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INTRODUCTION TO SEMILINEAR
ELLIPTIC BOUNDARY VALUE PROBLEMS

Kazuaki Taira

Abstract. This paper provides a careful and accessible exposition of
static bifurcation theory for degenerate boundary value problems for
semilinear second-order elliptic differential operators. The purpose of this
paper is twofold. The first purpose is to prove that the first eigenvalue of
the linearized boundary value problem is simple and its associated eigen-
function is positive. The second purpose is to discuss the changes that
occur in the structure of the solutions as a parameter varies near the first
eigenvalue of the linearized problem.

Introduction

Let D be a bounded domain of Euclidean space RN , with smooth boundary
∂D; its closure D = D ∪ ∂D is an N -dimensional, compact smooth manifold
with boundary. We let

Au(x) = −
N∑
i=1

∂

∂xi

 N∑
j=1

aij(x)
∂u

∂xj
(x)

+ c(x)u(x)

be a second-order, elliptic differential operator with real C∞ coefficients on D
such that:

(1) aij(x) = aji(x), x ∈ D, 1 ≤ i, j ≤ N , and there exists a constant a0 > 0
such that

N∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2, x ∈ D, ξ ∈ RN .
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(2) c(x) ≥ 0 on D.

(I) First we consider the following linear boundary value problem: Given
function f(x) defined in D, find a function u(x) in D such that{

Au = f in D,

Bu = a∂u
∂ν

+ bu = 0 on ∂D.
(0.1)

Here:

(1) a ∈ C∞(∂D) and a(x′) ≥ 0 on ∂D.

(2) b ∈ C∞(∂D) and b(x′) ≥ 0 on ∂D.

(3) ∂/∂ν is the conormal derivative associated with the operator A:

∂

∂ν
=

N∑
i=1

aijnj
∂

∂xi
,

where n = (n1, n2, . . . , nN) is the unit exterior normal to the boundary ∂D
(see Figure 1 below).

It is worth pointing out that, under the condition a(x′) ≥ 0 on ∂D, prob-
lem (0.1) becomes a degenerate boundary value problem from an analytical
point of view. This is due to the fact that the well-known Shapiro-Lopatinskii
complementary condition is violated at the points x′ ∈ ∂D where a(x′) = 0.
More precisely it is easy to see that problem (0.1) is non-degenerate (or co-
ercive) if and only if either a(x′) 6= 0 on ∂D or a(x′) ≡ 0 and b(x′) 6= 0 on
∂D. In particular, if a(x′) ≡ 1 and b(x′) ≡ 0 on ∂D (resp. a(x′) ≡ 0 and
b(x′) ≡ 1 on ∂D), then the boundary condition B is the so-called Neumann
(resp. Dirichlet) condition.

In this paper we consider the boundary value problem (0.1) in the frame-
work of L2 spaces, and prove that its first eigenvalue is positive and simple
with positive eigenfunction in D.

FIG. 1.
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First we state our fundamental hypotheses on the functions a, b and c:
(H.1) a(x′) + b(x′) > 0 on ∂D.
(H.2) c(x) > 0 in D.
We remark that an intuitive meaning of condition (H.1) is that, for the

diffusion process described by problem (0.1), either the reflection phenomenon
or the absorption phenomenon occurs at each point of the boundary ∂D (cf.
[20]).

We associate with problem (0.1) an unbounded linear operator U from the
Hilbert space L2(D) into itself as follows:

(a) The domain of definition D(U) is the space

D(U) = {u ∈ H2,2(D) : Bu = 0}.

(b) U u = Au, u ∈ D(U).
The first purpose of this paper is to prove the following:

Theorem 0. If conditions (H.1) and (H.2) are satisfied, then the first
eigenvalue λ1 of U is positive and simple, and its associated eigenfunction
ψ1(x) is positive everywhere in D. Moreover no other eigenvalues have positive
eigenfunctions.

(II) Now, as an application of Theorem 0, we consider local static bifurca-
tion problems for the following semilinear elliptic boundary value problem:{

Au− λu+G(λ, u) = 0 in D,

Bu = a∂u
∂ν

+ bu = 0 on ∂D.
(0.2)

Here G(λ, u) is a nonlinear operator, depending on a real parameter λ, which
operates on the unknown function u. The word “bifurcation” means a “split-
ting”, and in the context of nonlinear boundary value problems it connotes a
situation wherein at some critical value of λ the number of solutions of the
equation changes.

The second purpose of this paper is to discuss those aspects of static bi-
furcation theory for the semilinear boundary value problem (0.2). We shall
only restrict ourselves to some aspects which have been discussed in the pa-
pers Taira [22], Taira-Umezu [23] and [24]. Our approach is distinguished
by the extensive use of the ideas and techniques characteristic of the recent
developments in the theory of linear partial differential equations.

We associate with problem (0.2) a nonlinear mapping F (λ, u) of R ×
C2+θ
B (D) into Cθ(D) as follows:

F : R×C2+θ
B (D) −→ Cθ(D)

(λ, u) 7−→ Au− λu+G(λ, u).

129
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Here
C2+θ
B (D) = {u ∈ C2+θ(D) : Bu = 0 on ∂D}.

It may happen that, as the parameter λ varies, there exists a family of
solutions which splits into several branches at some critical value λ0.

Suppose that there is a curve Γ in the space R × C2+θ
B (D) given by the

formula Γ = {w(t) : t ∈ I}, where I is an interval, such that F (w) = 0 for
all w ∈ Γ . If there exists a number τ0 ∈ I such that every neighborhood
of w(τ0) contains zeros of F not lying on Γ, then the point w(τ0) is called a
bifurcation point for the equation F (w) = 0 with respect to the curve Γ. In
many situations the curve Γ is of the form {(λ, 0) : λ ∈ R, 0 ∈ C2+θ

B (D)}. The
basic problem of bifurcation theory is that of finding the bifurcation points for
F (w) = 0 with respect to Γ and studying the structure of F−1{0} near such
points.

The next theorem asserts that if λ1 is the first eigenvalue of U , then the
point (λ1, 0) is a bifurcation point for the equation F (λ, u) = 0:

Theorem 1. Let λ1 be the first eigenvalue of U and let G(λ, u) be a Ck

map, k ≥ 3, of a neighborhood of (λ1, 0) in the space R × C2+θ
B (D) into the

space Cθ(D). Assume that the following four conditions are satisfied:

( i ) G(λ1, 0) = 0, Gλ(λ1, 0) = 0.

(ii) Gu(λ1, 0) = 0.

(iii) The function Gλλ(λ1, 0) belongs to the range R(U-λ1I):∫
D

Gλλ(λ1, 0) · ψ1dx = 0.

(iv) The function Gλu(λ1, 0)ψ1−ψ1 does not belong to the range R(U-λ1I):∫
D

(Gλu(λ1, 0)ψ1 − ψ1) · ψ1dx 6= 0.

Then the point (λ1, 0) is a bifurcation point for the equation F (λ, u) = 0.
In fact, the set of solutions of F (λ, u) = 0 near (λ1, 0) consists of two Ck−2

curves Γ1 and Γ2 intersecting only at the point (λ1, 0). Furthermore the curve
Γ1 is tangent to the λ-axis at (λ1, 0) and may be parametrized by λ as

Γ1 = {(λ, u1(λ)) : |λ− λ1| < ε},

while the curve Γ2 may be parametrized by a variable s as

Γ2 = {(λ2(s), sψ1 + u2(s)) : |s| < ε}.
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Here

u2(0) =
du2

ds
(0) = 0, λ2(0) = λ1.

The conditions in Theorem 1 are based on the linear approximation, and
are independent of the nonlinearities. The following two corollaries analyze
in detail the nonlinear nature of the problem; it is essential to know some
properties of the nonlinearities in u in the operator G(λ, u).

The first corollary deals with local bifurcation theory under generic condi-
tions on the quadratic term:

Corollary 1. Assume that the following four conditions are satisfied:

( i ) G(λ, 0) = 0 for all |λ− λ1| sufficiently small.

(ii) Gu(λ1, 0) = 0.

(iii) The function Gλu(λ1, 0)ψ1−ψ1 does not belong to the range R(U-λ1I).

(iv) The function Guu(λ1, 0)(ψ1, ψ1) does not belong to the range R(U-λ1I):∫
D

Guu(λ1, 0) (ψ1, ψ1) · ψ1dx 6= 0.

Then the set of solutions of F (λ, u) = 0 near (λ1, 0) consists of two Ck−2

curves Γ1 and Γ2 which may be parametrized respectively by λ and s as follows
(see Figure 2 below) :

Γ1 = {(λ, 0) : |λ− λ1| < ε},

Γ2 = {(λ2(s), sψ1 + u2(s)) : |s| < ε}.

Here

u2(0) =
du2

ds
(0) = 0, λ2(0) = λ1,

dλ2

ds
(0) 6= 0.

Example 1. For Corollary 1, we give a simple example of F (λ, u):

F (λ, u) = Au− λu± u2.

The second corollary deals with local bifurcation theory under generic con-
ditions on the cubic term:

Corollary 2. Assume that the following five conditions are satisfied:

( i ) G(λ, 0) = 0 for all |λ− λ1| sufficiently small.

(ii) Gu(λ1, 0) = 0.

(iii) The function Gλu(λ1, 0)ψ1−ψ1 does not belong to the range R(U-λ1I).
131
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FIG. 2.

(iv) The function Guu(λ1, 0)(ψ1, ψ1) belongs to the range R(U-λ1I):∫
D

Guu(λ1, 0)(ψ1, ψ1) · ψ1dx = 0.

(v) The function Guuu(λ1, 0)(ψ1, ψ1, ψ1) does not belong to the range R(U-
λ1I): ∫

D

Guuu(λ1, 0)(ψ1, ψ1, ψ1) · ψ1dx 6= 0.

