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ON THE CONVERGENCE OF SUPERPOSITIONS OF
POINT PROCESSES

Wen-Jang Huang∗ and Jyh-Cherng Su∗

Abstract. In this work, we give conditions for the superposition of
independent point processes to converge to a nonhomogeneous two-
dimensional Poisson process. Using our results, not only that of Grige-
lionis (1963) and Weissman (1975), but also some limiting results related
to thinned point processes can be obtained. Hence this establishes the
connection between thinnings and superpositions of point processes.

1. Introduction

For each n ≥ 1, if Xn1, · · · , Xnkn are independent and identically dis-
tributed (i.i.d.) Bernoulli random variables with P (Xni = 1) = pn = 1 −
P (Xni = 0), where pn → 0 and knpn → λ > 0 as n → ∞, then

∑kn
i=1Xni

converges weakly to Poisson with parameter λ. This is known as Poisson con-
vergence theorem. There have been many attempts to generalize the above
result in different directions. Among others, the convergence of superpositions
and thinnings of point processes are two that have been investigated by many
authors, where instead of converging to a single random variable, the limits
are one-dimensional point processes.

About the superpositions of point processes, a famous result is given as
follows. Let Nk1, Nk2, · · ·, Nklk , k ≥ 1, be a double array of point processes
and let Nk be the superposition Nk1 + · · · + Nklk . Grigelionis (1963) gave
necessary and sufficient conditions for Nk to converge weakly to a (possibly
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nonhomogeneous) Poisson process. Next, an interesting result by Isham (1980)
concerning the thinning of point processes is stated below. Assume a point
process N is thinned by a stationary k-dependent Markov Bernoulli sequence
{χpi, i ≥ 1} with P (χpi = 1) = p = 1 − P (χpi = 0), 0 < p < 1, and then is
rescaled by the constant factor of p. Isham (1980) proved that the thinned-
rescaled process Np(t) =

∑N(t/p)
i=1 χpi, t ≥ 0, converges weakly to a compound

Poisson process as p tends to 0. Note that Np(t) can be viewed as a random
sum of Bernoulli random variables. Motivated by Isham (1980), Su and Huang
(1995) considered a model which allows {χpi, i ≥ 1} to be a fairly arbitrary
k-dependent Markov chain with general state space (hence the concept of
thinning has been dropped). They also indicated that some known results in
the literature about Poisson convergence can be expressed as special cases of
their theorems. On the other hand, Weissman (1975) studied the multivariate
extremal processes generated by independent but nonidentically distributed
random variables. He proved that the limiting process can be represented in
terms of a two-dimensional nonhomogeneous Poisson process. This extends
further the classical Poisson convergence theorem such that the limit becomes
a two-dimensional point process.

Inspired by Weissman (1975), we will prove in this paper that under certain
assumptions, the random sum of point processes will converge weakly to a
two-dimensional compound Poisson process. Using it, not only the results
in Grigelionis (1963) and Weissman (1975), but also some limiting results
related to thinned point processes can be obtained. Hence this establishes the
connection between thinnings and superpositions of point processes, although
they seem to be two different operations.

2. The Results

Before proving the main theorem, we prove the following simple yet useful
lemma.

Lemma 1. Let pni ≥ 0, ∀n ≥ 1, i ≥ 1, and h1, h2 be two nonnegative
functions defined on [0,∞). Assume

(∗) for any u < t < v, as n becomes large enough,

h1(nu) ≤ h2(nt) ≤ h1(nv).

Also assume

lim
n→∞

[h1(nt)]∑
i=1

pni = a(t), t ≥ 0,(1)
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where a is a continuous and nondecreasing function with a(0) = 0 and [x]
denotes the integral part of x. Then

lim
n→∞

[h2(nt)]∑
i=1

pni = a(t), t ≥ 0.(2)

Proof. Since a is continuous, for every t > 0 and ε > 0, there exist
t1, t2, t2 < t < t1, such that

a(t)− ε

2
< a(t2) ≤ a(t1) < a(t) +

ε

2
.(3)

Using (1), (3) and condition (∗), we have for sufficiently large n,

a(t)− ε < a(t2)− ε

2
≤

[h1(nt2)]∑
i=1

pni

≤
[h2(nt)]∑
i=1

pni

≤
[h1(nt1)]∑
i=1

pni ≤ a(t1) +
ε

2
< a(t) + ε.

