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CIRCULAR CHROMATIC NUMBER AND GRAPH MINORS

Xuding Zhu∗

Abstract. This paper proves that for any integer n ≥ 4 and any rational
number r, 2 ≤ r ≤ n − 2, there exists a graph G which has circular
chromatic number r and which does not contain Kn as a minor.

1. INTRODUCTION

The circular chromatic number of a graph (also known as the “star chro-
matic number”) is a natural generalization of the chromatic number of a graph.
For a pair of integers p ≥ q, a (p, q)-colouring of a graph G is a mapping c from
V (G) to the set {0, 1, · · · , p− 1} such that for any adjacent vertices x, y of G,
q ≤ |c(x)− c(y)| ≤ p− q. The circular chromatic number χc(G) of a graph G
is the infimum of the ratios p/q for which there exists a (p, q)-colouring of G.

It was shown by Vince [13] (cf. also [2] for a combinatorial proof) that for
finite graphs G, the infimum in the definition above is always attained, and
hence can be replaced by minimum.

Note that a (p, 1)-colouring of a graph is just a p-colouring of G. Therefore
we have χc(G) ≤ χ(G). On the other hand, it was proved in [13] that for
any graph G we have χ(G) − 1 < χc(G). Hence if we know the circular
chromatic number of a graph G, then we can obtain its chromatic number
by taking the ceiling of χc(G), i.e., χ(G) = dχc(G)e. However, two graphs of
the same chromatic number may have different circular chromatic numbers.
In this sense, χc(G) is a refinement of the parameter χ(G), and χ(G) is an
approximation of χc(G).
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Since the infimum in the definition of χc(G) can be replaced by minimum
for finite graphs, we know that χc(G) is a rational number for any finite graph
G. On the other hand, for any rational p/q ≥ 2, there is a finite graph G
such that χc(G) = p/q. Suppose p/q ≥ 2 and that (p, q) = 1. Let Gq

p be the
graph with vertex set {0, 1, · · · , p − 1}, in which ij is an edge if and only if
q ≤ |i− j| ≤ p− q. Then it was shown in [13] that χc(G

q
p) = p/q.

Given a property P of graphs, it is usually an interesting and difficult
problem to determine whether or not there exists a graph G which has the
property P and whose circular chromatic number is equal to a given rational
number r. One such problem was discussed in [15]. For an integer g, let
P (g) be the property of having girth at least g. It was shown in [15] that
for any integer g and for any rational number r ≥ 2, there exists a graph G
which has property P (g) and which has circular chromatic number r. (For
a constructive proof, see [20].) This result is a generalization of the result
of Erdös concerning the existence of graphs with arbitrarily large girth and
arbitrarily large chromatic number. Another such problem was discussed in
[7, 18]. Let P be the property of being a planar graph. In [7,18], the authors
asked the problem that for which rational numbers r there exists a planar
graph G which has circular chromatic number r. It follows from the Four
Colour Theorem, that the number r is at most 4. It was shown in [7] that
for any rational r between 2 and 3, there is a planar graph G with circular
chromatic number r, and it was shown in [18] that for any rational number r
between 3 and 4, there is a planar graph G with circular chromatic number r.
Therefore a rational r is the chromatic number of a planar graph if and only
if r = 1 or 2 ≤ r ≤ 4.

A graph H is called a minor of a graph G if H is isomorphic to a graph
which is obtained from a subgraph of G by contracting some edges. We say
a graph G is H-minor free if H is not a minor of G. As a generalization
of the Four Colour Problem, Hadwiger conjectured that any graph G with
chromatic number at least n contains Kn as a minor. Hadwiger’s conjecture
remains to be one of the major open problems in mathematics. The case n = 5
of this conjecture is equivalent to the Four Colour Theorem, of which the only
existing proofs rely on computer [1, 10]. The case n = 6 was settled in [11],
where the proof relies on the Four Colour Theorem and is quite complicated.

In this paper, we ask for which rational numbers r there exists a graph
G which does not contain Kn as a minor and which has circular chromatic
number r. If Hadwiger’s conjecture is true, then for any rational number
r > n− 1, any graph with circular chromatic number r does contain Kn as a
minor. Therefore we shall only consider those rationals r ≤ n− 1. Our main
result is the following theorem:
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Theorem 1.1. Suppose n ≥ 4 is an integer and r is a rational. If 2 ≤
r ≤ n − 2, then there is a Kn-minor free graph which has circular chromatic
number r.

In case that r is between n − 2 and n − 1, it remains an open question
whether or not there exists a Kn-minor free graph with circular chromatic
number r. (The case r ≥ n concerns Hadwiger’s conjecture, as explained
above.) However, we have some partial results. First of all, it was shown in
[18] that for any rational number between 3 and 4, there is a planar graph
with circular chromatic number r. As planar graphs are K5-minor free, we
have the following result:

Theorem 1.2. For any rational number r between 3 and 4, there exists a
K5-minor free graph G with circular chromatic number r.

If n = 4, then K4-minor free graphs have a relative simple structure. The
circular chromatic number of K4-minor free graphs has been studied in [5, 3,
8]. P. Hell and the author [5] proved a somehow surprising result stating that
for a K4-minor graph G, either χc(G) = 3 or χc(G) ≤ 8/3.

For n ≥ 6, we shall prove the following theorem in this paper:

Theorem 1.3. Suppose n ≥ 6 and n−2 ≤ r ≤ n−1. If the Farey sequence
of r has length at most 2 and if α2 = 2 (see Section 2 for the definitions of
Farey sequence and αi), then there is a graph G which is Kn-minor free and
which has circular chromatic number r.

