
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 6, pp. 2197-2202, December 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

AN ELEMENTARY APPROACH TO
((p−1)/2
(p−1)/4

)
modulo p2

Hao Pan

Abstract. We give an elementary proof of the well-known congruence( p−1
2

p−1
4

)
≡ 2p−1 + 1

2

(
2a− p

2a

)
(mod p2),

where p ≡ 1 (mod 4) is prime and p = a2 + b2 with a ≡ 1 (mod 4).

Let p be a prime with p ≡ 1 (mod 4). Then we know that p can be uniquely
written as p = a2 + b2 where a ≡ 1 (mod 4) and b > 0. A classical result of Gauss
says that the binomial coefficient

(1)
( p−1

2
p−1
4

)
≡ 2a (mod p).

In fact, using the facts

(2)
p−1∑
x=1

xk ≡
{
−1 (mod p), if p − 1 | k

0 (mod p), if p − 1 � k,

and

(3) x
p−1
2 ≡

(
x

p

)
(mod p)

where
( )

is the Legendre symbol, we have

( p−1
2

p−1
4

)
≡ −

p−1∑
x=1

x
p−1
2 (x2 + 1)

p−1
2 ≡ −

p−1∑
x=1

(
x(x2 + 1)

p

)
(mod p).

Thus (1) immediately follows from the formula (cf. [1, Theorem 6.2.9])
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(4)
p−1∑
x=1

(
x(x2 + 1)

p

)
= −2a.

Furthermore, Beukers conjectured a stronger version of (1):

(5)
(p−1

2
p−1
4

)
≡ 2p−1 + 1

2

(
2a− p

2a

)
(mod p2).

This conjecture was confirmed by Chowla, Dwork and Evans [2] (or see [1, Theorem
9.4.3]). Chowla, Dwork and Evans’ proof doesn’t follow the way we did above. In
fact, they used the Gross-Koblitz formula, and considered(p−1

2
p−1
4

)
= − Γp(p+1

2 )

Γp(
p+3
4 )2

where Γp is the p-adic gamma function.
The Gross-Koblitz formula establishes a natural connection between the p-adic

gamma functions and the Gauss sums. However, the Gross-Koblitz formula is a very
deep result in the p-adic theory. We may ask whether there exists an elementary proof
of (5), which only uses (4). The main purpose of this note is to give such a proof.
That is, here we view

((p−1)/2
(p−1)/4

)
as the coefficient of xp−1 of x

p−1
2 (x2 + 1)

p−1
2 , rather

than the product of gamma functions.
Now suppose that p ≡ 1 (mod 4) and p = a2 + b2 with a ≡ 1 (mod 4). We need

the following extension of (2):

(6)
p−1∑
x=1

xkp ≡
{

p − 1 (mod p2), if p− 1 | k

0 (mod p2), if p− 1 � k.

In fact, letting g be a primitive root of p2, for every 1 ≤ x ≤ p − 1, there exists
1 ≤ j ≤ p − 1 such that gj ≡ x (mod p), i.e., gj + puj ≡ x (mod p2) for some
uj ∈ Z. Since

(gj + puj)p = gjp +
p∑

l=1

(
p

l

)
gjl(puj)p−l ≡ gjp (mod p2),

(6) easily follows. Thus we get that

(p−1)
(p−1

2
p−1
4

)
≡

p−1∑
x=1

x
p(p−1)

2 (x2p+1)
p−1
2 =

p−1∑
x=1

x
p(p−1)

2 (xp+i)
p−1
2 (xp−i)

p−1
2 (mod p2),

where i =
√−1. With help of the fact(

p − 1
k

)
=

k∏
j=1

p − k

k
≡ (−1)k (mod p),
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we have

xp ± i = (x ± i)p −
p−1∑
k=1

(
p

k

)
(±i)kxp−k ≡ (x ± i)p + p

p−1∑
k=1

(∓i)k

k
xp−k (mod p2).

So
p−1∑
x=1

x
p(p−1)

2 (xp + i)
p−1
2 (xp − i)

p−1
2

≡
p−1∑
x=1

x
p(p−1)

2

(
(x + i)p + p

p−1∑
k=1

(−i)kxp−k

k

) p−1
2

·
(

(x − i)p + p

p−1∑
k=1

ikxp−k

k

) p−1
2

≡
p−1∑
x=1

x
p(p−1)

2

(
(x + i)

p(p−1)
2 +

p(p− 1)
2

(x + i)
p(p−3)

2

p−1∑
k=1

(−i)kxp−k

k

)

·
(

(x − i)
p(p−1)

2 +
p(p− 1)

2
(x − i)

p(p−3)
2

p−1∑
k=1

ikxp−k

k

)

≡
p−1∑
x=1

x
p(p−1)

2 (x2 + 1)
p(p−1)

2 − p

2

p−1∑
x=1

x
p(p−1)

2 (x − i)p(x2 + 1)
p(p−3)

2

p−1∑
k=1

(−i)kxp−k

k

− p

2

p−1∑
x=1

x
p(p−1)

2 (x + i)p(x2 + 1)
p(p−3)

2

p−1∑
k=1

ikxp−k

k
(mod p2).

