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INCIDENCE COLORING OF REGULAR GRAPHS
AND COMPLEMENT GRAPHS

Pak-Kiu Sun

Abstract. Using a relation between domination number and incidence chromatic
number, we obtain necessary and sufficient conditions for r-regular graphs to be
(r + 1)-incidence colorable. Also, we determine the optimal Nordhaus-Gaddum
inequality for the incidence chromatic number.

1. INTRODUCTION

An incidence coloring of a graph G assigns a color to each incidence so that no two
adjacent incidences receive the same color. Since incidence coloring was introduced
[3], most of the researches were concentrated on establishing upper bounds on the
minimum number of colors, also known as the incidence chromatic number χi(G),
which can color all incidences. Therefore, to improve the lower bound on incidence
chromatic numbers for some classes of graphs is the main objective of this article.
In Section 2, a relation between domination number and incidence chromatic num-

ber will be established. We then use this relation to characterize (r + 1)-incidence
colorable r-regular graphs. Also, bounds on the incidence chromatic number of a
graph and its complement will be obtained in Section 3.
All graphs in this paper are simple and connected. Let V (G) and E(G) (or V and

E) be the vertex-set and edge-set of a graph G, respectively. Let the set of all neighbors
of a vertex u be NG(u) (or simplyN (u)). Similarly, for any S ⊆ V , the neighborhood
N (S) of S is {u | v ∈ S, uv ∈ E}. Moreover, the degree dG(u)(or simply d(u)) of
u is equal to |NG(u)| and the maximum degree of G is denoted by Δ(G) (or simply
Δ). All notations not defined in this paper can be found in the books [2, 15].
Let D(G) be a digraph induced from G by replacing each edge uv ∈ E(G) by

two opposite arcs −→uv and −→vu. According to Guiduli [6], incidence coloring of G is
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equivalent to proper coloring of D(G), where two distinct arcs −→uv and −→xy are adjacent
provided one of the following holds:

(1) u = x;
(2) v = x or y = u.

From this definition, the following global lower bound is obvious:

Proposition 1.1. [3]. For every graph G, χi(G) ≥ Δ(G) + 1.

The incidence coloring conjecture (ICC) states that χi(G) ≤ Δ(G) + 2 for all
graphs G [3]. Although Guiduli [6] showed that ICC is false by relating incidence
coloring to star arboricity [1] on Paley graphs, there are a lot of other classes of graphs
such as cubic graphs and outerplanar graphs satisfying the ICC [8, 9, 10, 12, 13, 14].

2. CHARACTERIZATION OF REGULAR GRAPHS

Our characterization of (r + 1)-incidence colorable r-regular graphs relies on a
relation between incidence chromatic number and domination number. A dominating
set S ⊆ V (G) of a graph G is a set such that every vertex in G − S has a neighbor
in S. The domination number γ(G) of G is the minimum cardinality of a dominating
set in G.

Proposition 2.1. [7]. If G is a graph, then γ(G) ≥
⌈ |V |

Δ+1

⌉
.

Proof. Let u be a vertex of G. The maximum number of vertices that u can
dominate is Δ + 1, hence we have γ(G) ≥

⌈ |V |
Δ+1

⌉
.

A star forest of a graph G is a spanning subgraph of G in which each component
is a star. A maximal star forest is a star forest with maximum number of edges.
Ferneyhough et al. [5] proved that the number of edges of a maximal star forest of a
graph G is equal to |V | − γ(G). We now use the domination number to establish a
lower bound on the incidence chromatic number of a graph. The following proposition
reformulates the ideas in [1, 10].

Proposition 2.2. If G is a graph, then χi(G) ≥ 2|E|
|V |−γ(G) .

Proof. To form the digraph D(G), each edge of G is divided into two arcs in
opposite directions. The total number of arcs of D(G) is therefore equal to 2|E|.
According to the definition of the adjacency of arcs, an independent set of arcs is a star
forest. Thus, a maximal independent set of arcs is a maximal star forest. We conclude
that the number of color classes required is at least 2|E|

|V |−γ(G)
.

Corollary 2.3. If G is an r-regular graph with χi(G) = r + 1, then γ(G) = |V |
r+1 .
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Proof. By Handshaking lemma, we have 2|E| = ∑
v∈V d(v) = r|V |. This equality

together with χi(G) = r + 1 simplify the inequality in Proposition 2.2 into γ(G) ≤
|V |
r+1 . Since the global lower bound on the domination number of a graph is

⌈ |V |
Δ+1

⌉

(Proposition 2.1), we conclude that the domination number of G is |V |
r+1 .

The square G2 of a graph G is the graph with vertex set V (G), and an edge
uv ∈ E(G2) if and only if there is a uv-path in G of length at most 2. The chromatic
number ofG2 is closely related to the incidence chromatic number ofG by the following
proposition. Let C−

G (u) (resp. C+
G (u)) be the set of colors assigned to the arcs going

into (resp. going out from) a vertex u of a graph G.