2. THE PROOF OF THEOREM 1.1

In this section, we shall prove Theorem 1.1. If n = 4, then the result
is trivial. If n = 5 or 6, then the result follows from theorems of [7, 18],
where it was proved that any rational number between 2 and 4 is the circular
chromatic number of a planar graph, since planar graphs are known to be
K5-minor free. Thus we assume that n ≥ 7 is a fixed integer, r = p/q is a
fixed rational number (where p and q are integers with (p, q) = 1), and that
4 ≤ r ≤ n− 2. (The case that m ≤ 4 follows from the results in [7, 18] about
planar graphs.) We shall construct a Kn-minor free graph, denoted by Z(p, q),
such that χc(Z(p, q)) = p/q.

2.1 The Construction

The construction method is a modification of the method used in [10],
where a sparse subgraph of Gq

p which has the same circular chromatic number
as Gq

p is constructed.
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If q = 1, then r = p is an integer. It is easy to see that in this case we
may let Z(p, q) = Kp. Thus we assume that m < r < m + 1 for some integer
4 ≤ m ≤ n− 3.

Since (p, q) = 1, there exist unique integers p′, q′ such that p′ < p, q′ < q
and pq′ − qp′ = 1. It is straightforward to verify that p′/q′ < p/q and that
p′/q′ is the largest fraction with the property that p′/q′ < p/q and p′ ≤ p.
Similarly, we let p′′, q′′ be positive integers such that p′′ < p′, q′′ < q′ and
p′q′′ − p′′q′ = 1. Then p′′/q′′ is the largest fraction with the property that
p′′/q′′ < p′/q′ and that p′′ ≤ p′. Repeating this process of finding smaller and
smaller fractions, we must reach the fraction m/1 in a finite number of steps.
Thus to any rational p/q between m and m + 1, there corresponds a unique
sequence of fractions

m

1
=

p0

q0
<

p1

q1
<

p2

q2
< · · · < pk

qk
=

p

q
.

We call the sequence (pi/qi : i = 0, 1, · · · , k) the Farey sequence of p/q. The
number k is called the length of the Farey sequence of p/q.

For convenience, we let p−1 = −1 and q−1 = 0. Then for i = 1, 2, · · · , n,
we have piqi−1 − pi−1qi = 1 and pi−1qi−2 − pi−2qi−1 = 1. It follows that, for
1 ≤ i ≤ k, we have pi−1(qi+qi−2) = qi−1(pi+pi−2). As pi−1, qi−1 are co-prime,

αi =
pi + pi−2

pi−1
=

qi + qi−2

qi−1

is an integer, which is greater than 1, and hence is at least 2. We call
(α1, α2, · · · , αk) the alpha sequence of p/q, which is obviously uniquely deter-
mined by p/q. The process of deducing the alpha sequence from the rational
p/q can also be reversed. In other words, each sequence (α1, α2, · · · , αk) with
αi ≥ 2 determines a rational p/q between m and m + 1. Indeed, given the
alpha sequence (α1, α2, · · · , αk), the fractions pi/qi can be easily determined
by solving the difference equations

pi = αipi−1 − pi−2, qi = αiqi−1 − qi−2(*)

with the initial condition that (p−1, q−1) = (−1, 0) and (p0, q0) = (m, 1).
Having determined the alpha sequence of the rational p/q, we can start

constructing the Kn-minor graph G which has circular chromatic number p/q.
We shall indeed construct a sequence of graph Gi, for i = 1, 2, · · · , k, such that
χc(Gi) = pi/qi, and that each of Gi is Km+3-minor free (and hence Kn-minor
free, as n ≥ m + 3).

Before constructing the graphs Gi, we shall recursively construct ordered
graphs Fi,Hi (the vertices of Fi and Hi are linearly ordered). Let fi = |Fi|



Circular Chromatic Number and Graph Minors 647

and hi = |Hi|; the vertices of Fi will usually be named (xi,1, xi,2, · · · , xi,fi),
and considered in this order, and the vertices of Hi will usually be named
(yi,1, yi,2, · · · , yi,hi

), and considered in this order. (Sometimes we shall use
simpler indices to denote the vertices, when no confusion occurs.)

For an edge e = (x, y) of an ordered graph, we define the order length of e,
denoted by `(e), to be the positive difference between the positions of x and
y.

Definition 2.1. Suppose X and Y are disjoint ordered graphs whose vertex
orderings are (x1, x2, · · · , xs) and (y1, y2, · · · , yt), respectively. When we say
hook
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Type 1 hook Type 2 hook

Figure 1.

X to Y with type 1 hook, we are adding the following edges between X and
Y :

x1yt, xsy1, xsy2, xsy3, · · · , xsym−1.

When we say hook X to Y with type 2 hook, we are adding the following edges
between X and Y :

x1yt, x1yt−1, · · · , x1yt−m+2, xsy1.

In case the graph X (resp. Y ) is a singleton, then in the definition of the
hooks, we set x1 = x2 = · · · = xs (resp. y1 = y2 = · · · = yt). The edge x1yt of
either type of hooks will be called a long edge of that hook.

Figure 1 above depicts the two types of hooks.
For an integer t, we let Qt be the (m − 1)st power of the path of length

t− 1, i.e., Qt has vertex set {v1, v2, · · · , vt} in which two vertices vi and vj are
adjacent if |i − j| ≤ m − 1. The graph Qt is considered as an ordered graph
with the order (v1, v2, · · · , vt) of the vertices.