Then the set of solutions of F (λ, u) = 0 near (λ1, 0) consists of a pitchfork.
More precisely, the two Ck−2 curves Γ1 and Γ2 may be parametrized respectively
by λ and s as follows (see Figure 3 below) :

Γ1 = {(λ, 0) : |λ− λ1| < ε},

Γ2 = {(λ2(s), sψ1 + u2(s)) : |s| < ε}.

Here

u2(0) =
du2

ds
(0) = 0, λ2(0) = λ1,

dλ2

ds
(0) = 0,

d2λ2

ds2
(0) 6= 0.

Example 2. For Corollary 2, we give a simple example of F (λ, u):

F (λ, u) = Au− λu± u3.

(III) Now we consider global static bifurcation problems for the following
semilinear elliptic boundary value problem:
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FIG. 3.

{
Au− λu+ g(u) = 0 in D,

Bu = a∂u
∂ν

+ bu = 0 on ∂D.
(0.3)

Here λ is a real parameter and g(t) is a real-valued function on R, not depend-
ing explicitly on x.

By Theorem 1, we know that there exist precisely two nontrivial branches
of solutions of problem (0.3) bifurcating at the point (λ1, 0). The forthcoming
two theorems characterize them globally.

The first theorem is a generalization of Szulkin [18, Theorem 1.3] to the
degenerate case:

Theorem 2. Let λ1 be the first eigenvalue of U , and let g(t) be a function
of class C1 on R such that

g(0) = g′(0) = 0.

Assume that the derivative g′(t) is strictly decreasing for t < 0 and strictly
increasing for t > 0, and that there exist constants k− > 0 and k+ > 0 such
that

lim
t→−∞

g′(t) = k−, lim
t→+∞

g′(t) = k+.

Then the point (λ1, 0) is a bifurcation point of problem (0.3). More pre-
cisely, the set of nontrivial solutions of problem (0.3) consists of two C1 curves
Γ− and Γ+ parametrized respectively by λ as follolus (see Figure 4 below):

Γ− = {(λ, u−(λ)) ∈ R× C(D) : λ1 ≤ λ < λ1 + k−},

Γ+ = {(λ, u+(λ)) ∈ R× C(D) : λ1 ≤ λ < λ1 + k+}.
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FIG. 4.

The branch Γ− is negative and the branch Γ+ is positive except at (λ1, 0), and
the uniform norms ‖u−(λ)‖ and ‖u+(λ)‖ tend to +∞ as λ→ λ1 + k− and as
λ→ λ1 + k+, respectively. Furthermore problem (0.3) has no other positive or
negative solutions for all λ ≥ λ1.

Example 3. For Theorem 2, we give an example of the function g(t):

g(t) =



k+
(
t+ 1

2t −
4
3

)
for t > 1,

k+

6 t3 for 0 ≤ t ≤ 1,
k−
6 t3 for − 1 ≤ t ≤ 0,

k−
(
t+ 1

2t + 4
3

)
for t < −1.

The second theorem asserts that if the function g(t) is bounded, then
the bifurcation curves “turn back” towards λ1. More precisely we have the
following generalization of [18, Theorem 5.2] to the degenerate case:

Theorem 3. Let λ1, λ2 be the first and second eigenvalues of U , respec-
tively, and let g(t) be a function of class C1 on R such that

g(0) = g′(0) = 0.

Assume that g(t) is bounded and that there exists a constant k > 0 such that

0 ≤ g′(t) ≤ k < λ2 − λ1 for all t ∈ R.

Then the set of nontrivial solutions of problem (0.3), bifurcating at (λ1, 0),
consists of two C1 branches Γ1 and Γ2. The branches Γ1 and Γ2 may be
parametrized respectively by s as follows (see Figure 5 below) :
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FIG. 5.

Γ1 = {(λ1(s), u1(s)) ∈ R× C(D) : 0 ≤ s <∞},

Γ2 = {(λ2(s), u2(s)) ∈ R× C(D) : 0 ≤ s <∞}.

Here (λi(0), ui(0)) = (λ1, 0) and λi(s)→ λ1 as s→∞ (i = 1, 2).

Example 4. For Theorem 3, we give an example of the function g(t):

g(t) =


k
(
− 1

2t + 2
3

)
for t > 1,

k
6 t

3 for − 1 ≤ t ≤ 1,

k
(
− 1

2t −
2
3

)
for t < −1.

(IV) Finally we consider the following general nonlinear elliptic boundary
value problem: Given function f(x, ξ) defined on D×[0,∞), find a nonnegative
function u(x) in D such that

{
Au = f(x, u) in D,

Bu = a∂u
∂ν

+ bu = 0 on ∂D.
(0.4)

In order to state our existence theorem of positive solutions of problem
(0.4), we introduce a fundamental condition (slope condition) on the nonlinear
term f(x, ξ):

For a positive number σ, there exists a constant ω = ω(σ) > 0, independent
of x ∈ D, such that

f(x, ξ)− f(x, η) > −ω(ξ − η), x ∈ D, 0 ≤ η < ξ ≤ σ.(R)σ)

135



136 Kazuaki Taira

A nonnegative function ψ ∈ C2(D) is said to be a supersolution of problem
(0.4) if it satisfies the conditions{

Aψ − f(x, ψ) ≥ 0 in D,

Bψ ≥ 0 on ∂D.

Similarly, a nonnegative function φ ∈ C2(D) is said to be a subsolution of
problem (0.4) if it satisfies the conditions{

Aφ− f(x, φ) ≤ 0 in D,

Bφ ≤ 0 on ∂D.

Now we can state our existence theorem for problem (0.4) which is a gen-
eralization of [1, Theorem 9.4] to the degenerate case:

Theorem 4. Assume that the function f(x, ξ) belongs to Cθ(D×[0, σ]), 0 <
θ < 1, and satisfies condition (R)σ for some σ > 0. If ψ(x) and φ(x) are
respectively super- and subsolutions of problem (0.4) satisfying 0 ≤ φ(x) ≤
ψ(x) < σ on D, then there exists a solution u ∈ C2+θ(D) of problem (0.4)
such that φ(x) ≤ u(x) ≤ ψ(x) on D.

In order to state our uniqueness theorem of positive solutions of prob-
lem (0.4), we introduce another fundamental condition (sublinearity) on the
nonlinear term f(x, ξ):

We have for all 0 < τ < 1

f(x, τξ) ≥ τf(x, ξ), x ∈ D, ξ > 0,(S1)

and

f(x, 0) ≥ 0, x ∈ D.(S2)

Our uniqueness theorem for problem (0.4) is the following:

Theorem 5. Assume that the function f(x, ξ) belongs to Cθ(D×[0, σ]), 0 <
θ < 1, and satisfies condition (R)σ, for every σ > 0, and also satisfies condi-
tion (S). Then problem (0.4) has at most one positive solution.

As an application of Theorems 4 and 5, we consider the following semilinear
elliptic boundary value problem:{

Au− λu+ h(x)up = 0 in D,

Bu = a∂u
∂ν

+ bu = 0 on ∂D,
(0.5)
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where p > 1 and h(x) is a real-valued function on D. It is worth pointing
out here that the equation: Au − λu + h(x)up = 0 in D originates from the
so-called Yamabe problem which is a basic problem in Riemannian geometry
if we take p = (N + 2)/(N − 2) > 1 where N ≥ 3 (cf. [11], [14]).

Assume that h(x) is a function in the Hölder space Cθ(D), 0 < θ < 1, such
that

h(x) ≥ 0 on D.

We let
D0(h) = the interior of the set {x ∈ D : h(x) = 0}.

We consider the case where h(x) > 0 on the boundary ∂D. More precisely,
our fundamental hypothesis on the function h is the following (see Figure 6
below):

(Z) The open setD0(h) consists of a finite number of connected components
with smooth boundary, say Di(h), 1 ≤ i ≤ l, which are bounded away from
∂D.

We consider the Dirichlet eigenvalue problem in each connected component
Di(h): {

Aϕ = λϕ in Di(h),

ϕ = 0 on Di(h).
(0.6)

We let
λ1(Di(h)) = the first eigenvalue of problem (0.6),

and
λ̃1(D0(h)) = min

1≤i≤l
λ1(Di(h)).

FIG. 6.
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We remark (cf. [4]) that the minimal eigenvalue λ̃1(D0(h)) is monotone de-
creasing with respect to the set D0(h); more precisely it tends to +∞ if
D0(h) → ∅ and tends to λ1(D) if D0(h) → D, where λ1(D) is the first eigen-
value of the Dirichlet problem in the whole domain D.

The next theorem is a generalization of [14, Theorems 2 and 3] to the
degenerate case:

Theorem 6. Assume that h(x) is a function in Cθ(D), 0 < θ < 1, such
that h(x) ≥ 0 on D and that condition (Z) is satisfied. Then problem (0.5)
has a unique positive solution u(λ) ∈ C2+θ(D) for every λ1 < λ < λ̃1(D0(h)).
For any λ ≥ λ̃1(D0(h)), there exists no positive solution of problem (0.5).
Furthermore the uniform norm ‖u(λ)‖C(D) tends to +∞ as λ→ λ1(D0(h)).

The situation may be represented schematically by the following bifurca-
tion diagram:

FIG. 7.

The rest of this paper is organized as follows.
The first section, Section 1, is devoted to the proof of Theorem 0. There is a

standard method of reducing problem (0.1) to an equivalent integral equation
on the boundary in an appropriate function space. More precisely, by using
the Green and Poisson operators for problem (0.1) we transform problem (0.1)
to the study of a pseudo-differential operator T on the boundary (Proposition
1.2), which may be considered as a generalization of the classical potential
approach. The main difficulty in this approach lies in the fact that we have to
establish a priori estimates for problem (0.1). In doing so, we use the theory
of pseudo-differential operators to prove that conditions (H.1) and (H.2) are
sufficient for the existence of a parametrix for the operator T (Lemma 1.3).
Next the maximum principle, which stems from a second-order equation, gives
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us various a priori information about the possible solutions of problem (0.1).
In this way we can prove an existence and uniqueness theorem for problem
(0.1) in the framework of Hölder spaces (Theorem 1.1).

