TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 6, pp. 2197-2202, December 2012
This paper is available online at http ://journal.taiwanmathsoc.org.tw

AN ELEMENTARY APPROACH TO $\binom{(p-1) / 2}{(p-1) / 4}$ modulo p^{2}

Hao Pan

Abstract. We give an elementary proof of the well-known congruence

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv \frac{2^{p-1}+1}{2}\left(2 a-\frac{p}{2 a}\right)\left(\bmod p^{2}\right),
$$

where $p \equiv 1(\bmod 4)$ is prime and $p=a^{2}+b^{2}$ with $a \equiv 1(\bmod 4)$.

Let p be a prime with $p \equiv 1(\bmod 4)$. Then we know that p can be uniquely written as $p=a^{2}+b^{2}$ where $a \equiv 1(\bmod 4)$ and $b>0$. A classical result of Gauss says that the binomial coefficient

$$
\begin{equation*}
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv 2 a(\bmod p) \tag{1}
\end{equation*}
$$

In fact, using the facts

$$
\sum_{x=1}^{p-1} x^{k} \equiv \begin{cases}-1(\bmod p), & \text { if } p-1 \mid k \tag{2}\\ 0(\bmod p), & \text { if } p-1 \nmid k,\end{cases}
$$

and

$$
\begin{equation*}
x^{\frac{p-1}{2}} \equiv\left(\frac{x}{p}\right)(\bmod p) \tag{3}
\end{equation*}
$$

where (-) is the Legendre symbol, we have

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv-\sum_{x=1}^{p-1} x^{\frac{p-1}{2}}\left(x^{2}+1\right)^{\frac{p-1}{2}} \equiv-\sum_{x=1}^{p-1}\left(\frac{x\left(x^{2}+1\right)}{p}\right)(\bmod p)
$$

Thus (1) immediately follows from the formula (cf. [1, Theorem 6.2.9])
Received February 15, 2012, accepted March 20, 2012.
Communicated by Wen-Ching Li.
2010 Mathematics Subject Classification: Primary 11A07; Secondary 11B65.
Key words and phrases: Binomial coefficient, Legendre symbol.
The author is supported by National Natural Science Foundation of China (Grant No. 10901078).

$$
\begin{equation*}
\sum_{x=1}^{p-1}\left(\frac{x\left(x^{2}+1\right)}{p}\right)=-2 a \tag{4}
\end{equation*}
$$

Furthermore, Beukers conjectured a stronger version of (1):

$$
\begin{equation*}
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv \frac{2^{p-1}+1}{2}\left(2 a-\frac{p}{2 a}\right)\left(\bmod p^{2}\right) \tag{5}
\end{equation*}
$$

This conjecture was confirmed by Chowla, Dwork and Evans [2] (or see [1, Theorem 9.4.3]). Chowla, Dwork and Evans' proof doesn't follow the way we did above. In fact, they used the Gross-Koblitz formula, and considered

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}}=-\frac{\Gamma_{p}\left(\frac{p+1}{2}\right)}{\Gamma_{p}\left(\frac{p+3}{4}\right)^{2}}
$$

where Γ_{p} is the p-adic gamma function.
The Gross-Koblitz formula establishes a natural connection between the p-adic gamma functions and the Gauss sums. However, the Gross-Koblitz formula is a very deep result in the p-adic theory. We may ask whether there exists an elementary proof of (5), which only uses (4). The main purpose of this note is to give such a proof. That is, here we view $\binom{(p-1) / 2}{(p-1) / 4}$ as the coefficient of x^{p-1} of $x^{\frac{p-1}{2}}\left(x^{2}+1\right)^{\frac{p-1}{2}}$, rather than the product of gamma functions.

