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A SECTION THEOREM IN INTERVAL SPACE
WITH APPLICATIONS

Yuguang Xu and Xian Wu

Abstract. In this paper, we prove a section theorem of Ky Fan type in
interval space, and then, as its applications, some minimax inequalities
and a fixed point theorem are obtained.

1. PRELIMINARIES

We recall some elementary concepts on an interval space (see [1] and [5]):

1) By an interval space we mean a topological space X endowed with
a mapping [, -] : X x X — {connected subsets of X} such that z;,zy €
(X1, 2] = [x9,x1] for all z1, 2, € X.

2) A subset K of an interval space X is convex if for every xy, x5, € K we
have [z, 25] C K.

Obviously, in any interval space X, convex sets are connected or empty.
The intersection of any family of convex sets is convex.

3) A function f mapping an interval space X into R is quasiconver (or qua-
siconcave) if f(z) < max{f(z1), f(xz2)} (or f(z) > min{f(z1), f(z2)}) when-
ever x1,x2 € X and z € [r1,x2]. Thus f is quasiconvex (or quasiconcave) if
and only if the sets {z|f(z) <~} (or {z|f(x) > ~}) are convex for all v € R.

2. A SEcTION THEOREM OF KY FAN TYPE

In order to obtain our main result, we state a lemma which was proved in

[1].

Lemma 1. Let Y be an interval space, X a topological space and K be a
mapping of Y into the family of compact subsets of X, such that
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(1.1) K(y) #0 forallyeY;
(1.2) K(z) C K(y1) U K(y2) whenever z € [y1,ys] and y1,y2 € Y;

(1.3) ﬁ K (y;) is connected or empty for everyyy,ya, -+, yn € Y(n =1,2,---);
k=1
(1.4) = € K(y) whenever y = lier%ya,x = ligixa and z, € K(y,) for all

aeA.
Then we have () K(y) # 0.

yey

In the following, we give our main result.

Theorem 2. Let X be a compact topological space, Y be an interval space
and A C X XY such that

(2.1) Ais open in X XY
(2.2) Alz] ={y € Y|(z,y) € A} is convex and nonempty for each x € X;

(2.3) ﬁ (X\A[y;]) is connected for every finite subset {yi, - -, yo} CY,
i=1
where Aly;] ={z € X |(r,y;) € A}.

Then there exists a point yo € Y such that X x {yo} C A

Proof: 1f the conclusion of the theorem does not hold, then for each y € Y,
there exists a point zy € X such that (xg, y) & A. Let

K(y) ={z e X|(z,y) ¢ A}.

Then, K : Y — 2% is a multivalued mapping with nonempty compact values
because K (y) = X\A[y|, A is open and X is compact. Moreover,

Graph(K)={(y,2) € Y x X |z € K(y)}
= {(y,x) €Y XX|(x7y) ¢ A}

is closed since A is open. Hence, the condition (1.4) of Lemma 1 is satisfied.
If there exist two points y7, y3 € Y and z* € [y;, y5] such that

K(z") ¢ K(y7) U K(y3),

then there exists an z* € K(z*), but z* ¢ K(y;) U K(y;). On the one hand,
by z* € K(z*), we have z* ¢ A[z*], because of

e K (a")={yeY |z ck(y)}={yeY|(="y) ¢ A}
={yeYly g Alz*]} = Y\A[z*].
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On the other hand, by * & K(y;)UK (y5), we have 2* ¢ K(y;) (j = 1,2), and
so (z*,y;) € A (j =1,2), ie, y; € Alz*] (j = 1,2). Hence, [y}, y5] C Alz*]
implies z* € A[z*] by (2.2). It is a contradiction. Therefore, the condition
(1.2) of Lemma 1 holds.

Summing up the above arguments, adding (2.3) in, we know that all the
conditions of Lemma 1 are fulfilled. By virtue of Lemma 1, we have that
N K(y) # 0. It follows that there exists T € K(y) for all y € Y. It implies
yey

y ¢ Alz] for all y € Y, i.e., A[T] = ¢. This contradicts the condition (2.2).
Therefore, Theorem 2 is true. [

Remark. Theorem 2 is a new section theorem of Ky Fan type. Its con-
ditions differ from other section theorems (c.f. [3], [4] and [6]).

3. SOME APPLICATIONS
3-1. Applications to Minimax Problems.
Now, we apply Theorem 2 to minimax problems.

Theorem 3. (Ky Fan Minimax Principle). Let X be a compact interval
space and f : X — R = RU{xo00} (f # +00) be a function. Let p : X xX — R
be a function with ¢(x,x) > 0 for each x € X. If the following conditions are
satisfied:

(3.1) for each x € X, f(y) + p(x,y) is quasiconvex in y;

(3.2) for eachy € X, f(z) — ¢(x,y) is quasiconvex in x;

(3.3) the set {(z,y) € X x X | f(y) + ¢(x,y) > f(x)} is closed,
then there exists an T € X such that

fy) + (@, y) > f(7)

forally € X.
Proof: Put

A={(z,y) € X x X | f(y) +o(z,y) < f(2)}.