Furthermore the maximum principle tells us that the resolvent K of prob-
lem (0.1) is a positive operator in the ordered Banach space C(D) (Proposition
1.6). In order to obtain an abstract formulation of this fact, we introduce an
ordered Banach subspace Ce(D) of C(D) which combines the good properties
of the resolvent K with the good properties of the natural ordering of C(D).
Here the function e(x) is the unique solution of the linear boundary value
problem {

Ae = 1 in D,

Be = 0 on ∂D,

and the ordered Banach space Ce(D) is defined by the formula

Ce(D) = {u ∈ C(D) : there exists a constant c > 0 such that −ce ≤ u ≤ ce},

with norm
‖u‖e = inf{c > 0 : −ce ≤ u ≤ ce}.

This setting has the advantages that it takes into consideration in an optimal
way the a priori information given by the maximum principle and that it is
amenable to the methods of abstract functional analysis (cf. [1], [9]). Theorem
1.1 is an immediate consequence of a sharper version of the well-known Krěın-
Rutman theorem for strongly positive, compact linear operators (Theorem
1.7). We recall that Taira [22] proved Theorem 0 by using the theory of Feller
semigroups in functional analysis.

In Section 2 we prove Theorem 1. A general class of semilinear second-order
elliptic boundary value problems satisfies the maximum principle. Roughly
speaking, this additional information means that the operators associated with
the boundary value problems are compatible with the natural ordering of the
underlying function spaces. Consequently we are led to the study of nonlinear
equations in the framework of ordered Banach spaces. Theorem 1 follows
by applying local static bifurcation theory from a simple eigenvalue due to
Crandall-Rabinowitz [5] (Theorem 2.1).

Section 3 is devoted to the proof of Theorems 2 and 3. We transpose the
nonlinear problem (0.3) into an equivalent fixed point equation for the resol-
vent K in an appropriate ordered Banach space. More precisely, by applying
the resolvent K for problem (0.1) we transform problem (0.3) into a nonlinear
operator equation in the ordered Banach space C(D)

u = K(F (u)) = K(f(·, u(·)))

139
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in such a way that as much information as possible is carried over to the
abstract setting. The proof of Theorems 2 and 3 is essentially the same as
that of Szulkin [18].

Section 4 is devoted to the proof of Theorems 4 and 5. By condition (R)σ,
it follows that the map H, defined by H(u) = K(F (u)), leaves invariant the
ordering of the space C(D) (Lemma 4.1). In the case of an increasing map it
suffices to verify that H maps two points of a bounded, closed and convex set
into itself in order to apply Schauder’s fixed point theorem (Lemma 4.2). This
is a much easier task than to verify the standard hypotheses for an application
of the same theorem.

The fact that the resolvent K is strongly positive has important conse-
quences. Namely, if u(x) ≥ v(x) and u(x) 6≡ v(x) on D, then the function
H(u)−H(v) is an interior point of the positive cone Pe of the ordered Banach
space Ce(D). This implies that the map H is a strongly increasing self-map
of Ce(D) (Lemma 4.6). The proof of Theorem 5 is based on a uniqueness the-
orem of fixed points of strongly increasing and strongly sublinear mappings in
ordered Banach spaces (Theorem 4.4).

The final section, Section 5, is devoted to the proof of Theorem 6. First,
by using Green’s formula we prove that if there exists a positive solution
u(λ) ∈ C2(D) of problem (0.5), then we have λ1 < λ < λ̃1(D0(h)) (Lemmas
5.1 and 5.4). Next, by making use of the implicit function theorem we prove
that there exists a critical value λ(h) ∈ (λ1, λ̃1(D0(h))] such that problem (0.5)
has a positive solution u(λ) for all λ ∈ (λ1, λ(h)) (Lemma 5.3), and further
that the solution u(λ) is monotone increasing.

The formula λ(h) = λ̃1(D0(h)) follows from an application of Theorem 4
by constructing explicitly super- and subsolutions of problem (0.5) for every
λ ∈ (λ1(D), λ̃1(D0(h))) (Lemma 5.5). First, by using the positive eigenfunc-
tion ψ1(x) of problem (0.1) we have a subsolution φε(x) = εψ1(x) for ε > 0
sufficiently small. On the other hand, in order to construct a supersolution
we make good use of the semilinear Dirichlet and Neumann boundary value
problems, that is, the case where a ≡ 0 and b ≡ 1 on ∂D and the case where
a ≡ 1 and b ≡ 0 on ∂D in problem (0.5).

1. Proof of Theorem 0

The proof of Theorem 0 is carried out by making use of the theory of
positive mappings in ordered Banach spaces (cf. [1], [9]).

1.1. Existence and uniqueness theorem for problem (0.1).

In this subsection we prove an existence and uniqueness theorem for the
linearized boundary value problem (0.1) in the framework of Hölder spaces
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which will play an important role in the proof of Theorem 0 in Subsections
1.2 and 1.4.

First we introduce a subspace of the Hölder space C1+θ(∂D), 0 < θ < 1,
which is associated with the boundary condition

Bu = a
∂u

∂ν
+ bu

in the following way: We let

C1+θ
∗ (∂D) = {ϕ = aϕ1 + bϕ2 : ϕ1 ∈ C1+θ(∂D), ϕ2 ∈ C2+θ(∂D)},

and define a norm

|ϕ|C1+θ
∗ (∂D) = inf{|ϕ1|C1+θ(∂D) + |ϕ2|C2+θ(∂D) : ϕ = aϕ1 + bϕ2}.

Then it is easy to verify that the space C1+θ
∗ (∂D) is a Banach space with

respect to the norm | · |C1+θ
∗ (∂D). We remark that the space C1+θ

∗ (∂D) is
an “interpolation space” between the spaces C2+θ(∂D) and C1+θ(∂D); more
precisely, it is easy to see that{

C1+θ
∗ (∂D) = C2+θ(∂D) if a(x′) ≡ 0 on ∂D,

C1+θ
∗ (∂D) = C1+θ(∂D) if a(x′) > 0 on ∂D.

The purpose of this subsection is to prove the following:

Theorem 1.1. If hypotheses (H.1) and (H.2) are satisfied, then the map-
ping

(A,B) : C2+θ(D)→ Cθ(D)⊕ C1+θ
∗ (∂D)

is an algebraic and topological isomorphism for all 0 < θ < 1.

Proof. The proof is divided into four steps.
(i) Let g be an arbitrary element of Cθ(D), and ϕ an arbitrary element of

C1+θ
∗ (∂D) such that

ϕ = aϕ1 + bϕ2, ϕ1 ∈ C1+θ(∂D), ϕ2 ∈ C2+θ(∂D).

First we show that the boundary value problem{
Au = g in D,

Bu = ϕ on ∂D,
(1.1)

can be reduced to the study of an operator on the boundary.
To do so, we consider the Neumann problem
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{
Av = g in D,

∂v
∂ν

= ϕ1 on ∂D.
(1.2)

By [7, Theorem 6.31], one can find a unique solution v in the space C2+θ(D)
of problem (1.2). Then it is easy to see that a function u in C2+θ(D) is a
solution of problem (1.1) if and only if the function w = u− v ∈ C2+θ(D) is a
solution of the problem {

Aw = 0 in D,

Bw = ϕ−Bv on ∂D.

Here we remark that

Bv = a
∂v

∂ν
+ bv = aϕ1 + bv,

so that
Bw = ϕ−Bv = b(ϕ2 − v) ∈ C2+θ(∂D).

However we know that every solution w ∈ C2+θ(D) of the homogeneous equa-
tion: Aw = 0 in D can be expressed as follows (cf. [20, Theorem 8.2.4]):

w = Pψ, ψ ∈ C2+θ(∂D).

Here the operator P : C2+θ(∂D) → C2+θ(D) is the Poisson operator, that is,
the function w = Pψ is the unique solution of the Dirichlet problem{

Aw = 0 in D,

w = ψ on ∂D.

Thus we have the following:

Proposition 1.2. For given functions g ∈ Cθ(D) and ϕ = aϕ1 + bϕ2 ∈
C1+θ
∗ (∂D), there exists a solution u ∈ C2+θ(D) of problem (1.1) if and only if

there exists a solution ψ ∈ C2+θ(∂D) of the equation

Tψ := BPψ = b(ϕ2 − v) on ∂D.(1.3)

Furthermore the solutions u(x) and ψ(x′) are related as follows:

u = v + P ψ,

where v ∈ C2+θ(D) is the unique solution of problem (1.2).



Semilinear Elliptic Boundary Value Problems 143

We remark that equation (1.3) is a generalization of the classical Fredholm
integral equation.

(ii) We study the operator T in question. It is known (cf. [8, Chapter XX],
[16, Chapter 3]) that the operator

Tψ = BPψ = a
∂

∂ν
(Pψ) + bψ

is a first-order, pseudo-differential operator on the boundary ∂D.
The next proposition is an essential step in the proof of Theorem 1.1:

Lemma 1.3. If hypothesis (H.1) is satisfied, then there exists a parametrix
E in the Hörmander class L0

1,1/2(∂D) for T which maps Ck+θ(∂D) continu-
ously into itself for all nonnegative integers k.

Proof. By making use of [8, Theorem 22.1.3] just as in the proof of [21,
Lemma 5.2], one can construct a parametrix E ∈ L0

1,1/2(∂D) for T :

ET ≡ TE ≡ I mod L−∞(∂D).

The boundedness of E : Ck+θ(∂D) → Ck+θ(∂D) follows from an application
of [3, Theorem 1], since we have Ck+θ(∂D) = Bk+θ

∞,∞(∂D).

