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ON CIRCULAR-L(2, 1)-EDGE-LABELING OF GRAPHS

Wensong Lin and Jianzhuan Wu

Abstract. Let m, j and k be positive integers with j ≥ k. An m-circular-
L(j, k)-edge-labeling of a graph G is an assignment f from {0, 1, . . . , m− 1} to
the edges of G such that, for any two edges e1 and e2, |f(e1) − f(e2)|m ≥ j if
e1 and e2 are adjacent, and |f(e1) − f(e2)|m ≥ k if e1 and e2 are at distance 2,
where |a|m = min{a, m− a}. The minimum m such that G has an m-circular-
L(j, k)-edge-labeling is defined as the circular-L(j, k)-edge-labeling number of
G, denoted by σ′

j,k(G). This paper determines the circular-L(2, 1)-edge-labeling
numbers of the infinite Δ-regular tree for Δ ≥ 2 and the n-dimensional cube for
n ∈ {2, 3, 4, 5}.

1. INTRODUCTION

Let j and k be two positive integers with j ≥ k. An L(j, k)-labeling of a graph G
is an assignment of nonnegative integers, called labels, to the vertices of G such that
the difference between labels of any two vertices at distance one is at least j, and the
difference between labels of any two vertices that are distance two apart is at least k.
Given a graph G, for an L(j, k)-labeling f of G, we define the span of f , span(f),
to be the absolute difference between the maximum and minimum vertex labels of f .
The L(j, k)-labeling number of G, denoted by λj,k(G), is the minimum span over all
L(j, k)-labelings of G.
Motivated from the channel assignment problem introduced by Hale [6], Griggs

and Yeh [5] first proposed and studied the L(2, 1)-labeling of a graph. Since then the
L(2, 1)-labelings and L(j, k)-labelings of graphs have been studied extensively, please
refer to the surveys [1, 4, 14].
One interesting variation of L(j, k)-labeling number is the so called circular-

L(j, k)-labeling number, which was introduced by Heuvel, Leese, and Shepherd in
[7].
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Let m, j and k be positive integers with j ≥ k. An m-circular-L(j, k)-labeling of
a graph G is an assignment f from {0, 1, . . . , m−1} to the vertices of G such that, for
any two vertices u and v, |f(u)−f(v)|m ≥ j if uv ∈ E(G), and |f(u)−f(v)|m ≥ k if
dG(u, v) = 2, where |a|m = min{a, m− a}. The minimumm such that G has an m-
circular-L(j, k)-labeling is called the circular-L(j, k)-labeling number of G, denoted
by σj,k(G).
Heuvel, Leese and Shepherd in [7] determined the circular-L(j, k)-labeling numbers

of triangular lattice and square lattice for any two positive integers j and k with j ≥ k.
The relationship between the circular-L(2, 1)-labeling number of a graph G and the
path covering number of its complement was revealed by Liu in [9]. Wu and Yeh
[13] showed that σj,1(T ) = 2j + Δ − 1 for any tree T with maximum degree Δ. In
[12, 11], it was proved that, for j ≥ k, σj,k(T ) = 2j + (Δ − 1)k for any tree T with
maximum degree Δ. The circular-L(j, k)-labeling numbers of cycles for j ≥ k were
completely determined in [11]. In [8], the circular-L(j, k)-labeling numbers of the
Cartesian product of two complete graphs, the direct product of two complete graphs
for j ≥ k were determined. Recently, the circular-L(2, 1)-labeling numbers of the
Cartesian products of three complete graphs were obtained in [10].
Let G = (V (G), E(G)) be a graph. Denote by L(G) the line graph of G. Let

Δ(G) denote the maximum degree of G and ΔL(G) the maximum edge degree of G
(or equivalently the maximum degree of L(G)). Let e1 and e2 be any two edges of
G. The distance between e1 and e2, denoted by d(e1, e2), is defined as the distance
between the corresponding two vertices in the line graph of G.
The edge version of L(j, k)-labeling and circular-L(j, k)-labeling of a graph G are

defined as the L(j, k)-labeling and the circular-L(j, k)-labeling of L(G), respectively.
The L(j, k)-edge-labeling number of G is denoted by λ′

j,k(G) and the circular-L(j, k)-
edge-labeling number of G is denoted by σ′

j,k(G).
The edge version of distance two labeling was first investigated by Georges and

Mauro in [3]. Several classes of graphs were studied by Georges and Mauro. Among
them, they determined the L(2, 1)-edge-labeling numbers of Δ-regular tree for Δ ≥ 2
and the n-dimensional cube for small n.
The following theorem was proved by Chen and Lin in [2].