First of all, we let F1 be a singleton, let H1 = Qmα1 , and let F2 = Qm(α1−1).
For i ≥ 1, to construct the graph Hi+1, we take αi+1 copies of Fi, denoted

by F 1
i , F 2

i , · · · , F
αi+1

i , and αi+1−1 copies of Hi, denoted by H1
i ,H2

i , · · · ,H
αi+1−1
i

and hook them together as follows:
• If i is odd, then for j = 1, 2, · · · , αi+1 − 1, we hook F j

i to Hj
i with type

1 hook, and hook F j+1
i to Hj

i with type 2 hook;

• If i is even, then for j = 1, 2, · · · , αi+1 − 1, we hook Hj
i to F j

i with type
2 hook, and hook Hj

i to F j+1
i with type 1 hook.

The resulting graph is Hi+1.
The graph Fi+2 is constructed in the same way as the graph Hi+1, but

with one less copy of Fi and Hi, i.e., Fi+2 is constructed from αi+1 − 1 copies
of Fi and αi+1 − 2 copies of Hi.
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The graphs Hi+1 and Fi+2 are regarded as ordered graphs. The order of
the vertices is: the vertices of F 1

i in order, followed by the vertices of H1
i in

order, followed by the vertices of F 2
i in order, etc.

Finally when i is even, we let Gi be the graph obtained by hooking Hi

to Fi with type 1 hook; when i is odd, we let Gi be the graph obtained by
hooking Fi to Hi with type 1 hook. We shall regard Gi as an ordered graph
as well, where the order of the vertices is: those of Fi in order, followed by
those of Hi in order.

We note that the mapping f : V (Hi) → V (Hi) defined as f(yi,j) =
yi,hi−j+1 is an automorphism of Hi, and that the mapping g : V (Fi) → V (Fi)
defined as f(xi,j) = xi,fi−j+1 is an automorphism of Fi. Therefore, in the
construction of Gi, when we hook Fi to Hi or Hi to Fi, it makes no difference
which of the two types of hooks is used.

This finishes the construction of the graphs Gi. The graph Z(p, q) is equal
to Gn.

2.2 The Minors of Gi

In these two sections we shall prove that the graphs Gi are Km+3-minor
free, and that χc(Gi) = χc(G′

i) = pi/qi.
To prove that each of the graphs Gi is Km+3-minor free, we shall need the

following lemmas, which are quite obvious.

Lemma 2.1. Suppose a graph G contains Kk as a minor, and that x is
a vertex of G of degree at most k − 2. Then there is a neighbour y of x such
that the graph G|xy, which is obtained from G by contracting the edge xy, also
contains Kk as a minor.

Let G be a graph. A decomposition of G by means of a subgraph H is an
expression of G in the form

G = G1 + G2, G1 ∩G2 = H.

In case H is a complete graph, then the expression above is called a simplex
decomposition of G.

Lemma 2.2. Suppose G = G1 + G2 is a simplex decomposition of G. If
both G1 and G2 are Kk-minor free, then G is Kk-minor free.

Suppose X is an ordered graph with vertices {x1, x2, · · · , xt} in that order,
and t ≥ m. Let X be the graph obtained from X by adding two vertices u, v
and the following edges:

x1xt, ux1, ux2, · · · , uxm−1, uxt, vx1, vxt, vxt−1, · · · , vxt−m+2, uv.
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Let X̃ be the graph obtained from X by adding the edge x1xt.

Theorem 2.1. For any i ≥ 1, if i is odd, then the graphs H i and F̃i are
Km+3-minor free; if i is even then the graphs H̃i and F i are Km+3-minor free.

Proof. We shall prove it by induction on i. First we consider the case that
i = 1. It is easy to see (or prove by induction) that the jth power of a path is
Kj+2-minor free. Hence for any integer t, the graph Qt is Km+1-minor free.
Thus H1 = Qmα1 is Km+1-minor free, and hence (H1) is Km+3-minor free, as
(H1) is obtained from H1 by adding two vertices. Similarly, F2 is Km+3-minor
free. We note that F̃1 is obviously Km+3-minor free.

Assume that Theorem 2.1 is true for i ≤ k−1. Assume first that k is even.
We consider the graph H̃k. The graph Hk is obtained from αk copies of Fk−1

and αi−1 copies of Hk−1. Suppose the vertices of Fk−1 are x1, x2, · · · , xs and
that the vertices of Hk−1 are y1, y2, · · · , yt. We shall denote by xj

1, x
j
2, · · · , xj

s

the vertices of the jth copy of Fk−1, and denote by yj
1, y

j
2, · · · , yj

t the vertices
of the jth copy of Hk−1. Recall that the jth copy of Fk−1 is hooked to the jth
copy of Hi by type 1 hook, and the (j + 1)th copy of Fk−1 is hooked to the
jth copy of Hk−1 by type 2 hook.

We shall add to the graph H̃k the following edges:
• for j = 1, 2, · · · , αk, add the edge xj

1x
j
s;

• for j = 1, 2, · · · , αk − 1, add the edges xj
sy

j
t , xj+1

1 yj
1, xj

sx
j+1
1 , yj

1y
j
t .

We shall prove that after adding these edges to H̃k, the resulting graph,
denoted by Mk, is still Km+3-minor free.

It is straightforward to verify that for j = 1, 2, · · ·αk, each of the sets
{xj

1, x
j
s} is a cutset of the graph Mk which induces a complete subgraph of

Mk, and also each of the sets {xj
s, y

j
1, y

j
t , x

j+1
1 } is a cutset of the graph Mk

which induces a complete subgraph of Mk. By repeatedly applying Lemma
2.2 and the induction hypothesis, we conclude that Mk contains Km+3 as a
minor if and only if the subgraph of Mk induced by the set

{
x1

1, x
1
s, y

1
1, y

1
t , x

2
1, x

2
s, y

2
1, y

2
t , · · · , yαk−1

1 , yαk−1
t , xαk

1 , xαk
s

}

contains Km+3 as a minor. However, this subgraph is easily seen to be K7-
minor free (hence Km+3-minor free). Indeed, if the vertex x1

1 is deleted from
this subgraph, then the resulting subgraph is a subgraph of the 3rd power of
a path, and hence is K5-minor free.