Now suppose that $p \equiv 1(\bmod 4)$ and $p=a^{2}+b^{2}$ with $a \equiv 1(\bmod 4)$. We need the following extension of (2):

$$
\sum_{x=1}^{p-1} x^{k p} \equiv \begin{cases}p-1\left(\bmod p^{2}\right), & \text { if } p-1 \mid k \tag{6}\\ 0\left(\bmod p^{2}\right), & \text { if } p-1 \nmid k\end{cases}
$$

In fact, letting g be a primitive root of p^{2}, for every $1 \leq x \leq p-1$, there exists $1 \leq j \leq p-1$ such that $g^{j} \equiv x(\bmod p)$, i.e., $g^{j}+p u_{j} \equiv x\left(\bmod p^{2}\right)$ for some $u_{j} \in \mathbb{Z}$. Since

$$
\left(g^{j}+p u_{j}\right)^{p}=g^{j p}+\sum_{l=1}^{p}\binom{p}{l} g^{j l}\left(p u_{j}\right)^{p-l} \equiv g^{j p}\left(\bmod p^{2}\right)
$$

(6) easily follows. Thus we get that

$$
(p-1)\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left(x^{2 p}+1\right)^{\frac{p-1}{2}}=\sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left(x^{p}+i\right)^{\frac{p-1}{2}}\left(x^{p}-i\right)^{\frac{p-1}{2}}\left(\bmod p^{2}\right)
$$

where $i=\sqrt{-1}$. With help of the fact

$$
\binom{p-1}{k}=\prod_{j=1}^{k} \frac{p-k}{k} \equiv(-1)^{k}(\bmod p)
$$

we have

$$
x^{p} \pm i=(x \pm i)^{p}-\sum_{k=1}^{p-1}\binom{p}{k}(\pm i)^{k} x^{p-k} \equiv(x \pm i)^{p}+p \sum_{k=1}^{p-1} \frac{(\mp i)^{k}}{k} x^{p-k}\left(\bmod p^{2}\right) .
$$

So

$$
\begin{aligned}
& \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left(x^{p}+i\right)^{\frac{p-1}{2}}\left(x^{p}-i\right)^{\frac{p-1}{2}} \\
\equiv & \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left((x+i)^{p}+p \sum_{k=1}^{p-1} \frac{(-i)^{k} x^{p-k}}{k}\right)^{\frac{p-1}{2}} \cdot\left((x-i)^{p}+p \sum_{k=1}^{p-1} \frac{i^{k} x^{p-k}}{k}\right)^{\frac{p-1}{2}} \\
\equiv & \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left((x+i)^{\frac{p(p-1)}{2}}+\frac{p(p-1)}{2}(x+i)^{\frac{p(p-3)}{2}} \sum_{k=1}^{p-1} \frac{(-i)^{k} x^{p-k}}{k}\right) \\
& \cdot\left((x-i)^{\frac{p(p-1)}{2}}+\frac{p(p-1)}{2}(x-i)^{\frac{p(p-3)}{2}} \sum_{k=1}^{p-1} \frac{i^{k} x^{p-k}}{k}\right) \\
\equiv & \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left(x^{2}+1\right)^{\frac{p(p-1)}{2}}-\frac{p}{2} \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}(x-i)^{p}\left(x^{2}+1\right)^{\frac{p(p-3)}{2}} \sum_{k=1}^{p-1} \frac{(-i)^{k} x^{p-k}}{k} \\
& -\frac{p}{2} \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}(x+i)^{p}\left(x^{2}+1\right)^{\frac{p(p-3)}{2}} \sum_{k=1}^{p-1} \frac{i^{k} x^{p-k}}{k}\left(\bmod p^{2}\right) .
\end{aligned}
$$

On the other hand, since

$$
x^{\frac{p(p-1)}{2}}=\left(x^{\frac{p-1}{2}}-\left(\frac{x}{p}\right)+\left(\frac{x}{p}\right)\right)^{p} \equiv\left(\frac{x}{p}\right)^{p}=\left(\frac{x}{p}\right)\left(\bmod p^{2}\right)
$$

we have

$$
\sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}\left(x^{2}+1\right)^{\frac{p(p-1)}{2}} \equiv \sum_{x=1}^{p-1}\left(\frac{x\left(x^{2}+1\right)}{p}\right)=-2 a\left(\bmod p^{2}\right) .
$$