(iii) We consider problem (1.1) in the framework of Sobolev spaces of Lp

style, and prove an Lp version of Theorem 1.1.
If k is a positive integer and 1 < p <∞, we define the Sobolev space

Hk,p(D) =the space of (equivalence classes of) functions

u ∈ Lp(D) whose derivatives Dαu, |α| ≤ k, in the

sense of distributions are in Lp(D),

and let

Bk−1/p,p(∂D) =the space of the boundary values ϕ of functions

u ∈ Hk,p(D).

In the space Bk−1/p,p(∂D), we introduce a norm

|ϕ|Bk−1/p,p(∂D) = inf{‖u‖Hk,p(D) : u ∈ Hk,p(D), u|∂D = ϕ}.

The space Bk−1/p,p(∂D) is a Banach space with respect to the norm
| · |Bk−1/p,p(∂D); more precisely it is a Besov space (cf. [2], [25]).
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We introduce a subspace ofB1−1/p,p(∂D) which is an Lp version of C l+θ
∗ (∂D).

We let

B1−1/p,p
∗ (∂D) = {ϕ = aϕ1 + bϕ2 : ϕ1 ∈ B1−1/p,p(∂D), ϕ2 ∈ B2−1/p,p(∂D)},

and define a norm

|ϕ|
B

1−1/p,p
∗ (∂D) = inf{|ϕ1|B1−1/p,p(∂D) + |ϕ2|B2−1/p,p(∂D) : ϕ = aϕ1 + bϕ2}.

It is easy to verify that the space B1−1/p,p
∗ (∂D) is a Banach space with respect

to the norm | · |
B

1−1/p,p
∗ (∂D).

Then we can obtain the following Lp version of Theorem 1.1 (cf. [21,
Theorem 1]):

Theorem 1.4. If hypotheses (H.1) and (H.2) are satisfied, then the map-
ping

(A,B) : H2,p(D)→ Lp(D)⊕B1−1/p,p
∗ (∂D)

is an algebraic and topological isomorphism for all 1 < p <∞.

(iv) Now we remark that{
Cθ(D) ⊂ Lp(D),

C1+θ
∗ (∂D) ⊂ B1−1/p,p

∗ (∂D).

Thus we find from Theorem 1.4 that problem (1.1) has a unique solution u ∈
H2,p(D) for any g ∈ Cθ(D) and any ϕ = aϕ1 +bϕ2 ∈ C1+θ

∗ (∂D). Furthermore,
by virtue of Proposition 1.2 it follows that the solution u can be written in
the form

u = v + Pψ, v ∈ C2+θ(D), ψ ∈ B2−1/p,p(∂D).

However, Lemma 1.3 tells us that

ψ ∈ C2+θ(∂D),

since we have by equation (1.3)

ψ ≡ E(Tψ) = E(b(ϕ2 − v)) mod C∞(∂D).

Therefore we obtain that

u = v + Pψ ∈ C2+θ(D).

The proof of Theorem 1.1 is complete.
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1.2. Proof of Theorem 0 -(1)-.

First we let

H2,p
B (D) = {u ∈ H2,p(D) : Bu = 0 on ∂D}.

By Theorem 1.4, we can introduce a continuous linear operator

K : Lp(D)→ H2,p
B (D)

as follows: For any g ∈ Lp(D), the function u = Kg ∈ H2,p(D) is the unique
solution of the problem {

Au = g in D,

Bu = 0 on ∂D.

Furthermore, by the Ascoli-Arzelà theorem it follows that the operator K,
considered as

K : C(D)→ C1(D),

is compact. Indeed we find from an application of Sobolev’s imbedding theorem
that H2,p(D) is continuously imbedded into C2−N/p(D) for all N < p <∞.

Then it follows from an application of regularity theorem for problem (1.1)
([21, Theorem 5.1]) that u ∈ Lp(D), 1 < p <∞, is a solution of the problem{

Au = λu in D,

Bu = 0 on ∂D

if and only if it satisfies the operator equation

u = λKu in C(D).(1.4)

1.3. Theory of positive mappings in ordered Banach spaces.

We shall make use of the theory of positive operators in ordered Banach
spaces to study nontrivial solutions of equation (1.4).

Let X be a nonempty set. An ordering ≤ in X is a relation in X which
is reflexive, transitive and antisymmetric. A nonempty set together with an
ordering is called an ordered set.

Let V be a real vector space. An ordering ≤ in V is said to be linear if the
following two conditions are satisfied:

( i ) If x, y ∈ V and x ≤ y, then we have x+ z ≤ y + z for all z ∈ V .

(ii) If x, y ∈ V and x ≤ y, then we have αx ≤ αy for all α ≥ 0.
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A real vector space together with a linear ordering is called an ordered
vector space.

If x, y ∈ V and x ≤ y, then the set [x, y] = {z ∈ X : x ≤ z ≤ y} is called
an order interval.

If we let
Q = {x ∈ V : x ≥ 0},

then it is easy to verify that Q has the following two conditions:

(iii) If x, y ∈ P , then αx+ βy ∈ Q for all α, β ≥ 0.

(iv) If x 6= 0, then at least one of x and −x does not belong to Q.

The set Q is called the positive cone of the ordering ≤.
Let E be a Banach space E with a linear ordering ≤. The Banach space

E is called an ordered Banach space if the positive cone Q is closed in E.
For two functions u, v ∈ C(D), we write u ≤ v if u(x) ≤ v(x) for all x ∈ D.

Then it is easy to verify that the space C(D) is an ordered Banach space with
the linear ordering ≤ and the positive cone

P = {u ∈ C(D) : u ≥ 0 on D}.

Now we introduce an ordered Banach space which is associated with the
operator K : C(D)→ C1(D). To do so, we need the following:

Lemma 1.5. Assume that hypotheses (H.1) and (H.2) are satisfied. If
v(x) ∈ Cθ(D) with 0 < θ < 1 and if v(x) ≥ 0 but v(x) 6≡ 0 on D, then the
function u = Kv ∈ C2+θ(D) satisfies the following conditions:

(a) u(x′) = 0 on M = {x′ ∈ ∂D : a(x′) = 0}.
(b) u(x) > 0 on D\M .

(c) For the conormal derivative ∂u/∂ν of u, we have
∂u

∂ν
(x′) < 0 on M.

Furthermore the operator K : C(D)→ C(D) is positive, that is, K(P ) ⊂ P .

Proof. (1) First, since the function u = Kv ∈ C2+θ(D) satisfies the condi-
tion

Au = v ≥ 0 in D,

it follows from an application of the weak maximum principle (see Appendix,
Theorem A.1) that the function u may take its negative minimum only on the
boundary ∂D.

However we have the following:
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Claim 1. The function u = Kv does not take its negative minimum on
the boundary ∂D. In other words, the function u is nonnegative on D.

Proof. Assume to the contrary that there exists a point x′0 ∈ ∂D such that

u(x′0) < 0.

If a(x′0) = 0, then we have by condition (H.1)

0 = Bu(x′0) = a(x′0)
∂u

∂ν
(x′0) + b(x′0)u(x′0) = b(x′0)u(x′0) < 0.

This is a contradiction.
If a(x′0) > 0, then it follows that

Au(x) = v(x) ≥ 0 in D,

u(x′0) = minx∈D u(x) < 0,

u(x) > u(x′0), x ∈ D.

Thus it follows from an application of the boundary point lemma (see Theorem
A.3) that

∂u

∂ν
(x′0) < 0,

so that

0 = Bu(x′0) = a(x′0)
∂u

∂ν
(x′0) + b(x′0)u(x′0) ≤ a(x′0)

∂u

∂ν
(x′0) < 0.

This is also a contradiction.

(2) Furthermore we have the following:

Claim 2. The function u = Kv is strictly positive in D.

Proof. Assume to the contrary that there exists a point x0 ∈ D such that

u(x0) = 0.

Then we obtain from the strong maximum principle (see Theorem A.2) that

u(x) ≡ 0 in D,

so that
v(x) = Ku(x) ≡ 0 in D.
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This contradicts the condition that v is not the zero function in D.

(3) Proof of Lemma 1.5. If there exists a point x′0 ∈ ∂D such that

u(x′0) = 0,

then we have 
Au(x) = v(x) ≥ 0 in D,
u(x′0) = minx∈D u(x) = 0,
u(x) > 0, x ∈ D.

Thus it follows from an application of the boundary point lemma (see Theorem
A.3) that

∂u

∂ν
(x′0) < 0,

so that
a(x′0) = 0,

since we have
0 = Bu(x′0) = a(x′0)

∂u

∂ν
(x′0) = 0.

Conversely, if a(x′0) = 0, then we have, by condition (H.1), b(x′0) > 0, and
so

u(x′0) = 0,

since 0 = Bu(x′0) = a(x′0)∂u/∂ν(x′0) + b(x′0)u(x′0) = b(x′0)u(x′0).
Summing up, we have proved that

u(x′) = 0⇐⇒ a(x′) = 0;

u(x) > 0⇐⇒ x ∈ D\M.

Assertion (c) is an immediate consequence of the boundary point lemma,
since the function u attains its minimum 0 at the set M .

Finally, in order to prove the positivity of K : C(D)→ C(D), let v be an
arbitrary function in C(D) such that v(x) > 0 and v(x) 6≡ 0 on D. Then, by
using Friedrichs’ mollifiers we can find a sequence {vj} ⊂ C1(D) satisfying the
conditions {

vj ≥ 0 on D,

vj → v in C(D).

Hence we have by assertions (a) and (b)
Kvj ∈ C2(D),

Kvj ≥ 0 on D,

Kvj → Kv in C(D),
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and so
Kv ≥ 0 on D.

The proof of Lemma 1.5 is complete.