The graphs Fk+1 and Hk have the same structure. The same argument
shows that F̃k+1 is still Km+3-minor free.
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Assume next that k is odd. We consider the graph Hk. The graph Hk is
obtained from αk copies of Fk−1 and αi−1 copies of Hk−1. Suppose the vertices
of Fk−1 are x1, x2, · · · , xs and that the vertices of Hk−1 are y1, y2, · · · , yt. We
shall denote by xj

1, x
j
2, · · · , xj

s the vertices of the jth copy of Fk−1, and denote
by yj

1, y
j
2, · · · , yj

t the vertices of the jth copy of Hk−1. Recall that the jth copy
of Hk−1 is hooked to the jth copy of Fi by type 2 hook, and the jth copy of
Hk−1 is hooked to the (j + 1)th copy of Fk−1 by type 1 hook.

We shall add to the graph Hk the following edges:
• for j = 1, 2, · · · , αk, add the edge xj

1x
j
s;

• for j = 1, 2, · · · , αk − 1, add the edges xj
1y

j
1, xj+1

s yj
t , yj

1y
j
t ;

• for j = 1, 2, · · · , αk − 2, add the edge yj
sy

j+1
1 ;

• and finally, add the edges ux1
s, uy1

1, vyαk−1
t , vxαk

1 .

We shall prove that after adding these edges to Hk, the resulting graph,
denoted by Mk, is still Km+3-minor free.

It is straightforward to verify that
• for j = 1, 2, · · ·αk − 1, each of the sets {yj

1, y
j
t } is a cutset of the graph

Mk which induces a complete subgraph of Mk;

• for j = 2, 3, · · · , αk − 1, each of the sets {yj−1
t , xj

1, x
j
s, y

j
1} is a cutset of

the graph Mk which induces a complete subgraph of Mk;

• each of the two sets {u, x1
1, x

1
s, y

1
1}, {v, xαk

1 , xαk
s , yαk−1

t } is a cutset of the
graph Mk which induces a complete subgraph.

By repeatedly applying Lemma 2.2 and the induction hypothesis, we con-
clude that Mk contains Km+3 as a minor if and only if the subgraph of Mk

induced by the set
{

u, x1
1, x

1
s, y

1
1, y

1
t , x

2
1, x

2
s, y

2
1, y

2
t , · · · , yαk−1

1 , yαk−1
t , xαk

1 , xαk
s , v

}

contains Km+3 as a minor. However, this subgraph is easily seen to be K7-
minor free (hence Km+3-minor free). Indeed, if the vertices u, v are deleted
from this subgraph, then the resulting subgraph is a subgraph of the 3rd power
of a path, and hence is K5-minor free. Similarly, we can show that F k+1 is
Km+3-minor free. This completes the proof of Theorem 2.1.

Note that Gi is a subgraph of Hi+1. Hence Gi is Km+3-minor free for
1 ≤ i ≤ n− 1. The same argument can prove that Gn is Km+3-minor free.

Corollary 2.1. For any 1 ≤ i ≤ n, the graph Gi is Km+3-minor free.
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2.3 The Circular Chromatic Number of Gi

It remains to show that for each i the graph Gi has circular chromatic
number pi/qi. We shall use the same idea of the proof presented in [19].
However, the graphs in consideration are not exactly the same, and hence the
proof is also technically different. In the argument below, we shall omit some
of the details which are straightforward and are contained in [19].

Let gi be the number of vertices of Gi. Straightforward calculation shows
that gi satisfies the same difference equation as pi, and also gi has the same
initial value as pi. Therefore |Gi| = pi for i = 1, 2, · · · , k.

Now we shall prove that the circular chromatic number of Gi is at most
pi/qi. Before proving this, we need some preliminary results about the relation
between the Farey sequence and the alpha sequence. We observed before
that the Farey sequence is uniquely determined by the alpha sequence. The
numbers pi and qi are obtained by solving the following difference equations:

pi = αipi−1 − pi−2, qi = αiqi−1 − qi−2(*)

with the initial condition that (p−1, q−1) = (−1, 0) and (p0, q0) = (m, 1).
By repeatedly applying the equation (∗), we may express pi (respectively,

qi) in terms of pj and pj−1 (respectively, qj and qj−1) for any 0 ≤ j ≤ i − 2.
Lemma 2.3 below, which can be proved easily by induction, gives the explicit
expressions. For 1 ≤ r ≤ s ≤ n, we let

Λr,s = det




αr 1 0 · · · 0 0
1 αr+1 1 · · · 0 0
0 1 αr+2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · αs−1 1
0 0 0 · · · 1 αs




.

Lemma2.3. For 0 ≤ j ≤ i− 2, we have

pi = pjΛj+1,i − pj−1Λj+2,i, qi = qjΛj+1,i − qj−1Λj+2,i.(**)

By letting j = 0 in (∗∗), and by using the initial condition, we have

pi = mΛ1,i + Λ2,i, qi = Λ1,i.(***)

Lemma 2.4. For 0 ≤ j ≤ i− 2, pjqi = piqj − Λj+2,i.

This is proved by induction on j, and detailed calculations can be found
in [19].
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Lemma 2.5. For any 2 < t < i, Λt,i < Λt−1,i.

This is easily proved by induction, by noting that αj ≥ 2.

Lemma 2.6. Let Ci = {qi, qi+1, · · · , pi − qi}. If 0 ≤ j ≤ i− 1, then

pjqi mod pi 6∈ Ci, (pj + 1)qi mod pi 6= Ci,

but
(pj − 1)qi mod pi ∈ Ci.

