ON A SUFFICIENT CONDITION AND AN ANGULAR ESTIMATION FOR Φ -LIKE FUNCTIONS

Nak Eun Cho and Ji A Kim

Abstract. The object of the present paper is to investigate a sufficient condition and an angular estimation for Φ -like functions. Our result contains the previous results as special cases.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. Then a function $f \in \mathcal{A}$ is called Φ -like in U if

$$\operatorname{Re} \frac{zf'(z)}{\Phi(f(z))} > 0 \quad (z \in U),$$

where $\Phi(w)$ is analytic in f(U), $\Phi(0) = \Phi'(0) - 1 = 0$ and $\Phi(w) \neq 0$ in $f(U) - \{0\}$.

The definition of Φ -like functions was introduced by Brickman [1], and he proved that every Φ -like function is univalent in U. In particular, a classical starlike function is the special case of a Φ -like function with $\Phi(w) = w$.

In this paper, we give a sufficient condition and an angular estimation for Φ -like functions. Also we generalize the results given by Mocanu [2] and Nunokawa [4, 5].

Received February 1, 1997

Communicated by S.-Y. Shaw.

1991 Mathematics Subject Classification: 30C45.

Key words and phrases: Φ -like functions, starlike functions, close-to-convex functions, angular estimation.

2. Main results

In proving our theorems, we need the following lemma due to Nunokawa [3, 4].

Lemma 1. Let p be analytic in U, p(0) = 1 and $p(z) \neq 0$ in U. If there exists a point $z_0 \in U$ such that

$$\left|\arg p(z)\right| < \frac{\pi\delta}{2} \text{ for } |z| < |z_0|$$

and

$$|\arg p(z_0)| = \frac{\pi \delta}{2},$$

where $\delta > 0$, then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\delta k,$$

where

$$k \ge \frac{1}{2} \left(l + \frac{1}{l} \right)$$
 when $\arg p(z_0) = \frac{\pi \delta}{2}$

and

$$k \le -\frac{1}{2}\left(l + \frac{1}{l}\right)$$
 when $\arg p(z_0) = \frac{\pi\delta}{2}$,

and where

$$p(z_0)^{\frac{1}{\delta}} = \pm il \ (l > 0).$$

With the help of Lemma 1, we derive

Theorem 1. Let $a \geq 0$ or $a \leq -2b(b > 0)$. If $f \in \mathcal{A}$ satisfies the condition

(1)
$$a\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\Phi(f(z)))'}{\Phi(f(z))}\right) + b\left(\frac{zf'(z)}{\Phi(f(z))}\right) \neq it \quad (z \in U),$$

where t is a real number with $|t| \ge \sqrt{a(a+2b)}$ and $\Phi(w)$ is analytic in f(U), $\Phi(0) = \Phi'(0) - 1 = 0$ and $\Phi(w) \ne 0$ in $f(U) - \{0\}$, then f(z) is Φ -like in U.

Proof. For the case a=0 it is obvious and so we suppose $a\neq 0$. Let

$$p(z) = \frac{zf'(z)}{\Phi(f(z))},$$

where p(0) = 1. From the assumption (1), we easily have

$$p(z) \neq 0 \quad (z \in U).$$

In fact, if p has a zero of order m at $z = z_1 \in U$, then p can be written as

$$p(z) = (z - z_1)^m q(z) \quad (m \in N = \{1, 2, \dots\}),$$

where q is analytic in U and $q(z_1) \neq 0$. Hence we have

(2)
$$a\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\Phi(f(z)))'}{\Phi(f(z))}\right) + b\left(\frac{zf'(z)}{\Phi(f(z))}\right) = a\frac{zp'(z)}{p(z)} + bp(z)$$
$$= a\frac{mz}{z - z_1} + a\frac{zq'(z)}{q(z)} + b(z - z_1)^m q(z).$$

But the imaginary part of (2) can take any infinite values when z approaches z_1 in a suitable direction. This contradicts (1). Therefore we have $p(z) \neq 0$ ($z \in U$). Therefore, if there exists a point $z_0 \in U$ such that

$$Rep(z) > 0 \text{ for } |z| < |z_0|,$$

$$Rep(z_0) = 0$$
 and $p(z_0) = il \ (l \neq 0)$,

then we have $p(z_0) \neq 0$ $(l \neq 0)$. For the case $a \geq 0$, from Lemma 1 and (2), we have

$$a\frac{z_0p'(z_0)}{p(z_0)} + bp(z_0) = i(ak + bl),$$

and

$$ak + bl \ge \frac{1}{2} \left((a+2b)l + \frac{a}{l} \right) \ge \sqrt{(a+2b)a}$$
 when $l > 0$,

and

$$ak + bl \ge -\frac{1}{2}\left((a+2b)|l| + \frac{a}{|l|}\right) \le -\sqrt{(a+2b)a} \text{ when } l < 0,$$

which contradicts (1). Therefore we have $\operatorname{Re}p(z) > 0$ in U. For the case $a \leq -2b$, applying the same method as the above, we easily have the same conclusion. This completes the proof of our theorem.