If we let
e = K1,

it follows from an application of Lemma 1.5 that the function e ∈ C2+θ(D)
satisfies the conditions 

e(x′) = 0 on M,

e(x) > 0 on D\M,

∂e
∂ν

(x′) < 0 on M.

Further we let

Ce(D) = {u ∈ C(D) : there is a constant c > 0 such that − ce ≤ u ≤ ce}.

Then the space Ce(D) is given a norm by the formula

‖u‖e = inf{c > 0 : −ce ≤ u ≤ ce}.

If we let
Pe = Ce(D) ∩ P,

it is easy to verify that the space Ce(D) is an ordered Banach space having
the positive cone Pe with nonempty interior.

The next proposition will play an important role in the proof of Theorem
5 in Subsection 4.2:

Proposition 1.6. The operator K maps C(D) compactly into Ce(D).
Moreover, K is strongly positive, that is, if v ∈ P and v 6≡ 0 on D, then the
function Kv is an interior point of Pe.

Proof. (i) First, by the positivity of K we find that K maps C(D) into
Ce(D). Indeed, since we have −‖v‖ ≤ v(x) ≤ ‖v‖ on D for all v ∈ C(D), it
follows that

−‖v‖K1(x) ≤ Kv(x) ≤ ‖v‖K1(x) on D.

This proves that −ce ≤ Kv ≤ ce with c = ‖v‖.
(ii) Next we prove that K : C(D)→ Ce(D) is compact. To do so, we let

C1
B(D) = {u ∈ C1(D) : Bu = 0 on ∂D}.
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Since K maps C(D) compactly into C1
B(D), it suffices to show that the inclu-

sion mapping

ι : C1
B(D) −→ Ce(D)(1.5)

is continuous.
(ii-a) We verify that ι maps C1

B(D) into Ce(D).
Let u be an arbitrary function in C1

B(D). Since we have for some neigh-
borhood ω of M in ∂D {

b > 0 in ω,

∂e
∂ν
< 0 in ω,

it follows that
u

e
=
(
−a
b

)
∂u
∂ν(

−a
b

)
∂e
∂ν

=
∂u
∂ν
∂e
∂ν

in ω\M.

Hence there exists a constant c1 > 0 such that

|u(x′)| ≤ c1e(x′) in ω.

Thus, by using Taylor’s formula we can find a neighborhood W of ω in D and
a constant c2 > 0 such that

|u(x′)| ≤ c2e(x) in W.

On the other hand, since we have for some constant α > 0

e(x) ≥ α on D\W,

we can find a constant c3 > 0 such that∣∣∣∣u(x)
e(x)

∣∣∣∣ ≤ c3 on D\W.

Therefore there exists a constant c > 0 such that

−ce(x) ≤ u(x) ≤ ce(x) on D.

This proves that u ∈ Ce(D).
(ii-b) Now assume that

uj ∈ C1
B(D),

uj → u in C1
B(D),

uj → v in Ce(D).
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Then there exists a sequence {cj}, cj → 0, such that

‖uj − v‖ ≤ cj‖e‖.

This implies that uj → v in C(D). Hence we have u = v. By the closed graph
theorem, it follows that the mapping ι is continuous.

(iii) It remains to prove the strong positivity of K.
(iii-a) We show that, for any v(x) ≥ 0 but v(x) 6≡ 0 on D, there exist

constants β > 0 and γ > 0 such that

βe(x) ≤ Kv(x) ≤ γe(x) on D.(1.6)

By the positivity of K, one may modify the function v in such a way that
v ∈ C1(D). Furthermore, since the functions u = Kv and e = K1 vanish only
on the set M , it suffices to prove that there exists a neighborhood W of M in
D such that

βe(x) ≤ u(x) in W.(1.7)

We recall that in a neighborhood ω of M in ∂D{
u =

(
−a
b

)
∂u
∂ν

in ω

∂u
∂ν
< 0 in ω,

and {
e =

(
−a
b

)
∂e
∂ν

in ω,

∂e
∂ν
< 0 in ω.

Thus we have for β sufficiently small{
u(x′)− βe(x′) ≥ 0 in ω,

∂
∂ν

(u− βe)(x′) < 0 in ω.

Therefore, by using Taylor’s formula we can find a neighborhood W of M
in D such that

u(x)− βe(x) ≥ 0 in W.

This proves estimate (1.7).
(iii-b) Finally we show that the function u = Kv is an interior point of Pe.
Take

ε =
β

2
,

where β is the same constant as in estimate (1.6). Then, for all functions
w ∈ Ce(D) satisfying

‖w −Kv‖e < ε,
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we have by estimate (1.6)

w ≤ Kv + εe ≤ (γ + ε)e,

and also
w ≥ Kv − εe ≥ β

2
e.

This implies that w ∈ Pe, that is, the function Kv is an interior point of Pe.
The proof of Proposition 1.6 is now complete.

Now we consider the resolvent K as an operator in the ordered Banach
space Ce(D), and prove important results concerning its eigenfunctions and
corresponding eigenvalues.

First, Proposition 1.6 tells us that the operator

K : Ce(D) −→ Ce(D)

is strongly positive and compact. This implies that K has a countable number
of positive eigenvalues, µj, which may accumulate only at 0. Hence they may
be arranged in a decreasing sequence

µ1 ≥ µ2 ≥ · · · ,

where each eigenvalue is repeated according to its multiplicity.
The next theorem, a sharper version of the well-known Krěın-Rutman

theorem [10], characterizes the eigenvalues and positive eigenfunctions of the
operator K (cf. [9]):

Theorem 1.7. The resolvent K, considered as an operator K : Ce(D)→
Ce(D), has the following spectral properties:

(i) The largest eigenvalue µ1 is simple, that is, µ1 > µ2, and has a positive
eigenfunction ψ1.

(ii) No other eigenvalues, µj, j ≥ 2, have positive eigenfunctions.

1.4. Proof of Theorem 0 -(2)-.

By assertions (1.4) and (1.5), it is easy to see that

Uu = λu in L2(D)←→ Ku =
1
λ
u in Ce(D).

Therefore Theorem 0 is an immediate consequence of Theorem 1.7.
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2. Proof of Theorem 1

The proof of Theorem 1 is based on the following bifurcation theorem from
a simple eigenvalue (cf. [13, Theorem 3.2.2]; [5, Theorem 1.7]):

Theorem 2.1. Let f(λ, x) be a Ck map, k ≥ 3, of a neighborhood of
(λ1, 0) in a Banach space R×X into a Banach space Y such that

f(λ1, 0) = 0.

Assume that the following conditions are satisfied:

( i ) fλ(λ1, 0) = 0.

(ii) The null space N(fx(λ1, 0)) is one-dimensional, spanned by a vector x0.

(iii) The range R(fx(λ1, 0)) has codimension one in the space Y.

(iv) fλλ(λ1, 0) ∈ R(fx(λ1, 0)) and fλx(λ1, 0)x0 6∈ R(fx(λ1, 0)).

Then the point (λ1, 0) is a bifurcation point for the equation f(λ, x) = 0.
In fact, the set of solutions of f(λ, x) = 0 near (λ1, 0) consists of two Ck−2

curves Γ1 and Γ2 intersecting only at the point (λ1, 0). Furthermore the curve
Γ1 is tangent to the λ-axis at (λ1, 0) and may be parametrized by λ as

Γ1 = {(λ, x1(λ)) : |λ− λ1| < ε},

while the curve Γ2 may be parametrized by a variable s as

Γ2 = {(λ2(s), sx0 + x2(s)) : |s| < ε}.

Here
x2(0) =

dx2

ds
(0) = 0, λ2(0) = λ1.

We shall apply Theorem 2.1 with

X = C2+θ
B (D),

Y = Cθ(D),

f(λ, x) := F (λ, u) = Au− λu+G(λ, u).

First, by [19, Theorems 7.3 and 7.4] it follows that U is a non-negative,
self-adjoint operator in the Hilbert space L2(D). Hence we have, for each
λ > 0, the following orthogonal decomposition:

L2(D) = N(U − λI)⊕R(U − λI).(2.1)
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However it follows from an application of regularity theorem for problem (1.1)
([21, Theorem 5.1]) that

N(U − λI) = {u ∈ C2+θ
B (D) : (A− λ)u = 0 in D},

and also
R(U − λI) ∩ Cθ(D) = {(A− λ)u : u ∈ C2+θ

B (D)}.

Thus, restricting decomposition (2.1) to the space Cθ(D) and taking λ = λ1

we obtain the orthogonal decomposition

(2.2) Cθ(D)

= {u ∈ C2+θ
B (D) : (A− λ1)u = 0 in D} ⊕ {(A− λ1)u : u ∈ C2+θ

B (D)}

= N(Fu(λ1, 0))⊕R(Fu(λ1, 0)).

By virtue of decomposition (2.2), it is easy to verify conditions (2) and (3) of
Theorem 2.1. Indeed, Theorem 0 tells us that the null space N(Fu(λ1, 0)) is
one-dimensional, spanned by the eigenfunction ψ1.

Therefore Theorem 1 follows from an application of Theorem 2.1.

3. Proof of Theorems 2 and 3

First we find that problem (0.3) is equivalent to the following operator
equation:

λKu−K(g(u)) = u in C(D).(3.1)

Indeed it suffices to recall that the operator K can be uniquely extended to
an operator

K : C(D) −→ C1(D),

and also an operator
K : C1(D) −→ C2(D).

Now let m(x) be a function in C(D) such that

m(x) > 0 on D,

and consider the following eigenvalue problem for the operator K:

K(mu) = µu in C(D).

This problem has a countable number of positive eigenvalues, µj(m), which
may accumulate only at 0. Hence they may be arranged in a decreasing
sequence

µ1(m) ≥ µ2(m) ≥ · · · ,
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where each eigenvalue is repeated according to its multiplicity.
In the proof of Theorem 2, we need the following generalization of Theorem

1.7:

Proposition 3.1. The largest eigenvalue µ1(m) is simple, i.e., µ1(m) >
µ2(m), and has a positive eigenfunction. No other eigenvalues have positive
eigenfunctions.