Proof. Consider first the case that 0 ≤ j ≤ i− 2. By Lemma 2.4,

pjqi = piqj − Λj+2,i,

and by Lemma 2.5, (∗ ∗ ∗) and the definition of Λr,s,

2 ≤ αi = Λi,i ≤ Λj+2,i < Λ1,i = qi.

Thus,
pi − qi < pjqi (mod pi) ≤ pi − 2,

0 < (pj + 1)qi (mod pi) ≤ qi − 2,

pi − 2qi < (pi − 1)qi (mod pi) ≤ pi − qi − 2,

giving the required exclusions and inclusions.
Next consider the case j = i−1. Since the definition of the Farey sequence

gives piqi−1 − pi−1qi = 1, the conclusion is trivially true.

Lemma 2.7. For each i, χ(Gi) ≤ pi/qi.

Proof. We consider the graph Gi as an ordered graph, where the order of
the vertices is: the vertices of Fi in order, followed by the vertices of Hi in
order. Suppose the vertices of Gi are (v1, v2, · · · , vpi) in order. Let c(vj) =
jqi(mod pi). We shall show that c is a (pi, qi)-colouring of Gi, i.e., for every
edge e = xy of Gi, |c(x)− c(y)| ∈ Ci, where Ci is the set defined as in Lemma
2.6. Recall that the order length `(e) of an edge e = xy is the positive difference
of the positions of x and y in Gi (as an ordered graph). It follows from the
definition of the colouring c that |c(x) − c(y)| = `(e)qi(mod pi). Therefore it
suffices to show that for any edge e of Gi, we have

`(e)qi (mod pi) ∈ Ci.

Let Lj = {1, 2, · · · ,m − 1} ∪ {pt − 1 : 0 ≤ t ≤ j − 1}. It is not difficult
to show by induction on j that the for any edge e of Hj (resp., Fj), we have
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`(e) ∈ Lj . Indeed, when Hj is constructed from copies of Fj−1 and Hj−1, the
edges of Hj are either those carried over from the copies of Fj−1 and Hj−1, or
the hooking edges. For those edges carried over from the copies of Fj−1 and
Hj−1, their order lengths remain unchanged. For those hooking edges, the
long edge has order length pj−1 − 1, and the other edges have order length at
most m− 1.

Since Gi as an ordered graph is isomorphic to the subgraph of Hi+1 induced
by the union of the first copy of Fi and the first copy of Hi, we conclude that
for any edge e of Gi, either 1 ≤ `(e) ≤ m− 1 or `(e) = pj − 1 for some j ≤ i.
If 1 ≤ `(e) ≤ m− 1, then obviously

`(e)qi (mod pi) ∈ Ci,

as pi > mqi. If `(e) = pi−1, then `(e)qi (mod pi) = pi−qi ∈ Ci. If `(e) = pj−1
for some j ≤ i−1, then it follows from Lemma 2.6 that `(e)qi (mod pi) ∈ Ci.

Next we shall prove that for each i, χc(Gi) = pi/qi. By Lemma 2.7, it
suffices to show that χc(Gi) ≥ pi/qi. We shall prove it by induction on i. First
we need a few lemmas.

Lemma 2.8 below was proved in [4] and also implicitly used in [13, 14].
Given a (k, d)-colouring c of a graph G, we define a directed graph Dc(G)

on the vertex set of G by putting a directed edge from x to y if and only if
(x, y) is an edge of G and that c(x)− c(y) = d (mod k).

Lemma 2.8. For any graph G, χc(G) = k/d if and only if G is (k, d)-
colourable, and that for any (k, d)-colouring c of G, the directed graph Dc(G)
contains a directed cycle.

A simple calculation shows that the length of the directed cycle in Dc(G)
is a multiple of k, and hence is at least k.

Corollary 2.2. For any graph G, if χc(G) = k/d where (k, d) = 1, then
G has a cycle of length at least k. In particular, k ≤ |V (G)|.

Suppose that χc(Gi) = pi/qi, and that ∆ is an (pi, qi)-colouring of Gi. It
follows from Lemma 2.8 that there is a directed cycle of D∆(Gi) of length at
least pi. Since |Gi| = pi, we conclude that there is a Hamiltonian cycle, say
Q = (c1, c2, · · · , cpi , c1), of Gi such that ∆(cj)−∆(cj−1) = qi (mod pi).

We say a Hamiltonian cycle Q = (c1, c2, · · · , ct, c1) of the graph G is a
good Hamiltonian cycle (with respect to p/q) if for any edge ckc` of G we have
k−` 6= pi, pi +1 for any 0 ≤ i < n. In particular, k−` 6= m,m+1 for any edge
ckc` of G. Similarly, a Hamiltonian path P = (c1, c2, · · · , ct) of a graph G is
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a good Hamiltonian path if for any edge ckc` of G, we have k − ` 6= pi′ , pi′ + 1
for any i′ < n.

Now we shall show that if χc(Gi) = pi/qi, then the Hamiltonian cycle
induced by any (pi, qi)-colouring of Gi is a good Hamiltonian cycle.

Lemma 2.9. Suppose χc(Gi) = pi/qi and that ∆ is an (pi, qi)-colouring
of Gi. Let Q = (c1, c2, · · · , cpi , c1) be the Hamiltonian cycle of Gi such that
∆(cj)−∆(cj−1) = qi (mod pi). Then Q is a good Hamiltonian cycle of Gi.