Taking $a = \alpha$, b = 1 and $\Phi(w) = w$ in Theorem 1, we have the following result obtained by Nunokawa [6].

Corollary 1. Let $\alpha \geq 0$ or $\alpha \leq -2$. If $f \in \mathcal{A}$ satisfies the condition

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) \neq it \quad (z \in U),$$

where t is a real number and $|t| \ge \sqrt{(\alpha+2)\alpha}$, then f is starlike in U.

Letting a = b = 1 and $\Phi(w) = w$ in Theorem 1, we get the following

Corollary 2. Let $f \in A$ and suppose that there exists a real number R for which

$$\left| \frac{zf^{''}(z)}{f^{'}(z)} - R \right| < \sqrt{(R+1)^2 + 3} \quad (z \in U).$$

Then f is starlike in U.

Remark. Corollary 2 is the corresponding result of Nunokawa [5] and an extension of a result by Mocanu [2].

Taking $\Phi(f(z)) = z$ in Theorem 1, we have

Corollary 3. Let $a \ge 0$ or $a \le -2b$ (b > 0). If $f \in \mathcal{A}$ and satisfies the condition

$$a\frac{zf''(z)}{f'(z)} + bf'(z) \neq it \ (z \in U),$$

where t is a real number given by Theorem 1, then $\operatorname{Ref}'(z) > 0$ (or f is close-to-convex) in U.

Next, we prove

Theorem 2. Let a > 0 and b > 0. If $f \in A$ satisfies the condition

$$\left| \arg \left\{ a \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\Phi(f(z)))'}{\Phi(f(z))} \right) + b \left(\frac{zf'(z)}{\Phi(f(z))} \right) \right\} \right| < \frac{\pi\delta}{2} \quad (0 < \delta \le 1),$$

where $\Phi(w)$ is analytic in f(U), $\Phi(0) = \Phi'(0) - 1 = 0$ and $\Phi(w) \neq 0$ in $f(U) - \{0\}$, then

$$\left| \arg \left(\frac{zf'(z)}{\Phi(f(z))} \right) \right| < \frac{\pi\eta}{2},$$

where η (0 < η < 1) is the solution of the equation

(3)
$$\delta = \eta + \frac{2}{\pi} \tan^{-1} \left(\frac{a(\frac{\eta}{1-\eta})(\frac{1-\eta}{1+\eta})^{\frac{1+\eta}{2}} \sin \frac{\pi(1-\eta)}{2}}{b + a(\frac{\eta}{1-\eta})(\frac{1-\eta}{1+\eta})^{\frac{1+\eta}{2}} \cos \frac{\pi(1-\eta)}{2}} \right).$$

Proof. Let

$$p(z) = \frac{zf'(z)}{\Phi(f(z))}.$$

By the similar method of the proof in Theorem 1, we can see that $p(z) \neq 0$ in U. If there exists a point $z_0 \in U$ such that

$$\left|\arg p(z)\right| < \frac{\pi\eta}{2} \text{ for } |z| < |z_0|$$

and

$$|\arg p(z_0)| = \frac{\pi\eta}{2},$$

then, from Lemma 1, we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\eta k,$$

where

$$k \ge \frac{1}{2} \left(l + \frac{1}{l} \right)$$
 when arg $p(z_0) = \frac{\pi \eta}{2}$

and

$$k \le -\frac{1}{2}\left(l + \frac{1}{l}\right)$$
 when arg $p(z_0) = -\frac{\pi\eta}{2}$,

and where

$$p(z_0)^{\frac{1}{\eta}} = \pm il \ (l > 0).$$

At first, suppose that $p(z_0)^{\frac{1}{\eta}} = il \ (l > 0)$. Then we have

$$a\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0(\Phi(f(z_0)))'}{\Phi(f(z_0))}\right) + b\left(\frac{z_0 f'(z_0)}{\Phi(f(z_0))}\right)$$

$$= bp(z_0) + a\frac{z_0 p'(z_0)}{p(z_0)} = p(z_0)\left(b + a\frac{z_0 p'(z_0)}{(p(z_0))^2}\right)$$

$$= (il)^{\eta}\left(b + i\eta k\frac{a}{(il)^{\eta}}\right) = l^{\eta}e^{i\frac{\pi\eta}{2}}\left(b + e^{i\frac{\pi(1-\eta)}{2}}\eta k\frac{a}{l^{\eta}}\right),$$