And

$$
\begin{aligned}
& \sum_{x=1}^{p-1} x^{\frac{p(p-1)}{2}}(x \pm i)^{p}\left(x^{2}+1\right)^{\frac{p(p-3)}{2}} \sum_{k=1}^{p-1} \frac{(\pm i)^{k} x^{p-k}}{k} \\
\equiv & \sum_{x=1}^{p-1} x^{\frac{p-1}{2}}(x \pm i) \sum_{j=0}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} x^{2 j} \sum_{k=1}^{p-1} \frac{(\pm i)^{k} x^{p-k}}{k} \\
\equiv & -i \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j+\frac{p+1}{2}}}{2 j+\frac{p+1}{2}}-\sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j+\frac{p+3}{2}}}{2 j+\frac{p+3}{2}}
\end{aligned}
$$

$$
-i \sum_{j=\frac{p-1}{4}}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j-\frac{p-3}{2}}}{2 j-\frac{p-3}{2}}-\sum_{j=\frac{p-1}{4}}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j-\frac{p-5}{2}}}{2 j-\frac{p-5}{2}}(\bmod p)
$$

where we used (2) in the last step. Clearly,

$$
\sum_{j=\frac{p-1}{4}}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j-\frac{p-3}{2}}}{2 j-\frac{p-3}{2}}=\sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{i^{\frac{p-3}{2}-2 j}}{\frac{p-3}{2}-2 j} \equiv \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j+\frac{p+1}{2}}}{2 j+\frac{p+3}{2}}(\bmod p)
$$

and similarly

$$
\sum_{j=\frac{p-1}{4}}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j-\frac{p-5}{2}}}{2 j-\frac{p-5}{2}} \equiv \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{i^{2 j+\frac{p+3}{2}}}{2 j+\frac{p+1}{2}}(\bmod p) .
$$

Hence we get that

$$
(p-1)\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv-2 a-4 p(-1)^{\frac{p-1}{4}} \sum_{j=0}^{\frac{p-5}{4}}(-1)^{j}\binom{\frac{p-3}{2}}{j}\left(\frac{1}{4 j+1}+\frac{1}{4 j+3}\right)\left(\bmod p^{2}\right)
$$

Since $(p-1)^{-1} \equiv-1-p\left(\bmod p^{2}\right)$, it suffices to show that

$$
\begin{equation*}
4(-1)^{\frac{p-1}{4}} \sum_{j=0}^{\frac{p-5}{4}}(-1)^{j}\binom{\frac{p-3}{2}}{j} \frac{1}{4 j+1} \equiv\left(\frac{2^{p-1}-1}{p}-2\right) a(\bmod p) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\frac{p-5}{4}}(-1)^{j}\binom{\frac{p-3}{2}}{j} \frac{1}{4 j+3} \equiv-\frac{(-1)^{\frac{p-1}{4}}}{8 a}(\bmod p) \tag{8}
\end{equation*}
$$

Note that

$$
\sum_{j=0}^{n}\binom{n}{j} \frac{(-1)^{j}}{u j+v}=\int_{0}^{1} t^{v-1}\left(1-t^{u}\right)^{n} d t=\frac{\Gamma(n+1) \Gamma\left(\frac{v}{u}\right)}{u \Gamma\left(\frac{v}{u}+n+1\right)},
$$

and

$$
\sum_{j=\frac{p-1}{4}}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{j}}{4 j+3}=\sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{\frac{p-3}{2}-j}}{4\left(\frac{p-3}{2}-j\right)+3} \equiv \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{j}}{4 j+3}(\bmod p) .
$$