On the other hand, since

x
p(p−1)

2 =
(

x
p−1
2 −

(
x

p

)
+

(
x

p

))p

≡
(

x

p

)p

=
(

x

p

)
(mod p2),

we have
p−1∑
x=1

x
p(p−1)

2 (x2 + 1)
p(p−1)

2 ≡
p−1∑
x=1

(
x(x2 + 1)

p

)
= −2a (mod p2).

And
p−1∑
x=1

x
p(p−1)

2 (x ± i)p(x2 + 1)
p(p−3)

2

p−1∑
k=1

(±i)kxp−k

k

≡
p−1∑
x=1

x
p−1
2 (x ± i)

p−3
2∑

j=0

( p−3
2

j

)
x2j

p−1∑
k=1

(±i)kxp−k

k

≡− i

p−5
4∑

j=0

( p−3
2

j

)
i2j+p+1

2

2j + p+1
2

−
p−5
4∑

j=0

(p−3
2

j

)
i2j+p+3

2

2j + p+3
2
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− i

p−3
2∑

j=p−1
4

( p−3
2

j

)
i2j−p−3

2

2j − p−3
2

−
p−3
2∑

j=p−1
4

( p−3
2

j

)
i2j−p−5

2

2j − p−5
2

(mod p),

where we used (2) in the last step. Clearly,
p−3
2∑

j=p−1
4

(p−3
2

j

)
i2j−p−3

2

2j − p−3
2

=

p−5
4∑

j=0

(p−3
2

j

)
i

p−3
2

−2j

p−3
2 − 2j

≡
p−5
4∑

j=0

(p−3
2

j

)
i2j+p+1

2

2j + p+3
2

(mod p),

and similarly
p−3
2∑

j=p−1
4

(p−3
2

j

)
i2j−p−5

2

2j − p−5
2

≡
p−5
4∑

j=0

(p−3
2

j

)
i2j+p+3

2

2j + p+1
2

(mod p).

Hence we get that

(p− 1)
(p−1

2
p−1
4

)
≡ −2a − 4p(−1)

p−1
4

p−5
4∑

j=0

(−1)j

( p−3
2

j

)(
1

4j + 1
+

1
4j + 3

)
(mod p2).

Since (p − 1)−1 ≡ −1 − p (mod p2), it suffices to show that

(7) 4(−1)
p−1
4

p−5
4∑

j=0

(−1)j

( p−3
2

j

)
1

4j + 1
≡

(
2p−1 − 1

p
− 2

)
a (mod p)

and

(8)

p−5
4∑

j=0

(−1)j

( p−3
2

j

)
1

4j + 3
≡ −(−1)

p−1
4

8a
(mod p).

Note that
n∑

j=0

(
n

j

)
(−1)j

uj + v
=

∫ 1

0
tv−1(1 − tu)ndt =

Γ(n + 1)Γ( v
u)

uΓ( v
u + n + 1)

,

and
p−3
2∑

j=p−1
4

( p−3
2

j

)
(−1)j

4j + 3
=

p−5
4∑

j=0

( p−3
2

j

)
(−1)

p−3
2

−j

4(p−3
2 − j) + 3

≡
p−5
4∑

j=0

(p−3
2

j

)
(−1)j

4j + 3
(mod p).
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We have

2

p−5
4∑

j=0

(p−3
2

j

)
(−1)j

4j + 3
≡

p−3
2∑

j=0

(p−3
2

j

)
(−1)j

4j + 3
=

1

3
( 2p−3

4
p−3
2

)

≡ 1

3
( 3p−3

4
p−3
2

) =
p+3
4

p−1
2

·
(p−1

p−1
4

)
3
(p−1

p−1
2

)( p−1
2

p−1
4

) ≡ −(−1)
p−1
4

4a
(mod p).

So (8) is done. Also, by the Chu-Vandermonde identity,

p−5
4∑

j=0

(p−3
2

j

)
(−1)j

4j + 1
≡ −1

4

p−5
4∑

j=0

( p−3
2

j

)
(−1)j

p−1
4 − j

≡ (−1)
p−1
4

4p

p−5
4∑

j=0

( p−3
2

j

)(
p

p−1
4 −j

)
=

(−1)
p−1
4

4p

((
p + p−3

2
p−1
4

)
−

( p−3
2

p−1
4

))

=
(−1)

p−1
4

4p

(p−3
2

p−1
4

)( p−3
2∏

j=p−1
4

p + j

j
− 1

)
≡ (−1)

p−1
4

8

(p−1
2

p−1
4

) p−3
2∑

j=p−1
4

1
j

(mod p).

Clearly,

2 +

p−3
2∑

j=p−1
4

1
j
≡ 4

p−1
2∑

j=p+3
4

1
4j

≡ −4
p

∑
1≤k≤p−1

k≡3 (mod 4)

(
p

k

)
(−1)k (mod p).

And

4
p

∑
1≤k≤p−1

k≡3 (mod 4)

(
p

k

)
(−1)k =

i(1− i)p − 2p − i(1 + i)p

p

= − 2
p+1
2 (2

p−1
2 − (−1)

p−1
4 )

p
= −2

(
2

p−1
2 −

(
2
p

)
+

(
2
p

))
· 2

p−1
2 − (

2
p

)
p

≡−
(

2
p−1
2 −

(
2
p

)
+ 2

(
2
p

))
· 2

p−1
2 − (

2
p

)
p

= −2p−1 − 1
p

(mod p).

Thus we get (7).
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