Thus (2) follows.

It is easy to see that if for some b, c > 0, h1(t) = btc + o1(tc) and h2(t) =
btc + o2(tc) as t → ∞, where both o1 and o2 are the usual little-oh notation,
then the condition (∗) holds. The following corollary is immediate.

Corollary 1. Let {N(t), t ≥ 0} be an orderly point process (i.e. for ∀t > 0,
P (N([t, t + δ)) > 1) = o(δ) as δ → 0), h1(t) = btc + o(tc) as t → ∞, where
b, c > 0, such that (1) holds, where {pni} and a are defined as in Lemma 1. If
N(t)/btc → 1, a.s., as t→∞, then limn→∞

∑N(nt)
i=1 pni = a(t), a.s., ∀t ≥ 0.

We now give the definition of compound Poisson process.

Definition 1. Let µ be a non-atomic measure in Rn, N be a point process
defined in Rn. Assume for any pairwise disjoint Borel sets A1, A2, · · · , Am in
Rn, N(A1), N(A2), · · · , N(Am) are independent, such that

N(Ai)
d=
Z(Ai)∑
j=1

Xj, i = 1, · · · ,m,
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where Z(Ai) is a Poisson random variable with parameter µ(Ai), and {Xj, j ≥
1} are i.i.d. random variables with P (Xj = k) = pk, where

∑∞
k=1 pk = 1. Then

N is said to be an (n-dimensional) compound Poisson process with parameter
measure µ and compounding distribution {pk, k ≥ 1}.

Now for each n ≥ 1 and i ≥ 1, let Xnij, j = 0,±1,±2, · · ·, be i.i.d. random
variables with P (Xnij = l) = pnil, where

∑∞
l=1 pnil = 1. Next, for each n ≥ 1,

let {Ani, i ≥ 1} be a sequence of independent orderly point processes each with
index set R and independent of the random variables {Xnij}. Let Ani(x) =
Ani((0, x]), if x ≥ 0; = −Ani((x, 0]), if x < 0. Also for each n ≥ 1 and i ≥ 1,
define the point process Nni by

Nni((x, x′]) =
Ani(x′)∑

j=Ani(x)+1

Xnij, x < x′.(4)

Finally, let M ≡ {M(t), t ≥ 0} be an orderly point process with M(0) = 0,
defined on some probability space {Ω,F ,P} and independent of everything
else. Now we define the two-dimensional point process Nn by

Nn((0, t]× (x, x′]) =
M(nt)∑
i=1

Nni((x, x′]), t > 0, x < x′.(5)

We have a generalization of Grigelionis (1963).

Theorem 1. Assume there exists a function f(t) = btc+o(tc), as t→∞,
where b, c > 0, such that for any t > 0 and x < x′,

( i ) lim
n→∞

max
1≤i≤[f(nt)]

P (Ani((x, x′]) ≥ 1) = 0,

(ii) lim
n→∞

∑[f(nt)]
i=1 P (Ani((x, x′]) ≥ 2) = 0, and

(iii) lim
n→∞

∑[f(nt)]
i=1 pnilP (Ani((x, x′]) = 1) = plµ((0, t] × (x, x′]), ∀l ≥ 1, where

pl ≥ 0,
∑∞
l=1 pl = 1 and µ is a non-atomic measure defined in (0,∞) ×

(−∞,∞).

If

M(t)/tc → λ, a.s., as t→∞,(6)

then Nn converges weakly to a compound Poisson process with parameter mea-
sure µ1 and compounding distribution {pl, l ≥ 1}, where µ1 satisfies

µ1((0, t]× (x, x′]) = µ((0, (λ/b)
1
c t]× (x, x′]), ∀t > 0, x < x′.
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Proof. For k = 1, 2, · · · , r, m = 1, 2, · · · , s, ukm > 0, and 0 ≤ t0 < t1 <
· · · < tr, x0 < x1 < · · · < xs,

E(exp{−
r∑

k=1

s∑
m=1

ukmNn((tk−1, tk]× (xm−1, xm])})

= E(E(exp{−
r∑

k=1

s∑
m=1

ukm

M(ntk)∑
i=M(ntk−1)+1

Nni((xm−1, xm])}

|M(ntk), k = 1, 2, · · · , r))

= E(
r∏

k=1

M(ntk)∏
i=M(ntk−1)+1

E(exp{−
s∑

m=1

ukmNni((xm−1, xm])}).