Theorem 1.1. Let G be a simple graph and let Δ be the maximum degree of G.
Suppose Δ ≥ 2. If G is K1,3-free then, except the case that G is a 5-cycle and j = k,
we have λj,k(G) ≤ k�Δ2/2�+ jΔ− 1.

Since a line graph is K1,3-free, the upper bound for λj,k(G) in this theorem obvi-
ously holds for all line graphs, and hence λ′

j,k(G) ≤ k�Δ2
L/2� + jΔL − 1 holds for

any graph G.
With this result, Chen and Lin in [2] proved that the conjecture “λ2,1(G) ≤ Δ2(G)”

(Griggs and Yeh [5]) holds for all K1,3-free graphs and hence for all line graphs.
[3] and [2] are the only references we have found in the literature concerning the



On Circular-L(2, 1)-edge-labeling of Graphs 2065

L(j, k)-edge-labeling of graphs.
The following lemma was mentioned by Heuvel, Leese, and Shepherd in [7].

Lemma 1.1. For any graph G, we have λj,k(G) + 1 ≤ σj,k(G) ≤ λj,k(G) + j.

We would like to point out that even in the case when j = 2 and k = 1 it is not
easy to determine whether σ2,1(G) equals λ2,1(G) + 1 or λ2,1(G) + 2 provided that
λ2,1(G) is known. We obviously have the edge version of Lemma 1.1.

Lemma 1.2. For any graph G, we have λ′
j,k(G) + 1 ≤ σ′

j,k(G) ≤ λ′
j,k(G) + j.

In this paper, we determine the circular-L(2, 1)-edge-labeling numbers of the infi-
nite Δ-regular tree for any Δ ≥ 2 and the n-dimensional cube for n ∈ {2, 3, 4, 5}, and
as a consequence, the L(2, 1)-edge-labeling number of the 5-dimensional cube.
For a positive real number r, let S(r) denote the circle obtained from the interval

[0, r] by identifying 0 and r into a single point. For any x ∈ R, [x]r ∈ [0, r) denotes
the remainder of x upon division of r. For a, b ∈ S(r), the interval [a, b]r is defined
as [a, b]r = {x ∈ S(r) : 0 ≤ [x − a]r ≤ [b − a]r}. And similarly, the open interval
(a, b)r is defined as (a, b)r = {x ∈ S(r) : 0 < [x − a]r < [b − a]r}. The length of
the interval [a, b]r is equal to [b − a]r. Two points a, b ∈ S(r) partition S(r) into two
arcs: [a, b]r and [b, a]r. The circular distance between a and b, denoted by |a − b|r,
is the length of the shorter arc. In other words, |a − b|r = min{[a − b]r, [b − a]r} =
min{|a − b|, r − |a − b|}.
A set of points on S(r) is said to be (r, 2)-circular separated if any two el-

ements from the set are at circular distance at least 2 on S(r). A sequence of
points a1, a2, . . . , ak on S(r) are said to be in cyclic order if (a1, a2)r, (a2, a3)r, . . . ,

(ak−1, ak)r, (ak, a1)r are pairwise disjoint open intervals on S(r).

2. CIRCULAR-L(2, 1)-EDGE-LABELING NUMBERS OF Δ-REGULAR TREES

Let Δ(≥ 2) be any integer. A Δ-regular tree is an infinite tree with each vertex
having degreeΔ. Denote by T∞(Δ) the infiniteΔ-regular tree. If Δ = 2, then T∞(Δ)
is an infinite path and λ′

2,1(T∞(Δ)) = 4, σ′
2,1(T∞(Δ)) = 5. For Δ > 2, Georges and

Mauro proved the following.

Theorem 2.1. ([3]). Let Δ be a positive integer greater than 2. We have

λ′
2,1(T∞(Δ)) =

⎧⎪⎨
⎪⎩

2Δ + 1, if Δ = 3, 4,
2Δ + 2, if Δ = 5,
2Δ + 3, if Δ ≥ 6.