Proof. Assume to the contrary that there is an edge (ck, c`) of Gi such
that |k − `| = pt or pt + 1 for some t ≤ i − 1. Then it follows from Lemma
2.6 that ∆(ck)−∆(c`) = (k − `)qi (mod pi) 6∈ Ci, contrary to the assumption
that ∆ is a (pi, qi)-colouring of Gi.

For any i ≤ n, let Xi be the path of Fi given by the order of the vertices of
Fi, and let Yi be the path of Hi given by the order of the vertices of Hi. The
proof of Lemma 2.7 shows that the union of Xi and Yi is a good Hamiltonian
cycle of Gi. We may consider Xi and Yi as the canonical good Hamiltonian
paths of Fi and Hi, respectively.

It is easy to see that any good Hamiltonian cycle of Gi must be the join
of a good Hamiltonian path X ′

i of Fi and a good Hamiltonian path Y ′
i of Hi,

because when i is odd, the first and the last vertices of Fi form a 2-vertex cut
of Gi, and when i is even the first and the last vertices of Hi form a 2-vertex
cut of Gi. Our next two lemmas show that for any such good Hamiltonian
paths X ′

i, Y
′
i , the initial part and the terminal part of X ′

i (resp., Y ′
i ) coincide

with the corresponding part of Xi (resp., Yi).

Lemma 2.10. The graphs H1 and F2 have a unique good Hamiltonian
path, up to an isomorphism.

Proof. Each of the graphs H1 and F2 is of the form Qt for some positive
integer t. We shall simply prove that for any positive integer t, the graph
Qt has a unique good Hamiltonian path (with respect to any p/q), up to an
isomorphism. When t ≤ m, Qt is a complete graph, and there is nothing to be
proved. Assume now that t ≥ m+1. Suppose the vertices of Qt are 1, 2, · · · , t,
where (x, y) is an edge if and only if |x− y| ≤ m− 1. Let P = (x1, x2, · · · , xt)
be a good Hamiltonian path of Qt. Then for any edge (xi, xj) of Qt, we have
|i − j| 6= m,m + 1. This, in particular, implies that for any i ≤ t − m, the
pair (xi, xi+m) is not an edge of Qt. In other words, for any i ≤ t − m,
|xi − xm+i| ≥ m.

We shall assume that x1 < xm+1, hence x1 ≤ xm+1 − m (the case that
x1 > xm+1 is parallel). Because x2 ≤ x1+m−1 and xm+2 ≥ xm+1−m+1 ( as
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(x1, x2) and (xm+1, xm+2) are edges of Qt), we conclude that x2 ≤ xm+2+m−2.
Since |x2 − xm+2| ≥ m, we conclude that x2 ≤ xm+2 − m. Repeating this
argument, we can prove that xi ≤ xi+m −m for all i ≤ t−m.

This implies that {x1, x2, · · · , xm} = {1, 2, · · · ,m}, for otherwise there
would exist an x ≤ m and an i ≥ 1 such that xi+m = x and hence 1 ≤ xi ≤
xi+m −m = x−m ≤ 0, an obvious contradiction.

Suppose xi = m + 1. Then i ≥ m + 1, by the previous paragraph. Since
xi−m ≤ xi −m = 1, we conclude that xi−m = 1. Now by induction, it is easy
to prove that if xi = m + j then xi−m = j. This implies that xj+m = xj + m
for all 1 ≤ j ≤ t − m. Now we shall show that x1 < x2 < · · · < xt−m.
Otherwise, xi > xi+1 for some i ≤ t−m− 1. Then 1 ≤ xi+m+1 − xi ≤ m− 1,
and hence xixi+m+1 is an edge of Qt, contrary to the assumption that P is a
good Hamiltonian path. Now it follows easily that xi = i for all i ≤ t. This
completes the proof of Lemma 2.10.

Lemma 2.11. Suppose X ′
i and Y ′

i are good Hamiltonian paths of Fi and
Hi respectively, such that the union of X ′

i and Y ′
i is a good Hamiltonian cycle

of Gi. Then the first and the last vertex of X ′
i (resp., Y ′

i ) coincide with the
first and last vertex of Xi (resp., Yi). Moreover, if i is even (resp., odd), then
the first and last m vertices of X ′

i (resp., Y ′
i ) coincide with the first and the

last m vertices of Xi (resp., Yi), up to an isomorphism.

Proof. The first half of this lemma is more or less trivial. We shall only
prove that when i is even (resp., odd), the first and the last m vertices of X ′

i

(resp., Y ′
i ) are the same as that of Xi (resp., Yi) and are of the same order

as in Xi (resp., Yi). We shall prove this by induction on i. When i = 1, 2,
this follows from Lemma 2.10. Suppose the lemma is true for all j < i. We
shall prove it for i. First consider the case that i is odd. We shall prove that
the first and the last m vertices of Y ′

i coincide with the first and the last m
vertices of Yi, up to an isomorphism.

The graph Hi is constructed from copies of Fi−1 and Hi−1. The first
vertex and the last vertex of any of the copies of Hi−1 form a 2-vertex cut of
Hi. Therefore the Hamiltoinan path Y ′

i must be the concatenation of good
Hamiltonian paths of the copies of Fi−1 and the copies of Hi−1. Let X ′

i−1 be
the good Hamiltonian path of the first copy of Fi−1, and let Y ′

i−1 be the good
Hamiltonian path of the first copy of Hi−1. It is easy to see that the union
of X ′

i−1 and Y ′
i−1 must be a good Hamiltonian cycle of Gi−1 (note that the

union of the first copy of Fi−1 and the first copy of Hi−1 is a copy of Gi−1).
Therefore by the induction hypotheses, the first m vertices of X ′

i−1 coincide
with the first m vertices of Xi−1. Now the first m vertices of X ′

i−1 are the
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first m vertices of Y ′
i , and the first m vertices of Xi−1 are the first m vertices

of Yi. Thus we have proved that the first m vertices of Y ′
i coincide with the

first m vertices of Yi. The same argument can be used to prove that the last
m vertices of Y ′

i coincide with the last m vertices of Yi. The case i is even can
be proved by the same method, and we omit the details. This completes the
proof of Lemma 2.11.