Then A is open by (3.3). If the conclusion of theorem is false, then, for each
x € X, there exists a ¥ € X such that f(y) + ¢(z,7) < f(z). It implies
y € Alz], i.e., A[z] # ¢. By the conditions (3.1) and (3.2), we have that

Alz]={y € X|(x,y) € A}
={y e X[ f(y) +¢(z,y) < f(z)}
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is convex and
X\Alys] ={z € X[ f(z) — o(z,4:) < f(v:)}

is convex, too. Hence, (| (X\A[y;]) is connected for every {y;, ---, y,} C X.
i=1

By virtue of Theorem 2, there exists a 7 € X such that X x {g} C A. It
implies f(7) + ¢(x,7) < f(x) for all z € X. Hence, ¢(7,7) < 0. It contradicts
that ¢(z, ) > 0 for all z € X. Therefore, Theorem 3 is true. [ |

Theorem 4. (Ky Fan Minimax Inequality) Let X be a compact interval
space, and ¢ : X X X — R be an upper semicontinuous function such that

(4.1) for each x € X, p(x,y) is quasiconvez in y;

(4.2) for each y € X, p(x,y) is quasiconcave in x;

(4.3) for each x € X, there exists a point y' € X such that o(z,y’) <
sup ey ),

then there exists a § € X such that

sup o(z, 7) < sup oy, ).
rxeX

Proof. We may assume that v = sup oy, y) < +oo. Let A = {(z,y) €

X xX|¢(x,y) <~} Then A is open. Foreach:c € X, Alz] ={y € X|(z,y) €
A} ={y € X |p(x,y) < v} is a nonempty convex subset of X by (4.1) and
(4.3). The set

n

AX\ Al = e € X| (. 4) & A}

i=1 i=1
=Wz e X|e(, v) >~}
=1

is connected or empty by (4.2) for each finite subset {y1,---,y,} € X. By
virtue of Theorem 2, there exists a § € X such that X x {g} C A, ie.,
(x,7) € A for all z € X. It follows that ¢(z,7) < v for all x € X. Hence,

sg?(p(x ,7) < sup © (Y, v)-

This completes the proof. [
Theorem 5. (Von Neumann Inequality) Let X be compact topological

space and K be a nonempty compact convexr subset of interval space Y. If
f: X xY — R is an upper semicontinuous function such that



A Section Theorerm with Applications 325

(5.1) for each x € X, f is quasiconvex on Y ;

(5.2) for each y €Y, f is quasiconcave on X,

then

inf sup f(x,y) < mf sup inf f(x,y).
yeK gzex KCY zex yeK

Proof: 1If inf sup inf f(z,y) = 400, then the theorem is obviously true.

So, we can assume that I%Iéf sup mf f(z,y) < 400. And then, we choose a
rex ve

real number ¢ € R such that inf sup inf f(z,y) <t. Let
KCY reX yeK

A={(z,y) € X xY|f(z,y) <t}.

Then A is open because f is upper semicontinuous. For each = € X, the
section Alz] = {y € Y|(z,y) € A} ={y € Y|f(z,y) <t} is convex by (5. 1).

When énfy sup 1nf f(x,y) < t, there exists a nonempty compact convex
zEX YE

set Ky C Y such that sup 1nf f(z,y) < t. And then, for each x € X, there

zeXx YEK

exists a point § € K, such that f(z,y) <t ie., ye Alx]. Therefore, Alz] is
nonempty.
For every finite subset {y1, - -,y,} CY (n = 1,2,---), the set

(X Aly]) = ﬂ{mem v.) ¢ A)

i=1

ﬁ {r e X|f(x,y) >t}

must be connected by (5.2). By virtue of Theorem 2, there exists a point
Yo € K such that X x {yo} C A, ie., f(z,y0) <t for all z € X. Hence,

sup f(z,y0) < t.
rxeX

Obviously, mf sup f(x,y) <t. It turns out that
Yex

inf sup f(z,y) < 1nf sup inf f(z,y). ]
YeY geXx kCY pex yeK

Remark. By an obvious inequality

1nf sup f(x,y) > inf sup inf f(z,y),
Y gex kECY zex yeK
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we have

inf sup f(z,y) = inf sup inf f(z,y).
YeY 1ex kCY pex yeK

If, in addition, Y is compact, then

min max f(z,y) = max min f(z,y).

The above results differ from Theorem 3 in [2], and imply Theorem 4 in [3]
and Theorem 2 in [2].

3-2. Application on Fixed Point Problem.
Next, we apply the result of Theorem 2 to a fixed point problem.

Theorem 6. Let X be a compact interval space, and K : X — 2% be a
multivalued mapping with compact values, such that

(6.1) K has closed graph;
(6.2) X\K( ) is comje:rfor each v € X;

(6.3) ﬂ K '(y;) = ﬂ{l‘ € X |y, € K(x)} is connected or empty for every

ﬁmte subset {yl,---,yn} CX(n=1,2,--);
(6.4) K'Y (z)={z€ X |z e K(2)} #0 for each x € X.
Then K has a fixed point in X.

Proof: Put A={(z,y) €e X xX |y & K(z)}, i.e., A= X x X\ Graph(K).
Hence, A is open by (6.1).

For each z € X, Alz] = {y € X|(z,y) € A} ={y € X|y € K(z)} =
X \ K(x) is convex by (6.2). If there is no fixed point of K in X, then
x ¢ K(x) for every x € X. Consequently, A[x] # 0 for each x € X. For each
finite subset {y1, ---, yn} C X,

ﬂ(X\Ayz ﬂ{wGX\(fc yz)¢A}—ﬂ{x€X!yqu( )}

i=1 i=1 i=1
= ﬁ K
=1
is connected by (6.3).
By virtue of Theorem 2, there exists a point § € X such that X x {7} C A,
i.e., for each x € X, (z,7) € A. Hence, §€ K(x) for all z € X. It follows that

K~'(y) = 0, which contradicts (6.4). The conclusion of the theorem, therefore,
has been proved. n
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