Proposition 2.4. [13]. Every graph G has χ(G2) = k if and only if there is a
k-incidence coloring of G with |C−

G (u)| = 1 for all u ∈ V .

Corollary 2.5. If G is an r-regular graph with χi(G) = r + 1, then χ(G2) =
χi(G) = r + 1.

Proof. SinceG is r-regular and only r+1 colors are available, we have |C−
G (u)| = 1

for all u ∈ V and thus χ(G2) = χi(G) = r + 1 by Proposition 2.4.

Recently, Wu [16] studied the order of the color classes in a vertex coloring of G2

and proved the following proposition.

Proposition 2.6. [16]. If G is an r-regular graph and σ is a proper (r + 1)-
vertex coloring of G2, then |σ−1(i)| = |σ−1(j)| for i, j ∈ {1, . . . , r + 1} where
σ−1(i) = {v ∈ V (G) | σ(v) = i}.
We now characterize the (r + 1)-incidence colorable r-regular graphs.

Theorem 2.7. If G is an r-regular graph, then χi(G) = χ(G2) = r + 1 if and
only if V (G) is a disjoint union of r + 1 dominating sets.

Proof. Suppose that χ(G2) = r + 1, and let σ be a proper (r + 1)-vertex coloring
of G2. It follows from Proposition 2.6 that |σ−1(i)| = |V |

r+1 for i ∈ {1, . . . , r + 1}.
For any two vertices u, v ∈ σ−1(i), we have N (u) ∩ N (v) = ∅. Also, neighbors of u

belong to r different color classes and thus |N (σ−1(i))| = r|V |
r+1 . As a result, σ

−1(i) is
a dominating set for i ∈ {1, . . . , r + 1} and σ−1(1), σ−1(2) . . . , σ−1(r + 1) are r + 1
disjoint dominating sets whose union is V (G).
Conversely, suppose that S1, . . . , Sr+1 are r +1 disjoint dominating sets of G such

that V (G) = S1 ∪ · · · ∪ Sr+1. By Corollary 2.3, the minimum order of these r + 1
sets is |V |

r+1 and hence |S1| = · · · = |Sr+1| = |V |
r+1 . Since Si is a dominating set for

i ∈ {1, . . . , r + 1}, it follows that |N (S1)| = |N (S2)| = · · · = |N (Sr+1)| = r|V |
r+1 .
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Therefore, we have N (u) ∩ N (v) = ∅ for any two vertices u, v ∈ Si. We color the
vertices in Si by color i for i ∈ {1, . . . , r + 1}, and this is a proper (r + 1)-vertex
coloring of G2. We can then conclude thanks to Corollary 2.5.

The conditions in Theorem 2.7 can be expressed in a more explicit form for cubic
graphs.

Theorem 2.8. If G is a cubic graph, then χi(G) = χ(G2) = 4 if and only if

(1) there exists a dominating set S with |S| = |V |
4 ,

(2) the graph G − S is a disjoint union of cycles C1 ∪ · · · ∪ Ck , where |Ci| = pi

and pi ≡ 0 (mod 3), and
(3) there exists a labeling of the vertices of each Ci by the list 234234 · · ·234 such

that two vertices (may come from different cycles) with the same label do not
have a common neighbor in S.

Proof. Suppose that χ(G2) = 4 and let σ be a proper 4-vertex coloring of G2. As
in the proof of Theorem 2.7, we obtain condition 1 with S = σ−1(1) and G − S is
a 2-regular graph. Thus, G − S is a disjoint union of cycles C1 ∪ · · · ∪ Ck for some
k and χ((G − S)2) = 3. It follows that the orders of the cycles C1, C2, . . . , Ck are
divisible by three and condition 2 is satisfied. To obtain condition 3, we label every
vertex u ∈ G − S by σ(u). If there are two vertices u and v with σ(u) = σ(v) and
having a common neighbor in S, then u and v are at distance two in G. This result
contradicts the fact that σ is a proper 4-vertex coloring of G2.
Conversely, suppose that G is a cubic graph that satisfies conditions 1,2 and 3, and

let σ be a mapping from V to {1, 2, 3, 4}. Since |S| = |V |
4 and |N (S)| = 3|V |

4 , any two
vertices from S do not have a common neighbor. We assign σ(u) = 1 for all u ∈ S
and σ(v) = i for all v ∈ G − S, where i is the labeling of v in condition 3. For any
two vertices x, y ∈ G−S with σ(x) = σ(y), x and y do not have a common neighbor
in S. Also, the shortest path between x and y in the graph G− S is of length at least
three. Therefore, N (x) ∩ N (y) = ∅ and σ is a proper 4-vertex coloring of G2.

