈x∗
0, Wn[T ]x0〉 = 〈Wn[T ]∗x∗

0, x0〉 = cn(W ).

TakingW = W̃ and n = nk as in (iii), we get cnk
(W ) → 0, contradicting Condition

(d).

Proof of Theorem 9. By Abel’s summation formula, for all n ≥ 2,

An[T ](I − T ) = an1T +
∞∑

k=2

(ank − an,k−1)T k.
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Let A ∈ A(a, b, c). By Properties (a) and (c),

‖An[T ](I − T )‖ ≤ Man1 + M
∞∑

k=2

|ank − an,k−1|

= Man1 + M
∣∣∣
∑∞

k=2(ank − an,k−1)
∣∣∣ = 2Man1 → 0

as n → ∞, and it follows from the uniform boundedness of the averages An[T ]
that limn ‖An[T ]x‖ = 0 for all x ∈ range (I − T ); consequently, (i) implies (ii).

The argument in the proof of Theorem 8 withW replaced by A shows that (iii)

implies (i). .

Proof of Theorem 10. Let M := sup ‖C(·)‖. For y ∈ D(A) and t > 1, we
write

W β
t [C(·)]Ay = βt−β

(∫ 1

0
+

∫ t

1

)
sβ−1C(s)Ay ds = J1 + J2.(5)

Clearly,

‖J1‖ ≤ M ‖Ay‖ t−β .(6)

Let S(·) be the sine operator function associated with C(·), that is, S(t)x :=∫ t
0 C(s)x ds (x ∈ X). Since C(·)Ay = [C(·)y]′′, two successive integrations by
parts yield the formula (in case β 6= 2):

J2 =βt−1S(t)Ay − βt−βS(1)Ay − β(β − 1)t−2C(t)y

+β(β − 1)t−βC(1)y + β(β − 1)(β − 2)t−β

∫ t

1
sβ−3C(s)y dy.

(7)

By [4, Theorem 2], ‖t−1S(t)Ay‖ = O(1/t) as t → ∞. The norm of all other

integrated terms is either O(t−β) or O(t−2). The norm of the last term in (7) is

≤ β|β − 1| |β − 2|t−βM ‖y‖
∫ t

1
sβ−3ds = O(t−γ),

where γ = min{β, 2}. We conclude from (7) that ‖J2‖ = O(t−δ), where δ =
min{β, 1}.

In case β = 2, the first integration by parts gives

J2 = 2t−1S(t)Ay − 2t−2S(1)Ay − 2t−2

∫ t

1

[C(s)y]′ds.

The last term is equal to 2t−2[C(t)y − C(1)y], and its norm is O(t−2); hence
||J2|| = O(t−1) = O(t−δ).



102 Shmuel Kantorovitz and Serguei Piskarev

We conclude from (5) and (6) that for all x ∈ range (A),

‖W β
t [C(·)]x‖ = O(t−δ),(8)

where δ = min{β, 1}. Since ‖W β
t [C(·)]‖ ≤ M , it follows from (8) that (i) implies

(ii).

(iii) implies (i). Assume (iii) holds, and suppose range (A) is not dense in X .
There exists x∗

0 6= 0 inX∗ such that 〈x∗
0, Ax〉 = 0 for all x ∈ D(A). Fix x ∈ D(A).

We have
d2

dt2
〈x∗

0, C(t)x〉 = 〈x∗
0, AC(t)x〉 = 0

for all t, and so

〈x∗
0, C(t)x〉 = c0 + c1t(9)

for some constants ck, k = 0, 1. Then for all β > 0,

〈x∗
0, W

β
t [C(·)]x〉 = c0 +

β

β + 1
c1t.

If c1 6= 0, we get a contradiction to (iii) by taking t = tn, β = β0, and letting

n → ∞. Hence c1 = 0, and we get c0 = 〈x∗
0, x〉 by taking t = 0 in (9). Choosing

again t = tn and β = β0, we get from (iii),

〈x∗
0, x〉 = 〈x∗

0, W
β0
tn [C(·)]x〉 → 0

as n → ∞. Hence 〈x∗
0, x〉 = 0 for all x ∈ D(A), and therefore x∗

0 = 0 by the
denseness of D(A), contradiction.
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