(7)

If we can show that

lim
n→∞

M(ntk)∏
i=M(ntk−1)+1

E(exp{−
s∑

m=1

ukmNni((xm−1, xm])})

= exp{−
s∑

m=1

µ1((tk−1, tk]× (xm−1, xm])
∞∑
l=1

pl(1− e−lukm)}, a.s.,

(8)

then, by the Dominated Convergence Theorem,

lim
n→∞

E(exp{−
r∑

k=1

s∑
m=1

ukmNn((tk−1, tk]× (xm−1, xm])})

= exp{−
r∑

k=1

s∑
m=1

µ1((tk−1, tk]× (xm−1, xm])
∞∑
l=1

pl(1− e−lukm)}

=
r∏

k=1

s∏
m=1

lim
n→∞

E(exp{−ukmNn((tk−1, tk]× (xm−1, xm])}).

(9)

Thus Nn((tk−1, tk] × (xm−1, xm]) converges weakly to a compound Poisson
random variable with parameter µ1((tk−1, tk]× (xm−1, xm]) and compounding
distribution {pl, l ≥ 1}, and the random variables Nn((tk−1, tk]× (xm−1, xm]),
k = 1, 2, · · · , r, m = 1, 2, · · · , s, are asymptotically independent as n → ∞.
Hence the conclusion of the theorem follows.

Now, we begin to prove (8). First for each vector X = (x0, x1, · · · , xs)′, we
denote the random vectors Nni(X ), Ani(X ), n, i ≥ 1, as

Nni(X ) = (Nni((x0, x1]), Nni((x1, x2]), · · · , Nni((xs−1, xs]))′,

Ani(X ) = (Ani((x0, x1]), Ani((x1, x2]), · · · , Ani((xs−1, xs]))′,
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and for k = 1, · · · , r, denote

Uk = (uk1, uk2, · · · , uks)′.
Then the general term of the product on the left side of (8) becomes

E(exp{−
s∑

m=1

ukmNni((xm−1, xm])})

= E(exp{−U ′kNni(X )})

= P (Nni(X ) = (0, 0, · · · , 0)′) +
∑

V 6=(0,0,···,0)′
e−U

′
kV P (Nni(X ) = V )

= 1−
∑

V 6=(0,0,···,0)′
(1− e−U

′
kV )P (Nni(X ) = V )

= 1− θni,

(10)

where θni =
∑
V 6=(0,0,···,0)′(1− e−U

′
kV )P (Nni(X ) = V ). From (6) we have

M(nt)
b(n(λ/b) 1

c t)c
−→ 1, a.s., as t→∞.(11)

Since
0 ≤ θni ≤

∑
V 6=(0,0,···,0)′

P (Nni(X ) = V )

= 1− P (Nni(X ) = (0, 0, · · · , 0)′)

= 1− P (Ani(X ) = (0, 0, · · · , 0)′)

= P (Ani((x0, xs]) ≥ 1),

(12)

by condition (i), we obtain

lim
n→∞

max
M(ntk−1)<i≤M(ntk)

θni = 0, a.s., ∀k = 1, 2, · · · , r.(13)

It also can be shown that
s∑

m=1

∞∑
l=1

(1− e−lukm)P (XniAni(xm) = l, Ani((xm−1, xm]) = 1,

Ani((xv−1, xv]) = 0, ∀1 ≤ v ≤ s, v 6= m)

≤
s∑

m=1

∞∑
l=1

(1− e−lukm)P (Nni((xm−1, xm]) = l, Nni((xv−1, xv]) = 0,

∀1 ≤ v ≤ s, v 6= m) ≤ θni

≤
s∑

m=1

∞∑
l=1

(1− e−lukm)P (XniAni(xm) = l, Ani((xm−1, xm]) = 1,

Ani((xv−1, xv]) = 0, ∀1 ≤ v ≤ s, v 6= m) + P (Ani((x0, xs]) ≥ 2).