Applying Lemmas 2.8, 2.9 and 2.11, and by the remark following the proof
of Lemma 2.9, we have the following lemma:

Lemma 2.12. Suppose χc(Gi) = pi/qi for some i. Let ∆ be any (pi, qi)-
colouring of Gi. Then the colours of the first vertex and the last vertex of Fi

(resp., Hi) are uniquely determined by the colours of the first vertex and the
last vertex of Hi (resp., Fi). Moreover, when i is even (resp., odd) then the
colours of the first m vertices and the last m vertices of Fi (resp., Hi) are
uniquely determined by the colours of the first vertex and the last vertex of Hi

(resp., Fi).

To prove that χc(Gi) ≥ pi/qi (and hence χc(Gi) = pi/qi), we need another
gadget. If i ≥ 2 is even, let Ti be the graph obtained by hooking Fi−1 to Fi

by type 1 hook. If i ≥ 2 is odd, let Ti be the graph obtained by hooking Fi to
Fi−1 by type 1 hook.

Theorem 2.2. For each i ≥ 2, χc(Gi) = pi/qi and χc(Ti) > pi−1/qi−1.
Moreover, χc(G1) = p1/q1.

Proof. First we prove that χc(G1) = p1/q1. By Lemma 2.7, it suffices to
show that χc(G1) ≥ p1/q1. It is easy to verify that χ(G1) = m + 1. Hence
χc(G1) > m. Suppose χc(G1) = k/d > m, then k ≤ |V (G1)| = p1 by Corollary
2.2. Therefore k/d ≥ p1/q1, because it follows from the construction of the
Farey sequence that any fraction a/b strictly between m = p0/q0 and p1/q1

must have numerator a > p1.

Next we show that χc(T2) > p1/q1. Again it is easy to verify that χ(T2) =
m + 1. Suppose χc(T2) = k/d > m. As |V (T2)| < p1 (because |V (F2)| <
|V (H1)|), we know that k < p1. Therefore k/d > p1/q1, because by the
construction of the Farey sequence, any fraction a/b strictly between m and
p1/q1 has numerator a > p1 (note that k/d 6= p1/q1).

Now assume that i ≥ 2, χc(Ti) > pi−1/qi−1 and that χc(Gi−1) = pi−1/qi−1.
We shall prove that χc(Gi) = pi/qi.

Assume to the contrary that χc(Gi) = k/d < pi/qi. Then k ≤ pi and
hence k/d ≤ pi−1/qi−1, because by the construction of the Farey sequence,
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any fraction a/b strictly between pi−1/qi−1 and pi/qi has numerator a > pi.
Since χc(Gi−1) = pi−1/qi−1 and that Gi−1 is a subgraph of Gi, it follows that
χc(Gi) = pi−1/qi−1.

Let ∆ be a (pi−1, qi−1)-colouring of Gi. First we consider the case that i is
odd. Then Gi is obtained by hooking Fi to Hi. Now Hi is constructed from αi

copies of Fi−1 and αi − 1 copies of Hi−1. The first copy of Hi−1 is hooked to
the first copy of Fi−1 by type 1 hooks and hooked to the second copy of Fi−1

by type 2 hooks. The subgraph of Hi induced by the union of the first copy
of Fi−1 and the first copy of Hi−1 is a copy of Gi−1. It is not difficult to verify
that the subgraph of Hi induced by the first copy of Hi−1 and the second copy
of Fi−1 is also isomorphic to Gi−1. (For this purpose, one only needs to observe
that each of the graphs Fj and Hj has an automorphism which reverses the
order of the vertices, i.e., the mapping h defined as h(xj,s) = xj,fj−s is an
automorphism of Fj , and h(yj,s) = yj,hj−s is an automorphism of Hj .)

By using the induction hypotheses that χc(Gi−1) = pi−1/qi−1, and by
applying Lemma 2.12 to each of the two copies of Gi−1, we conclude that the
first and last m vertices of the first copy of Fi−1 are coloured the same way
(under ∆) as the first and the last m vertices of the second copy of Fi−1.

Repeating the same argument, we can prove that the first and the last m
vertices of the first copy of Fi−1 are coloured the same way as the first and the
last m vertices of the last copy of Fi−1. This implies that the restriction of
∆ to the union of Fi and the first copy of Fi−1 of Hi is indeed a (pi−1, qi−1)-
colouring of Ti (recall that Ti is obtained by hooking Fi to Fi−1 by type 1
hook). This is contrary to our assumption that χc(Ti) > pi−1/qi−1.

Finally, assuming that i ≥ 2, χi(Gi) = pi/qi and that χc(Ti) > pi−1/qi−1,
we shall prove that χc(Ti+1) > pi/qi.

Assume to the contrary that χc(Ti+1) = k/d ≤ pi/qi. Since |Fi+1| < |Hi|,
hence |Ti+1| < |Gi| = pi. It follows from Corollary 2.2 that k < pi. As
pi−1/qi−1 is the largest fraction satisfying the property that pi−1 < pi and
pi−1/qi−1 ≤ pi/qi, we conclude that χc(Ti+1) ≤ pi−1/qi−1.

We consider two cases:

Case 1: αi = 2. In this case Fi+1 = Fi−1, and hence Ti+1 = Ti. By
induction hypothesis, χc(Ti) > pi−1/qi−1.