where

$$k \ge \frac{1}{2} \left(l + \frac{1}{l} \right).$$

Then we have

$$\eta k \frac{a}{l^{\eta}} \ge \frac{\eta a}{2} (l^{1-\eta} + l^{-1-\eta}).$$

Putting

$$g(l) = \frac{1}{2}(l^{1-\eta} + l^{-1-\eta}) \quad (l > 0),$$

we can show easily that g(l) takes the minimum value at $l = \sqrt{(1+\eta)/(1-\eta)}$. Therefore we have

$$\arg \left\{ a \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0(\Phi(f(z_0)))'}{\Phi(f(z_0))} \right) + b \left(\frac{z_0 f'(z_0)}{\Phi(f(z_0))} \right) \right\}$$

$$= \arg p(z_0) + \arg \left(b + a \frac{z_0 p'(z_0)}{(p(z_0))^2} \right)$$

$$= \frac{\pi \eta}{2} + \arg \left(b + e^{i\frac{\pi(1-\eta)}{2}} \eta k \frac{a}{l^{\eta}} \right)$$

$$\geq \frac{\pi \eta}{2} + \tan^{-1} \left(\frac{a(\frac{\eta}{1-\eta})(\frac{1-\eta}{1+\eta})^{\frac{1+\eta}{2}} \sin \frac{\pi(1-\eta)}{2}}{b + a(\frac{\eta}{1-\eta})(\frac{1-\eta}{1+\eta})^{\frac{1+\eta}{2}} \cos \frac{\pi(1-\eta)}{2}} \right).$$

This contradicts the assumption of the theorem.

For the case $p(z_0)^{\frac{1}{\eta}} = -il (l > 0)$, applying the same method as the above, we have

$$\arg \left\{ a \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 (\Phi(f(z_0)))'}{\Phi(f(z_0))} \right) + b \left(\frac{z_0 f'(z_0)}{\Phi(f(z_0))} \right) \right\}$$

$$\leq -\frac{\pi \eta}{2} - \tan^{-1} \left(\frac{a(\frac{\eta}{1-\eta})(\frac{1-\eta}{1+\eta})^{\frac{1+\eta}{2}} \sin \frac{\pi(1-\eta)}{2}}{b + a(\frac{\eta}{1-\eta})(\frac{1-\eta}{1+\eta})^{\frac{1+\eta}{2}} \cos \frac{\pi(1-\eta)}{2}} \right),$$

which contradicts the assumption. Therefore we complete the proof of our theorem. \blacksquare

Putting a=b=1 and $\Phi(f)=f$ in Theorem 2, we have the following result given by Nunokawa [4].

Corollary 4. If $f \in A$ satisfies the condition

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} \right) \right| < \frac{\pi \delta}{2} \quad (0 < \delta \le 1),$$

then

$$\left| \arg \left(\frac{zf''(z)}{f'(z)} \right) \right| < \frac{\pi\eta}{2},$$

where η (0 < η < 1) is the solution of the equation

$$\delta = \eta + \frac{2}{\pi} \tan^{-1} \left(\frac{\left(\frac{\eta}{1-\eta}\right) \left(\frac{1-\eta}{1+\eta}\right)^{\frac{1+\eta}{2}} \sin \frac{\pi(1-\eta)}{2}}{1 + \left(\frac{\eta}{1-\eta}\right) \left(\frac{1-\eta}{1+\eta}\right)^{\frac{1+\eta}{2}} \cos \frac{\pi(1-\eta)}{2}} \right).$$

ACKNOWLEDGEMENTS

This work was supported in part by Non-Directed Research Fund, Korea Research Foundation, 1996 and the Basic Science Research Institute Program, Ministry of Education 1996, Project No. BSRI-96-1440.

References

- 1. L. Brickman, Φ -like analytic functions I, Bull. Amer. Math. Soc. **79** (1973), 555-558.
- 2. P. T. Mocanu, Some integral operators and starlike functions, *Rev. Roumaine Math. Pures Appl.* **31** (1986), 231-235.
- 3. M. Nunokawa, On properties of non-Carathéodory functions, *Proc. Japan Acad. Ser. A. Math. Sci.* **68** (1992), 152-153.
- 4. M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, *Proc. Japan Acad. Ser. A. Math. Sci.* **68** (1993), 234-237.
- 5. M. Nunokawa, On a sufficient condition for multivalently starlikeness, *Tsukuba J. Math.* **18** (1994), 131-134.
- 6. M. Nunokawa, On α -starlike functions, Bull. Inst. Math. Acad. Sinica **22** (1994), 319-322.

Department of Applied Mathematics, Pukyong National University Pusan 608-737, Korea