(14)
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In the following we will use the squeezing principle to find the limit of∑M(tk)
i=M(tk−1)+1 θni. First by condition (ii) and Corollary 1, we have

lim
n→∞

M(ntk)∑
i=M(ntk−1)+1

P (Ani((x0, xs]) ≥ 2) = 0, a.s.(15)

Also

P (XniAni(xm) = l, Ani((xm−1, xm]) = 1, Ani((xv−1, xv]) = 0,

∀1 ≤ v ≤ s, v 6= m)

= pnilP (Ani((xm−1, xm]) = 1, Ani((xv−1, xv]) = 0,

∀1 ≤ v ≤ s, v 6= m).

(16)

Hence it is equivalent to finding the limit of

M(ntk)∑
i=M(ntk−1)+1

s∑
m=1

∞∑
l=1

(1− e−lukm)pnilP (Ani((xm−1, xm]) = 1,

Ani((xv−1, xv]) = 0, ∀1 ≤ v ≤ s, v 6= m).

The following inequality is obvious:

P (Ani((xm−1, xm]) = 1)− P (Ani((x0, xs]) ≥ 2)

≤ P (Ani((xm−1, xm]) = 1, Ani((xv−1, xv]) = 0, ∀1 ≤ v ≤ s, v 6= m)

≤ P (Ani((xm−1, xm]) = 1).

(17)

Now condition (ii) implies

∣∣∣∣∣∣
M(ntk)∑

i=M(ntk−1)+1

s∑
m=1

∞∑
l=1

(1− e−lukm)pnilP (Ani((x0, xs]) ≥ 2)

∣∣∣∣∣∣
≤

M(ntk)∑
i=M(ntk−1)+1

s∑
m=1

∞∑
l=1

pnilP (Ani((x0, xs]) ≥ 2)

= s
M(ntk)∑

i=M(ntk−1)+1

P (Ani((x0, xs]) ≥ 2)→ 0, a.s., as n→∞,

(18)
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and condition (iii) implies

lim
n→∞

M(ntk)∑
i=M(ntk−1)+1

s∑
m=1

∞∑
l=1

(1− e−lukm)pnilP (Ani((xm−1, xm]) = 1)

=
s∑

m=1

∞∑
l=1

(1− e−lukm) lim
n→∞

M(ntk)∑
i=M(ntk−1)+1

pnilP (Ani((xm−1, xm]) = 1)

=
s∑

m=1

∞∑
l=1

(1− e−lukm)plµ(((λ/b)
1
c tk−1, (λ/b)

1
c tk]× (xm−1, xm])

=
s∑

m=1

µ1((tk−1, tk]× (xm−1, xm])
∞∑
l=1

pl(1− e−lukm), a.s.

(19)

In view of (17)-(19), it follows that

lim
n→∞

M(ntk)∑
i=M(ntk−1)+1

θni

=
s∑

m=1

µ1((tk−1, tk]× (xm−1, xm])
∞∑
l=1

pl(1− e−lukm), a.s.

(20)

Finally, (8) follows from (10), (13) and (20). This completes the proof of this
theorem.

In the above theorem, by letting t = 1 in (5), under weaker conditions,
the one-dimensional point process Zn, where Zn((x, x′]) =

∑M(n)
i=1 Nni((x, x′]),

x < x′, converges weakly to a one-dimensional compound Poisson process.
The result is given below.

Corollary 2. Let {kn, n ≥ 1} be a sequence of integers with kn → ∞ as
n→∞. Assume for any x < x′,

( i ) lim
n→∞

max
1≤i≤kn

P (Ani((x, x′]) ≥ 1) = 0,

(ii) lim
n→∞

∑kn
i=1 P (Ani((x, x′]) ≥ 2) = 0, and

(iii) lim
n→∞

∑kn
i=1 pnilP (Ani((x, x′]) = 1) = plΛ((x, x′]), ∀l ≥ 1, where pl ≥ 0,∑∞

l=1 pl = 1, and Λ is a non-atomic measure in R.

If

M(n)/kn → 1, a.s., as n→∞,(21)
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then Zn converges weakly to a compound Poisson process with parameter mea-
sure Λ and compounding distribution {pl, l ≥ 1}.

On the other hand, in Theorem 1 assume the index set of i is replaced
by {0,±1, · · ·}, and the index set of M is replaced by R. By letting M(x) =
M((0, x]), if x ≥ 0, = −M((x, 0]), if x < 0, the point process Nn can be
extended to be defined in the whole plane, namely,

Nn((t, t′]× (x, x′]) =
M(nt′)∑

i=M(nt)+1

Nni((x, x′]), t < t′, x < x′.(22)

Then after a suitable modification, the conclusion of Theorem 1 still holds.
Furthermore, we have the following more general result which allows the point
process Nn to be defined in any region T in R2. The proof is essentially the
same as in Theorem 1, hence is omitted.