Proof. Proposition 1.6 tells us that the operator K : C(D) → Ce(D) is
strongly positive and compact. Hence the assertions follow from an application
of [1, Theorem 3.2].

Furthermore we need the following:

Proposition 3.2. If m1(x) ≤ m2(x) for all x ∈ D, then we have µj(m1) ≤
uj(m2) for all j. If m1(x) < m2(x) for almost all x ∈ D, then we have
µj(m1) < µj(m2) for all j.

Proof. Proposition 3.2 is an immediate consequence of the well-known
minimax property of eigenvalues.

3.1. Proof of Theorem 2.

The proof of Theorem 2 is essentially the same as that of [18, Theorem
1.3]; so we only give a sketch of the proof.

(i) First, by Theorem 1 we obtain that equation (3.1) (or problem (0.3))
has precisely two branches of nontrivial solutions emanating from the point
(λ1, 0).

(ii) Secondly, by using Propositions 3.1 and 3.2 we find that the nontrivial
solutions of equation (3.1) with λ1 < λ ≤ λ2 must necessarily be positive or
negative.

(iii) In order to study globally the bifurcation solution curves, we need the
following three lemmas:

Lemma 3.3. If u is a positive (or negative) solution of equation (3.1) with
λ1 < λ < ∞, then u is a regular point of the mapping F (λ, u) : R× C(D) →
C(D), given by the formula

F (λ, u) = u− λKu+K(g(u)),

that is, the partial Fréchet derivative Fu(λ, u) at u is invertible.

Lemma 3.4. Equation (3.1) has a unique positive solution for each λ1 <
λ < λ1 + k+. No positive solutions exist for λ ≥ λ1 + k+. The uniform norm

155



156 Kazuaki Taira

‖u+(λ)‖ of the positive solution u+(λ) tends to +∞ as λ→ λ1 + k+. Similar
assertions are valid for negative solutions u−(λ), with k+ replaced by k−.

Lemma 3.5. There is a constant δ > 0 such that equation (3.1) has no
nontrivial solutions for λ1 − δ ≤ λ ≤ λ1.

Lemmas 3.3, 3.4 and 3.5 are proved just as in the proof of [18, Lemmas
2.1, 2.2 and 2.3], by using Propositions 3.1 and 3.2 and the theory of positive
mappings in ordered Banach spaces.

(iii-a) By using Lemma 3.4, Lemma 3.3 and the implicit function theorem,
we can prove that equation (3.1) has a unique positive solution u+(λ) for all
λ1 < λ < λ1 + k+, and that the branch Γ+ of positive solutions emanating
from (λ1, 0) is a C1 curve given by the formula

Γ+ = {(λ, u) ∈ R× C(D) : u = u+(λ), λ1 ≤ λ < λ1 + k+}.

The other branch Γ− is obtained in a similar way.
(iii-b) Furthermore it follows from an application of Lemma 3.4 that no

other positive or negative solutions exist for λ > λ1 and also ‖u+(λ)‖ → +∞
as λ→ λ1 + k+ and ‖u−(λ)‖ → +∞ as λ→ λ1 + k−.

(iv) Finally, Lemma 3.5 tells us that there are no nontrivial solutions at
λ = λ1.

The proof of Theorem 2 is complete.

3.2. Proof of Theorem 3.

The proof of Theorem 3 is carried out by using the global theory of positive
mappings (cf. [6]), just as in the proof of [18, Theorems 5.1 and 5.2].

4. Proof of Theorems 4 and 5

4.1. Proof of Theorem 4.

(1) First we replace the function c(x) by the function c(x)+ω, where ω > 0
is the same constant as in condition (R)σ, and consider instead of problem (0.4)
the following problem:{

(A+ ω)u = ωu+ F (u) in D,

Bu = 0 on ∂D,
(4.1)

where F (u) is the Nemytskii operator of f(x, ξ) defined by the formula

Fu(x) = f(x, u(x)), x ∈ D.
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It is clear that problem (0.4) is equivalent to problem (4.1). Furthermore, since
f(x, ξ) ∈ Cθ(D× [0, σ]), it is easy to verify that problem (4.1) is equivalent to
an operator equation

u = Kω(ωu+ F (u)) in C(D),(4.2)

just as in Subsection 1.2. Here Kω : C(D) → C1(D) is the compact operator
introduced in Subsection 1.2 with c replaced by c+ ω.

(2) We let
Hω(u) = Kω(ωu+ F (u)), u ∈ C(D).

Then we have the following:

Lemma 4.1. The operator Hω : [φ, ψ]→ C(D) is increasing. Here [φ, ψ]
is the order interval defined by the formula

[φ, ψ] = {u ∈ C(D) : φ(x) ≤ u(x) ≤ ψ(x) on D}.

Proof. Let u and v be arbitrary functions in C(D) satisfying φ ≤ u ≤ v ≤ ψ
on D. Then we have

ω(v(x)− u(x)) + (Fv(x)− Fu(x))

=

 0 if v(x) = u(x),(
ω + Fv(x)−Fu(x)

v(x)−u(x)

)
(v(x)− u(x)) if v(x) > u(x),

and so by condition (R)σ

w(v − u) + (Fu− Fv) ≥ 0 on D.

However Lemma 4.1 tells us that Kω : C(D) → C(D) is positive. Thus it
follows that

Hω(v)−Hω(u) = Kω(ω(v − u) + (F (v)− F (u))) ≥ 0 on D,

or equivalently
Hω(u) ≤ Hω(v) on D.

This proves that Hω is increasing.

Moreover we have the following:

Lemma 4.2. The operator Hω maps the order interval [φ, ψ] into itself.
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Proof. Let u be an arbitrary function in C(D) satisfying φ ≤ u ≤ ψ on D.
Then it follows from an application of Lemma 4.1 that

Hω(φ) ≤ Hω(u) ≤ Hω(ψ) on D.

Hence, in order to prove the lemma it suffices to show that

φ ≤ Hω(φ), Hω(ψ) ≤ ψ on D.

If we let
v = Hω(ψ) = Kω(ωψ + F (ψ)),

then we have {
(A+ ω)v = ωψ + F (ψ) in D,
Bv = 0 on ∂D.

However, since ψ is a supersolution of problem (0.4), it follows that

(A+ ω)(v − ψ)= ωψ + F (ψ)− (A+ ω)ψ
= −(Aψ − F (ψ)) ≤ 0 in D,

and
B(v − ψ) = −Bψ ≤ 0 on ∂D.

Thus, using the maximum principle we find that

Hω(ψ) = v ≤ ψ on D.

Indeed, if the function v−ψ takes its positive maximum m at an interior point
x0 ∈ D, then we have

(A+ ω)(v − ψ)(x0) ≥ ωm > 0,

which contradicts the condition: (A+ω)(v−ψ) ≤ 0 in D. On the other hand,
if v − ψ takes the maximum m at a boundary point x′0 ∈ ∂D, then we have
by the boundary point lemma

∂

∂ν
(v − ψ)(x′0) > 0,

so that by condition (H.1)

B(v − ψ)(x′0) = a(x′0)
∂

∂ν
(v − ψ)(x′0) + b(x′0)m > 0,

which contradicts the condition: B(v − ψ) ≤ 0 on ∂D.
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Similarly we can prove that

φ ≤ Hω(φ) on D.

The proof of Lemma 4.2 is complete.

(3) Now we need an extension of Brouwer’s fixed point theorem to the
infinite-dimensional case, due to Schauder (see [17, Proposition 3.60]):

Theorem 4.3 (Schauder’s fixed point theorem). A compact mapping
f of a closed bounded convex set K in a Banach space X into itself has a fixed
point x ∈ K : f(x) = x.

Since Kω : C(D) → C1(D) is compact, it follows from Lemma 4.2 that
the mapping Hω : [φ, ψ] → [φ, ψ] is compact. Furthermore the order interval
[φ, ψ] is bounded, closed and convex in the space C(D). Therefore, applying
Schauder’s fixed point theorem we can find a function u ∈ [φ, ψ] such that

u = Hω(u) = Kω(ωu+ F (u)) in C(D).

Now the proof of Theorem 4 is complete.

4.2. Proof of Theorem 5.

(1) The proof of Theorem 5 is essentially based on the following (cf. [1,
Theorem 24.2]):

Theorem 4.4. Let (E,Q) be an ordered Banach space having the positive
cone Q with nonempty interior. If σ is a positive number, we let

Qσ = {u ∈ Q : ‖u‖ ≤ σ}.

Assume that a mapping f : Qσ → E satisfies the following two conditions:
(A) f is strongly increasing, that is, if u, v ∈ Qσ and if u ≤ v and v 6= u,

then f(v)− f(u) is an interior point of Q.
(B) f is strongly sublinear, that is, f(0) ≥ 0 and if u ∈ Qσ and u 6= 0,

then f(τu)− τf(u) is an interior point of Q for every 0 < τ < 1.
Then the mapping f has at most one positive fixed point.

In the proof of Theorem 5, we shall apply Theorem 4.4 with

E = Ce(D),

Q = Pe = Ce(D) ∩ P = {u ∈ Ce(D) : u ≥ 0 on D},

f = Hω.
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(2) If σ is a positive number, we let

(Pe)σ = {u ∈ Pe : u ≤ σ on D}.

We have only to prove Theorem 5 in the space (Pe)σ for every σ > 0. Indeed,
if u1 and u2 are two positive solutions of problem (0.4), then one can find a
constant σ > 0 such that u1, u2 ≤ σ on D, so that u1, u2 ∈ (Pe)σ.