We have

$$
\begin{aligned}
& 2 \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{j}}{4 j+3} \equiv \sum_{j=0}^{\frac{p-3}{2}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{j}}{4 j+3}=\frac{1}{3\left(\frac{2 p-3}{\frac{p-3}{2}}\right)} \\
\equiv & \frac{1}{3\left(\begin{array}{l}
\left.\frac{3 p-3}{\frac{p-3}{2}}\right)
\end{array}\right.}=\frac{\frac{p+3}{4}}{\frac{p-1}{2}} \cdot \frac{\binom{p-1}{\frac{p-1}{4}}}{3\binom{p-1}{\frac{p-1}{2}}} \equiv-\frac{(-1)^{\frac{p-1}{4}} 4}{4 a}(\bmod p) .
\end{aligned}
$$

So (8) is done. Also, by the Chu-Vandermonde identity,

$$
\begin{aligned}
& \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{j}}{4 j+1} \equiv-\frac{1}{4} \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j} \frac{(-1)^{j}}{\frac{p-1}{4}-j} \\
\equiv & \frac{(-1)^{\frac{p-1}{4}}}{4 p} \sum_{j=0}^{\frac{p-5}{4}}\binom{\frac{p-3}{2}}{j}\binom{p}{\frac{p-1}{4}-j}=\frac{(-1)^{\frac{p-1}{4}}}{4 p}\left(\binom{p+\frac{p-3}{2}}{\frac{p-1}{4}}-\binom{\frac{p-3}{2}}{\frac{p-1}{4}}\right) \\
= & \frac{(-1)^{\frac{p-1}{4}}}{4 p}\binom{\frac{p-3}{2}}{\frac{p-1}{4}}\left(\prod_{j=\frac{p-1}{4}}^{\frac{p-3}{2}} \frac{p+j}{j}-1\right) \equiv \frac{(-1)^{\frac{p-1}{4}}}{8}\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \sum_{j=\frac{p-1}{4}}^{\frac{p-3}{4}} \frac{1}{j}(\bmod p) .
\end{aligned}
$$

Clearly,

$$
2+\sum_{j=\frac{p-1}{4}}^{\frac{p-3}{2}} \frac{1}{j} \equiv 4 \sum_{j=\frac{p+3}{4}}^{\frac{p-1}{2}} \frac{1}{4 j} \equiv-\frac{4}{p} \sum_{\substack{1 \leq k \leq p-1 \\ k \equiv 3(\bmod 4)}}\binom{p}{k}(-1)^{k}(\bmod p) .
$$

And

$$
\begin{aligned}
& \frac{4}{p} \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv 3 \\
(\bmod 4)}}\binom{p}{k}(-1)^{k}=\frac{i(1-i)^{p}-2^{p}-i(1+i)^{p}}{p} \\
= & -\frac{2^{\frac{p+1}{2}}\left(2^{\frac{p-1}{2}}-(-1)^{\frac{p-1}{4}}\right)}{p}=-2\left(2^{\frac{p-1}{2}}-\left(\frac{2}{p}\right)+\left(\frac{2}{p}\right)\right) \cdot \frac{2^{\frac{p-1}{2}}-\left(\frac{2}{p}\right)}{p} \\
\equiv & -\left(2^{\frac{p-1}{2}}-\left(\frac{2}{p}\right)+2\left(\frac{2}{p}\right)\right) \cdot \frac{2^{\frac{p-1}{2}}-\left(\frac{2}{p}\right)}{p}=-\frac{2^{p-1}-1}{p}(\bmod p) .
\end{aligned}
$$

Thus we get (7).

Acknowledgments

I am grateful to the anonymous referee for his/her very useful comments on this paper. I also thank Professor Zhi-Wei Sun for his helpful discussions.

References

1. B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi sums, Wiley, New York, 1998.
2. S. Chowla, B. Dwork and R. Evans, On the mod p^{2} determination of $\binom{(p-1) / 2}{(p-1) / 4}$, J. Number Theory, 24 (1986), 188-196.

Hao Pan
Department of Mathematics
Nanjing University
Nanjing 210093
P. R. China

E-mail: haopan79@yahoo.com.cn