Theorem 1′. For a given region T in R2, assume there exists some
function f(t) = b|t|c + o(|t|c) as t → ∞, where b, c > 0, such that for any
(t, t′]× (x, x′] ⊂ T ,

( i ) lim
n→∞

max
[f(nt)]≤i≤[f(nt′)]

P (Ani((x, x′]) ≥ 1) = 0,

(ii) lim
n→∞

∑[f(nt′)]
i=[f(nt)] P (Ani((x, x′]) ≥ 2) = 0, and

(iii) lim
n→∞

∑[f(nt′)]
i=[f(nt)] pnilP (Ani((x, x′]) = 1) = plµ((t, t′]× (x, x′]), ∀l ≥ 1, where

pl ≥ 0,
∑∞
l=1 pl = 1 and µ is a non-atomic measure defined in T .

If

|M(t)|/|t|c → λ, a.s., as |t| → ∞,(23)

then Nn (defined as in (22)) converges weakly to a compound Poisson process
in the region T ′ with parameter measure µ1 and compounding distribution
{pl, l ≥ 1}, where T ′ = {((b/λ) 1

cw, v)|(w, v) ∈ T} and µ1 is a measure in T ′

satisfying

µ1((t, t′]× (x, x′]) = µ(((λ/b)
1
c t, (λ/b)

1
c t′]× (x, x′]), ∀(t, t′]× (x, x′] ⊂ T ′.

3. Examples

Now, we give some examples of the applications of Theorems 1 and 1′.

Example 1. Suppose
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(a) Ani can only have a point at x = 1 with probability θni > 0, ∀n, i ≥ 1;
(b) P (Xnij = l) = pni(l)/θni, ∀n, i, l ≥ 1, j = 0,±1,±2, · · ·, where pni(l) ≥ 0

and
∑∞
l=1 pni(l) = θni.

Assume f(t) = t and

(A) limn→∞max1≤i≤[nt] θni = 0, ∀t > 0,
(B) limn→∞

∑[nt]
i=1 pni(l) = pla(t), ∀l ≥ 1, where pl ≥ 0,

∑∞
l=1 pl = 1 and a is

a continuous and nondecreasing function.

Then it can be seen easily that conditions (i)-(iii) of Theorem 1 hold and

µ((0, t]× (x, x′]) =

{
a(t), if 1 ∈ (x, x′],
0, if 1 /∈ (x, x′].

If the point processM satisfies (6) with c = 1, then from Theorem 1, Nn((0, t]×
(x, x′]) =

∑M(nt)
i=1 Nni((x, x′]) converges weakly to a compound Poisson process

with parameter measure µ1 and compounding distribution {pl, l ≥ 1}, where
µ1((0, t] × (x, x′]) = µ((0, λt] × (x, x′]). Now let (x, x′] be a fixed interval
which contains 1. Then Ñn(t) = Nn((0, t] × (x, x′]) =

∑M(nt)
i=1 Nni((x, x′]) =∑M(nt)

i=1 Yni converges weakly to a compound Poisson process with parameter
measure ã and compounding distribution {pl, l ≥ 1}, where ã(t) = a(λt),
∀t > 0. Note that

Yni = Nni((x, x′]), i ≥ 1,

are independent random variables with P (Yni = l) = pni(l), l ≥ 1, and P (Yni =
0) = 1− θni. Hence we obtain a generalization of Westcott (1976).

Example 2. For each n ≥ 1, let {Xni, i = 1, 2, · · ·} be a sequence of inde-
pendent random variables. Assume there exists a family of distribution func-
tions {Gt, t ≥ 0}, not all identical, such that as n→∞, max{Xn1, · · · , Xn[nt]}
converges weakly to Gt, ∀t > 0. Let T = {(t, x)|t > 0, x > x(t)}, where x(t)
is the left end of the support of Gt. Following from Lemma 1 of Weissman
(1975), the random variables {Xni} are right-negligible as n → ∞, i.e., for
each (t, x) ∈ T ,

lim
n→∞

max
1≤i≤[nt]

P (Xni > x) = 0.(24)