If we take a constant ω = ω(σ) > 0 given in condition (R)σ, then we have
the following:

Lemma 4.5. The operator Hω maps (Pe)σ into Pe.

Proof. Let u be an arbitrary function in (Pe)σ. Then we have by condition
(R)σ with ξ = u and η = 0 and condition (S2)

F (u) ≥ F (0)− ωu ≥ −ωu on D,

so that
ωu+ F (u) ≥ 0 on D.

Hence it follows from an application of Proposition 1.6 that

Hω(u) = Kω(ωu+ F (u)) ∈ Pe.

Moreover we have the following:

Lemma 4.6. The operator Hω : (Pe)σ −→ Pe is strongly increasing.

Proof. Lemma 4.6 follows by combining Lemma 4.1 and Proposition
1.6.

Lemma 4.7. The operator Hω : (Pe)ω −→ Pe is strongly sublinear.

Proof. Let u(x) be an arbitrary function in (Pe)σ but u(x) 6= 0. Then we
have by condition (S){

f(x, τu(x)) ≥ τf(x, u(x)) if u(x) > 0,
f(x, τu(x)) = f(x, 0) ≥ 0 if u(x) = 0.

This implies that

ωτu+ F (τu)− τ(ωu+ F (u)) = F (τu)− τF (u) ≥ 0 and 6≡ 0 on D.

Hence it follows from an application of Proposition 1.6 that the function

Hω(τu)− τHω(u) = Kω(ωτu+ F (τu)− τ(ωu+ F (u)))



Semilinear Elliptic Boundary Value Problems 161

is an interior point of Pe.

(3) Combining Lemmas 4.5, 4.6 and 4.7, we have proved that the mapping
Hω : (Pe)σ → Pe satisfies conditions (A) and (B) of Theorem 4.4 with E =
Ce(D) and Q = Pe. Therefore Theorem 5 follows from an application of the
same theorem.

The proof of Theorem 5 is complete.

5. Proof of Theorem 6

We let
f(x, ξ) = λξ − h(x)ξp, x ∈ D, ξ ≥ 0.

(i) First it is easy to verify that the function f(x, ξ) satisfies condition (R)σ
for every σ > 0.

Indeed, we have, for all x ∈ D and 0 ≤ η < ξ ≤ σ,

f(x, ξ)− f(x, η) = λ(ξ − η)− h(x)(ξp − ηp)

≥ λ(ξ − η)−max
x∈D

h(x)(ξp − ηp)

=
(
λ−max

x∈D
h(x)

(
ξp − ηp

ξ − η

))
(ξ − η)

>

(
λ−max

x∈D
h(x) · pσp−1

)
(ξ − η).

Thus, if we take a positive constant

ω = ω(σ, λ) = max
{

max
x∈D

h(x) · pσp−1 − λ, 1
}
,

then condition (R)σ is satisfied.
(ii) Secondly we show that the function f(x, ξ) satisfies condition (S).
It is clear that f(x, 0) = 0 on D, which verifies condition (S2). Further-

more, since h(x) ≥ 0 on D, we have, for all x ∈ D, ξ > 0 and 0 < τ < 1,

f(x, τξ) = λ(τξ)− h(x)(τξ)p

= τ(λξ − h(x)τp−1ξp)

≥ τ(λξ − h(x)ξp)

= τf(x, ξ).

This verifies condition (S1).
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(iii) Now we construct a positive solution u(λ) of problem (0.5) for every
λ1 < λ < λ̃1(D0(h)), and further show that, for any λ ≥ λ̃1(D0(h)), there
exists no positive solution of problem (0.5). We remark that the uniqueness of
positive solutions of problem (0.5) is an immediate consequence of Theorem
5.

(iii-a) First we begin with the following:

Lemma 5.1. If there exists a positive solution u(λ) ∈ C2(D) of problem
(0.5), then we have

λ > λ1.(5.1)

Proof. Let ψ1(x) be an eigenfunction corresponding to the eigenvalue λ1:{
Aψ1 = λ1ψ1 in D,
Bψ1 = 0 on ∂D.

By Theorem 0, one may assume that ψ1(x) > 0 in D.
Then it follows from an application of Green’s formula that

0 =
∫
D

(Au(λ)− λu(λ) + h(x)u(λ)p)ψ1dx

=
∫
D

u(λ)Aψ1 − λ
∫
D

u(λ)ψ1dx+
∫
D

h(x)u(λ)pψ1dx

−
∫
∂D

∂u(λ)
∂ν

ψ1dσ +
∫
∂D

u(λ)
∂ψ1

∂ν
dσ

= (λ1 − λ)
∫
D

u(λ)ψ1dx+
∫
∂D

h(x)u(λ)pψ1dx

+
∫
∂D

(
u(λ)

∂ψ1

∂ν
− ∂u(λ)

∂ν
ψ1

)
dσ.

(5.2)

However we recall that the functions u(λ) and ψ1 satisfy the following bound-
ary conditions:  ∂u(λ)

∂ν
u(λ)

∂ψ1
∂ν

ψ1

( a

b

)
=

(
0

0

)
on ∂D.

Thus it follows that ∣∣∣∣∣∣
∂u(λ)
∂ν

u(λ)
∂ψ1
∂ν

ψ1

∣∣∣∣∣∣ = 0 on ∂D,

since (a, b) 6= (0, 0) on ∂D.
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Therefore we obtain from formula (5.2) that

(λ1 − λ)
∫
D

u(λ)ψ1dx+
∫
D

h(x)u(λ)pψ1dx = 0,

so that

λ− λ1 =
∫
D h(x)u(λ)pψ1dx∫

D u(λ)ψ1dx
> 0.

This proves inequality (5.1).

(iii-b) Secondly we associate with problem (0.5) a nonlinear mapping F (λ, u)
of R× C2+θ

B (D) into Cθ(D) as follows:

F : R× C2+θ
B (D) −→ Cθ(D)

(λ, u) 7−→ Au− λu+ h(x)up.

It is clear that a function u ∈ C2+θ(D) is a solution of problem (0.5) if and
only if F (λ, u) = 0.

The next lemma proves the existence of positive solutions of problem (0.5)
near the point (λ1, 0):

Lemma 5.2. There exists a positive bifurcation solution curve (λ, u(λ))
of the equation F (λ, u) = 0 starting at (λ1, 0).

Lemma 5.2 follows from an application of Theorem 1. Indeed it is easy to
see that the mapping G(λ, u) = h(x)up satisfies conditions (i) through (iv) of
the same theorem, since p > 1.

(iii-c) Thirdly, by using the implicit function theorem we show that there
exists a critical value λ(h) ∈ (λ1,∞) such that one can extend the above
bifurcation solution curve (λ, u(λ)) to all λ1 < λ < λ(h):

Lemma 5.3. There exists a constant λ(h) ∈ (λ1,∞) such that we have a
positive solution (λ, u(λ)) of the equation F (λ, u) = 0 for all λ1 < λ < λ(h).

Proof. By applying Theorem 1.1 to our situation, we obtain that the
Fréchet derivative

Fu(λ, u(λ)) : C2+θ
B (D) −→ Cθ(D)

v 7−→ Av − λv + ph(x)u(λ)p−1v

is a Fredholm operator with index zero. Hence, in order to prove the lemma it
suffices to show that Fu(λ, u(λ)) is injective. Indeed, by using the implicit func-
tion theorem one can find a constant λ(h) ∈ (λ1,∞) such that F (λ, u(λ)) = 0
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and the derivative Fu(λ, u(λ)) is an algebraic and topological isomorphism for
all λ1 < λ < λ(h).

The next claim proves the injectivity and hence surjectivity of Fu(λ, u(λ)):

Claim 1. We define a densely defined, closed linear operator U(λ) :
L2(D)→ L2(D) as follows.

(a) The domain of definition D(U(λ)) is the space

D(U(λ)) = {v ∈ H2,2(D) : Bv = 0 on ∂D}.

(b) U(λ)v = Av + ph(x)u(λ)p−1v, v ∈ D(U(λ)).
Then the first eigenvalue µ1(λ) of U(λ) − λI is positive for all λ1 < λ <

λ(h).

Proof. Let µ1(λ) and v1(λ) be the first eigenvalue and associated eigen-
function of U(λ)− λI, respectively:

(U(λ)− λI)v1(λ) = µ1(λ)v1(λ),

or equivalently{
(A− λ+ ph(x)u(λ)p−1)v1(λ) = µ1(λ)v1(λ) in D,
Bv1(λ) = 0 on ∂D.

By Theorem 0, one may assume that v1(λ) > 0 in D. Then we have by Green’s
formula

µ1(λ)
∫
D

u(λ)v1(λ)dx =
∫
D

(
Av1(λ)− λv1(λ) + ph(x)u(λ)p−1v1(λ)

)
u(λ)dx

=
∫
D

v1(λ)(A− λ)u(λ)dx+ p

∫
D

h(x)v1(λ)u(λ)pdx

−
∫
∂D

∂v1(λ)
∂ν

u(λ)dσ +
∫
∂D

v1(λ)
∂u(λ)
∂ν

dσ

= −
∫
D

h(x)u(λ)pv1(λ)dx+ p

∫
D

h(x)v1(λ)u(λ)pdx

+
∫
∂D

(
v1(λ)

∂u(λ)
∂ν

− ∂v1(λ)
∂ν

u(λ)
)
dσ

= (p− 1)
∫
D

h(x)u(λ)pv1(λ)dx.

Indeed, it suffices to note that the functions u(λ) and v1(λ) satisfy the following
boundary conditions: ∂u(λ)

∂ν
u(λ)

∂v1(λ)
∂ν

v1(λ)

( a

b

)
=

(
0

0

)
on ∂D.
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Therefore we obtain that

µ1(λ) =
(p− 1)

∫
D h(x)u(λ)pv1(λ)dx∫
D u(λ)v1(λ)dx

> 0,

since p > 1 and h(x) ≥ 0 in D.