Theorem 2.9. [10]. If G is a cubic graph, then χi(G) ≤ 5.

Theorem 2.8 together with Theorem 2.9 characterize the cubic graph G with
χi(G) = 5 also.

3. INCIDENCE COLORING OF A GRAPH AND ITS COMPLEMENT

The complement G of a graph G is the graph with vertex set V (G), and an edge
uv ∈ E(G) if and only if uv /∈ E(G). In 1956, Nordhaus and Gaddum [11] established
the following inequality which bounds the addition of χ(G) and χ(G).
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Theorem 3.1. [11]. If G is a graph with n vertices, then
⌈
2
√

n
⌉ ≤ χ(G) + χ(G) ≤ n + 1.

A total coloring of a graph G assigns a color to each vertex and edge of G such
that no two adjacent vertices or edges receive the same color, and the color of each
vertex u is distinct from the colors of its incident edges. The total chromatic number
χT (G) of a graph G is the minimum number of colors required for a total coloring
of G. Cook [4] established the following Nordhaus-Gaddum inequality for the total
chromatic number.

Theorem 3.2. [4]. If G is a graph with n vertices, then

n + 1 ≤ χT (G) + χT (G) ≤ 2n.

Also, these bounds are sharp for all values of n.

We next develop the Nordhaus-Gaddum inequality for the incidence chromatic
number.

Theorem 3.3. If G is a graph with n vertices and G �= Kn or Kn, then

n + 2 ≤ χi(G) + χi(G) ≤ 2n − 1.

Also, these bounds are sharp for all values of n.

Proof. As G (and also G) is not equal to Kn, it follows that χi(G) ≥ Δ(G) + 1
and χi(G) ≥ Δ(G) + 1. Hence, we have

χi(G) + χi(G) ≥ Δ(G) + 1 + Δ(G) + 1(1)

≥
∑

dG(u)
n

+
∑

dG(u)
n

+ 2(2)

=
n(n − 1)

n
+ 2

= n + 1.

If χi(G) + χi(G) = n + 1, then inequalities (1) and (2) become equality and thus

Δ(G) =
∑

dG(u)
n

,(3)

Δ(G) =
∑

dG(u)
n

,(4)

χi(G) = Δ(G) + 1,(5)

χi(G) = Δ(G) + 1.(6)
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Equalities (3) and (4) imply that G and G are regular graphs. Let G be an r-regular
graph and hence, G is an (n−r−1)-regular graph. Equalities (5) and (6) together with
Corollary 2.3 implies that n

r+1 and
n

n−r are both integers, which is a contradiction. We
conclude that χi(G) + χi(G) ≥ n + 2.
Since G and G are subgraphs of Kn, it follows that χi(G)+ χi(G) ≤ 2χi(Kn) =

2n. Suppose that χi(G) = χi(G) = n. A vertex u ∈ V (G) of degree dG(u) equal
to n − 1 implies dG(u) = 0 and thus, χi(G) = χi(G − u) ≤ n − 1. The same
argument applied to G shows similar result. Therefore, 0 < dG(u), dG(u) < n− 1 for
all u ∈ V (G).
Let V (G) = {v1, . . . , vn}, and let A(G) be the set of arcs of digraph D(G). We

assign color i to the arcs −−→vjvi ∈ A(G) ∪ A(G) for all i, j ∈ {1, . . . , n}. If there is
a vertex vm ∈ V (G) with |NG(vm) ∪ NG(vi)| ≤ n − 1 for all vi ∈ NG(vm), then
there exists a color ci ∈ {1, . . . , n}\{C−

G(vi) ∪ C+
G (vi) ∪ C+

G (vm)}. We then recolor
the arcs −−→vivm with ci for all i, the arcs of D(G) are now properly colored without
color m and hence χi(G) ≤ n− 1. Otherwise, there is a vertex vj ∈ N (vm) such that
|NG(vm) ∪ NG(vj)| = n, which implies |NG(vm) ∩ NG(vj)| = 0. Therefore, we can
assign color j to the arcs −−→vivm ∈ A(G) for all vi ∈ NG(vm) and thus χi(G) ≤ n − 1.
We conclude that χi(G) + χi(G) ≤ 2n − 1 for all graphs G with n vertices.
Finally, the graph G = K1,n−1 and its complement G = Kn−1 ∪ {u}, where

dG(u) = 0, form an example with χi(G) + χi(G) = 2n − 1. On the other hand, if
G = Kn − e, where e ∈ E(Kn), then χi(G) + χi(G) = n + 2.

Note that when n is odd, the complementary pairG = K1,n−1 andG = Kn−1∪{u}
also attains the upper bound in Theorem 3.2. This result reveals another similarity
between total coloring and incidence coloring.
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