Now let Xnij = 1, ∀n, i, j, f(t) = t, ∀t > 0, and for each n, define Ani,
i = 1, 2, · · ·, to be

Ani(t) =

{
0, if t < Xni,
1, if t ≥ Xni.
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Then it is easy to see that Nni = Ani and the condition (ii) of Theorem 1′

holds. Also for any (t, t′]× (x, x′] ⊂ T , by (24) and

0 ≤ P (Ani((x, x′]) ≥ 1) = P (x < Xni ≤ x′) ≤ P (Xni > x),(25)

the condition (i) of Theorem 1′ follows. As max{Xn1, · · · , Xn[nt]} converges
weakly to Gt, ∀t > 0,

[nt]∏
i=1

(1− (1− Fni(x))) =
[nt]∏
i=1

Fni(x)→ Gt(x),(26)

where Fni is the distribution function of Xni. From (24) and (26), we have

[nt]∑
i=1

(1− Fni(x))→ − logGt(x).(27)

By (27), it follows that

lim
n→∞

[nt′]∑
i=[nt]+1

P (Ani((x, x′]) = 1)

= lim
n→∞

[nt′]∑
i=[nt]+1

((1− Fni(x))− (1− Fni(x′)))

= − log
Gt′(x)Gt(x′)
Gt(x)Gt′(x′)

,

so the condition (iii) of Theorem 1′ holds with

µ((t, t′]× (x, x′]) = − log
Gt′(x)Gt(x′)
Gt(x)Gt′(x′)

.

Now if M(t)/t → λ, a.s., as t → ∞, then Nn converges weakly to a Poisson
process in T ′ with parameter measure µ, where T ′ = {(w/λ, v)|(w, v) ∈ T}
and Nn((t, t′]×(x, x′]) =

∑M(nt′)
M(nt)+1Nni((x, x′]), ∀(t, t′]×(x, x′] ⊂ T ′. Note that

if we choose M(t) = [t] and define In(t, x) = #{Xni > x, i = 1, 2, · · · , [nt]},
∀(t, x) ∈ T , then T ′ = T ,

In(t, x) =
[nt]∑
i=1

Nni((x,∞)) = Nn((0, t]× (x,∞)),

and Weissman’s conclusion follows immediately.
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Example 3. In Bai and Huang (1995), they considered the regression
model:

Y = θ(X) + ε,

where θ is a continuous real function defined on [0, 1], with a unique global
maximum at x0 ∈ [0, 1]. The objective is to determine x0 based on n obser-
vations (X1, Y1), · · ·, (Xn, Yn) with Yi = θ(Xi) + εi. Here {εi} is a sequence
of i.i.d. random variables, and {Xi} are uniformly chosen from the interval
[0, 1] (nonrandom case) or are i.i.d. and uniformly distributed over [0, 1]. Let
Y(1) ≤ · · · ≤ Y(n) be the order statistics of {Yi} and Y(i) = Yli , i = 1, · · · , n.
Now x0 is estimated by x̂0(r) =

∑r−1
i=0 Xln−i/r, the average of those Xi’s corre-

sponding to the r largest order statistics Y(i)’s. Under the assumption that ε
belongs to the class of domain of attraction D(g) with normalizing constants
{An}, {Bn}, they proved that x̂0(r) is consistent to x0 if and only if Bn → 0 as
n → ∞. Their proof is based on Weissman (1975), namely the limiting joint
distributions of B−1

n (ε(n)−An), · · · , B−1
n (ε(n−k)−An)) can be derived through

Poisson process.
Now by Corollary 2, it is not difficult to extend Bai and Huang’s result to

the situation that {εi} are nonidentically distributed, and the sample size n is
replaced by M(n), where {M(n), n ≥ 1} is a suitable point process. Under this
setup, some other interesting problems such as the waiting time of obtaining
enough sample sizes for the estimator to be more useful can be discussed.

4. Conclusion

In order to have a Poisson distribution as the limit of the sum of a se-
quence of random variables, the independence of those random variables are
not necessary. For example, as stated in Section 1, Su and Huang (1995) con-
sidered the model where the random variables {χpi, i ≥ 1} are assumed to be
Markovian. It can be seen that our theorems hold under the conditions that
both the process {Ani} and the random variables {Xnij} are independent. So
it is worth investigating how to relax the independence assumption so that
some convergence results still hold.
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