The proof of Lemma 5.3 is complete.

By Lemma 5.3, we have a positive bifurcation solution curve (λ, u(λ)) of
the equation F (λ, u) = 0 for all λ1 < λ < λ(h). Then it is easy to see that
the solution curve u(λ) is of class C1 with respect to λ, and further that it is
increasing in λ and also blows up as λ→ λ(h), just as in [1, Theorem 25.4].

(iii-d) Finally we prove that there exists no positive solution of problem
(0.5) for any λ ≥ λ̃1(D0(h)), and further that:

λ(h) = λ̃1(D0(h)).

First we begin with the following:

Lemma 5.4. If u(λ) ∈ C2(D) is a positive solution of problem (0.5) for
λ > λ1, then we have

λ < λ1(Di(h)), 1 ≤ i ≤ l.(5.3)

In particular, we have

λ(h) ≤ λ̃1(D0(h)).(5.4)

Proof. Let ϕ1 be an eigenfunction corresponding to the first eigenvalue
λ1(Di(h)) of the Dirichlet problem{

Aϕ1 = λ1(Di(h))ϕ1 in Di(h),

ϕ1 = 0 on ∂Di(h).
(0.6)

One may assume (cf. [26, Section 24.6, Theorem]) that ϕ1(x) > 0 in Di(h).
On the other hand, it follows that

Au(λ) = λu(λ) + h(x)u(λ)p = λu(λ) in Di(h),

since h(x) = 0 in Di(h).
Then we have, by a direct calculation,

N∑
i=1

∂

∂xi

u(λ)2
N∑
j=1

aij
∂

∂xj

(
ϕ1

u(λ)

) = −u(λ) ·Aϕ1 + ϕ1 ·Au(λ)

= −u(λ) · λ1(Di(h))ϕ1 + ϕ1 · λu(λ)

= (λ− λ1(Di(h)))u(λ) · ϕ1 in Di(h),
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so that

(λ− λ1(Di(h)))ϕ1 =
1

u(λ)

N∑
i=1

∂

∂xi

u(λ)2
N∑
j=1

aij
∂

∂xj

(
ϕ1

u(λ)

) in Di(h).

Therefore, by integration by parts it follows that

(λ− λ1(Di(h)))
∫
Di(h)

ϕ2
1dx

=
∫
Di(h)

N∑
i=1

∂

∂xi

u(λ)2
N∑
j=1

aij
∂

∂xj

(
ϕ1

u(λ)

) · ϕ1

u(λ)
dx

= −
∫
Di(h)

u(λ)2
N∑

i,j=1

aij
∂

∂xi

(
ϕ1

u(λ)

)
∂

∂xj

(
ϕ1

u(λ)

)
dx

< 0.

This proves inequality (5.3).
The proof of Lemma 5.4 is complete.

The next lemma proves the reverse inequality of inequality (5.4):

Lemma 5.5. We have

λ̃1(D0(h)) ≤ λ(h).(5.5)

Proof. (1) First it follows from an application of [14, Theorems 2 and 3]
that, for every λ1(D) < λ < λ̃1(D0(h)), one can find a positive solution φ(λ)
of the semilinear Dirichlet problem{

Aφ(λ)− λφ(λ) + h(x)φ(λ)p = 0 in D,
φ(λ) = 0 on ∂D,

and also a positive solution ψ(λ) of the semilinear Neumann problem{
Aψ(λ)− λψ(λ) + h(x)ψ(λ)p = 0 in D,
∂ψ(λ)
∂ν

= 0 on ∂D.

Then we obtain that the function ψ(λ) is a supersolution of problem (0.5),
since we have {

Aψ(λ)− λψ(λ) + h(x)ψ(λ)p = 0 in D,
Bψ(λ) = bψ(λ) ≥ 0 on ∂D.
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Further it follows that the function φε(λ) = εφ(λ) is a subsolution of problem
(0.5) for each 0 < ε < 1. Indeed, we have

Aφε(λ)− λφε(λ) + h(x)φε(λ)p

= ε(Aφ(λ)− λφ(λ) + h(x)εp−1φ(λ)p)
= εh(x)(εp−1 − 1)φ(λ)p

≤ 0 in D,

and also by the boundary point lemma

Bφε(λ) = aε
∂φ(λ)
∂ν

≤ 0 on ∂D.

Here we may choose a constant 0 < ε(λ) < 1 so small that

0 < ε(λ)φ(λ) ≤ ψ(λ) in D.

Therefore, applying Theorem 4 to our situation we can find a solution
u(λ) ∈ C2+θ(D) of problem (0.5) such that

0 < ε(λ)φ(λ) ≤ u(λ) ≤ ψ(λ) in D.

This proves that problem (0.5) has a positive solution u(λ) ∈ C2+θ(D) for
every λ1(D) < λ < λ̃1(D0(h)).

(2) The next claim asserts that a positive solution curve (λ, u(λ)) of the
equation F (λ, u) = 0 may bifurcate only at the point (λ1, 0) (cf. [1, Proposition
18.1]):

Claim 2. Assume that {(λj, uj)} is a sequence in the space R × C2(D)
such that

(a) λj ≥ 0, uj > 0 in D;

(b) F (λj, uj) = 0;

(c) (λj, uj)→ (λ, 0) in R× C2(D).

Then we have λ = λ1.

Proof. First we remark that the equation F (λj, uj) = 0 is equivalent to
the operator equation

uj = K(λjuj − hupj ) in C(D).(5.6)

If we let
vj =

uj
‖uj‖

,
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then we have {
vj ≥ 0 on D,
‖vj‖ = 1,

and also by equation (5.6)

vj − λKvj =
uj
‖uj‖

− λKuj
‖uj‖

=
1
‖uj‖

(uj − λjKuj) +
1
‖uj‖

(λj − λ)Kuj

= − 1
‖uj‖

K(hupj ) +
1
‖uj‖

(λj − λ)Kuj.

Hence it follows from condition (c) that

‖vj − λKvj‖ ≤ max
x∈D

h(x)‖K‖ ‖uj‖p−1 + |λj − λ| ‖K‖ → 0.

This implies that

0 ∈ (I − λK)S+,(5.7)

where S+ is the closed unit semi-sphere in C(D) defined by the formula

S+ = {u ∈ C(D) : u ≥ 0 on D, ‖u‖ = 1}.

However it is easy to see that the set (I − λK)S+ is closed in the space
C(D). Indeed, if {uj} is a sequence in S+ such that (I − λK)uj → v in C(D)
as j →∞, then, by the compactness of K, one may assume that the sequence
λKuj converges to some function ω in C(D). Hence we have{

uj ∈ S+,
uj = (I − λK)uj + λKuj −→ v + ω in C(D).

If we let
u = v + ω ∈ S+,

then it follows from the continuity of K that

ω = lim
j→∞

λKuj = λKu,

so that
v = u− ω = (I − λK)u ∈ (I − λK)S+.

This proves the closedness of (I − λK)S+.
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Thus we obtain from assertion (5.7) that there exists a function v1 ∈ S+

such that v1 = λKv1, that is,
v1 ≥ 0 on D,

‖v1‖ = 1,

Kv1 = 1
λ
v1.

In view of Theorem 1.7, this implies that

1
λ

= µ1 =
1
λ1
.

By virtue of inequality (5.3) and Claim 2, it is easy to see that

λ1 < λ1(D) < λ(h).

(3) Summing up, we have proved that problem (0.5) has a positive solution
u(λ) ∈ C2+θ(D) for every λ1 < λ < λ̃1(D0(h)). This proves the desired
inequality (5.5).

The proof of Theorem 6 is now complete.

Appendix: The Maximum Principle

Let D be a bounded domain of Euclidean space RN , with boundary ∂D,
and let A be a second-order elliptic differential operator with real coefficients
such that

Au(x) = −
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

N∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x),

where:

(1) aij ∈ C(RN), aij(x) = aji(x) and there exists a constant a0 > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2, x ∈ RN , ξ = (ξ1, ξ2, . . . , ξN) ∈ RN .

(2) bi ∈ C(RN), 1 ≤ i ≤ N .

(3) c ∈ C(RN) and c(x) ≥ 0 in D.
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First we have the following result:

Theorem A.1 (The weak maximum principle). Assume that a func-
tion u ∈ C(D) ∩ C2(D) satisfies one of the conditions

Au ≥ 0 and c > 0 in D;(a)

Au > 0 and c ≥ 0 in D.(b)

Then the function u may take its negative minimum only on the boundary
∂D.

Secondly we have the following (cf. [15, Chapter 2, Section 3, Theorem 6];
[20, Theorem 7.2.1]):

Theorem A.2 (The strong maximum principle). Assume that a
function u ∈ C(D) ∩ C2(D) satisfies the condition

Au ≥ 0 in D.

Then, if the function u attains its non-positive minimum at an interior point
of D, then it is constant.

Now assume that D is a domain of class C2, that is, each point of the
boundary ∂D has a neighborhood in which ∂D is the graph of a C2 function of
N−1 of the variables x1, x2, . . . , xN . We consider a function u ∈ C(D)∩C2(D)
which satisfies the condition

Au ≥ 0 in D,

and study the conormal derivative ∂u/∂ν at a point where the function u
takes its non-positive minimum.

The boundaly point lemma reads as follows:

Lemma A.3 (The boundary point lemma). Let D be a domain of
class C2. Assume that a function u ∈ C(D) ∩ C2(D) satisfies the condition

Au ≥ 0 in D,

and that there exists a point x′0 of the boundary ∂D such that{
u(x′0) = minx∈D u(x) ≤ 0,
u(x) > u(x′0), x ∈ D.

Then the conormal derivative ∂u/∂ν(x′0) of u at x′0, if it exists, satisfies
the condition

∂u

∂ν
(x′0) < 0.
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