Case 2: αi > 2. In this case Fi+1 consists of αi−1 copies of Fi−1 and αi−2
copies of Hi−1. The union of any copy of Fi−1 and the consecutive copy of Hi−1

induces a copy of Gi−1. Therefore we must have χc(Ti+1) = pi−1/qi−1. Using
the same argument as before (cf. the proof of the fact that χc(Gi) = pi/qi),
we conclude that for any (pi−1, qi−1)-colouring ∆ of Ti+1, the restriction of ∆
to the union of Fi and the first copy of Fi−1 in Fi+1 is indeed a (pi−1, qi−1)-
colouring of Ti, contrary to our assumption that χc(Ti) > pi−1/qi−1. This
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completes the proof of Theorem 2.2.

3. RATIONAL NUMBERS BETWEEN n− 2 AND n− 1

Up to now, we have proved Theorem 1.1, which asserts the existence of a
Kn-minor free graph of circular chromatic number r for any 2 ≤ r ≤ n−2. For
rational r between n−2 and n−1, it is generally unknown whether or not there
exists a Kn-minor free graph G with χc(G) = r. However, for n = 4, P. Hell
and the author [5] have recently proved the surprising result that for any K4-
minor free graph G, one has either χc(G) = 3 or χc(G) ≤ 8/3. In other words,
there is a gap among the rationals that are the circular chromatic numbers of
K4-minor free graphs. For n ≥ 6, we do not know if such gaps exist. Even for
n = 4, we do not have a complete answer to the question, “Which rationals
are the circular chromatic number of a K4-minor free graph?”

Assume that n ≥ 6. We shall prove Theorem 1.3, which says that if r is
a rational between n − 2 and n − 1 whose Farey sequence either has length
1, or has length 2 and α2 = 2, then there is a Kn-minor free graph G with
χc(G) = r.

Proof of Theorem 1.3. If the Farey sequence of r has length 1, then r =
n−2+1/d for some integer d ≥ 1. Let t = (n−2)d+1. Let G be the graph with
vertex set V = {1, 2, · · · , t} and edge set E = {ij : 1 ≤ |i− j| ≤ n− 3} ∪ {1t}.
It is easy to verify that χ(G) = n − 1, and that c(j) = dj (mod t) is a (t, d)-
colouring of G, and hence χc(G) ≤ t/d = r. On the other hand, any fraction
p/q between n− 2 and r must have p > t. Therefore χc(G) = r by Corollary
2.2.

It is straightforward to verify that G is Kn-minor free.
Finally we assume that the Farey sequence of r has length 2, and that the

alpha sequence is (α1, 2). Suppose the Farey sequence of r is (p0/q0, p1/q1, p2/q2).
Then p0 = n− 2, q0 = 1, p1 = (n− 2)α1 + 1, q1 = α1, p2 = (2α1− 1)(n− 2) + 2
and q2 = 2α1 − 1.

We construct the graph G as follows:
First let H1 be the (n − 3)rd power of a path with n − 1 vertices (or

equivalently H1 = Kn−1 − e, where e is an edge of Kn−1). Let F1 be the
(n − 3)rd power of a path of length (α1 − 1)(n − 2). Both H1 and F1 are
considered as ordered graphs as before. Then we take two copies of F1 and
one copy of H1 and hook H1 to the first copy of F1 by type 2 hook, and
hook H1 to the second copy of F1 by type 1 hook. (Note that we should take
m = n− 2 in the definition of hooks.) Finally we add one more vertex u, and
connect u to the first n − 3 vertices of the first copy of F1, and to the last
vertex of the second copy of F1.
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Figure 2 below shows the graph G, in the case that n = 6 and r = 14/3
(hence the alpha sequence is (2, 2)).

It is straightforward to verify that |F1| + |H1| = p1 and |G| = p2. With
the same argument as in Section 2.3, we can prove that χc(G) = r, by first
proving that for i = 1, 2, · · · , α2−1, the subgraph induced by the union of the
first copy of F1 and the first copy of H1, as well the subgraph induced by the
union of the first copy of H1 and the second copy of F1 has circular chromatic
number p1/q1. Moreover, for any (p1, q1)-colouring of G− u, the first copy of
F1 and the second
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Figure 2.

copy of F1 are coloured the same way. This means that such a colouring cannot
be extended to a (p1, q1)-colouring of G, and hence χc(G) > p1/q1. It is easy
to produce a (p2, q2)-colouring of G (cf. Lemma 2.7), hence χc(G) = p2/q2

(because any fraction strictly between p1/q1 and p2/q2 has a numerator greater
than p2). We shall omit the details, and refer readers to the proof of Lemma
2.7 in Section 2.3.

Now we shall show that G is Kn-minor free. Suppose the vertices of the
jth copy of F1 is xj

1, x
j
2, · · · , xj

s, for j = 1, 2, and that the vertices of H1 is
y1, y2, · · · , yt. Let G′ be the graph obtained from G by adding the following
edges:

uy1, x
1
1y1, ytx

2
s, y1yt.

Then each of the following sets is a cutset of G′ which induces a complete
subgraph:

{y1, yt} ,
{
u, x1

1, y1

}
,
{
yt, x

2
s

}
.

By applying Lemma 2.2, it is now straightforward to show that G′ does
not contain Kn as a minor. Hence G is Kn-minor free. This completes the
proof of Theorem 1.3.

Remark. Very recently, Liaw, Pan and Zhu [6] have proved that for n ≥ 5,
any rational number between n−2 and n−1 is the circular chromatic number
of a Kn-minor free graph. Pan and Zhu [9] have proved that any rational
number between 2 and 8/3 is the circular chromatic number of a K4-minor
free graph.
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