Hereafter in this section, we assume Δ > 2. Let e = xy be an edge and v a
vertex. The distance between e and v, d(e, v), is defined as min{d(x, v), d(y, v)}.
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Suppose we set a vertex v0 as the center of the tree T∞(Δ). If e = xy is an edge with
d(x, v0) + 1 = d(y, v0), then we call x the father of y and y a son of x. Our main
theorem in this section is the following.

Theorem 2.2. Let Δ be a positive integer greater than 2. We have

σ′
2,1(T∞(Δ)) =

⎧⎪⎨
⎪⎩

2Δ + 2, if Δ = 3,
2Δ + 3, if Δ = 4, 5,
2Δ + 4, if Δ ≥ 6.

Proof. By Theorems 2.1 and Lemma 1.2, we have 2Δ + 2 ≤ σ′
2,1(T∞(3)) ≤

2Δ + 3, 2Δ + 2 ≤ σ′
2,1(T∞(4)) ≤ 2Δ + 3, 2Δ + 3 ≤ σ′

2,1(T∞(5)) ≤ 2Δ + 4, and
2Δ+ 4 ≤ σ′

2,1(T∞(Δ)) ≤ 2Δ + 5 if Δ ≥ 6. The proof is split into the following four
cases.

Case 1. Δ = 3.
We show σ′

2,1(T∞(3)) = 2Δ+2 = 8 by giving an 8-circular-L(2, 1)-edge-labeling
of T∞(3). Let v0 be a vertex of T∞(3). We shall label its edges in the order according
to the distance from v0 to the edges. We first label the 3 edges at distance 0 from v0

(i.e. the edges incident to v0), and then label the 6 edges at distance 1 from v0, and so
on. Clearly the first three edges can be labeled properly. Suppose all edges at distance
less than i from v0 have been labeled. We then label the edges at distance i from v0

in a greedy way. For any two adjacent edges e and e′ at distance i from v0, notice that
there are only three labeled edges, one at distance 1 from them and two at distance 2
from them, thus the number of labels that are forbidden for these two edges is at most 5.
It follows that there are at least three labels available for e and e′ and therefore we can
label them properly. In this way, one can construct an 8-circular-L(2, 1)-edge-labeling
of T∞(3). Therefore σ′

2,1(T∞(3)) = 2Δ + 2 = 8.

Case 2. Δ = 4.
We show σ′

2,1(T∞(4)) = 2Δ + 3 = 11 by proving that there is no 10-circular-
L(2, 1)-edge-labeling of T∞(4). Suppose to the contrary that f is a 10-circular-L(2, 1)-
edge-labeling of T∞(4). We shall reach a contradiction. Suppose the labels used by f

are 0, 1, . . . , 9.
Let v be any vertex and let e0, e1, e2, e3 be the four edges incident to v. Then the

set of labels assigned to them should be (10, 2)-circular separated. Without loss of
generality, assume that f(e0), f(e1), f(e2), f(e3) occur in S(10) in this cyclic order.
For i = 0, 1, 2, 3, let xi denote the number of integer points in the open interval
(f(ei), f(ei+1))10, where “+”s in the subscripts are taken modulo 4. Then 1 ≤ xi ≤ 3
for all i = 0, 1, 2, 3 and x0 + x1 + x2 + x3 = 10 − 4 = 6. Each solution of this
equation corresponds to an ordered 4-tuple (x0, x1, x2, x3). Two ordered 4-tuples (and
so the corresponding two solutions) are said to be equivalent if one can be obtained
from the other by shifting each of its elements cyclically. For example, (2, 2, 1, 1) is
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equivalent to each of (1, 2, 2, 1), (1, 1, 2, 2), and (2, 1, 1, 2). Therefore, it is easy to see
that the above system has only three non-equivalent integer solutions: S1 = (2, 2, 1, 1),
S2 = (3, 1, 1, 1), and S3 = (2, 1, 2, 1).
We say that a vertex w is of type Si (i = 1, 2, 3) if the corresponding system

described in the previous paragraph has solution Si. Let w be any vertex and ei = wui

(i = 0, 1, 2, 3) are the four edges incident to w. We shall get contradictions no matter
of what type w is, thus complete the proof for the case Δ = 4.
If (x0, x1, x2, x3) = S1 = (2, 2, 1, 1), since the labels on S(10) are cyclic, we may

assume that the labels assigned to e0, e1, e2, e3 are 0, 3, 6, 8, respectively. It follows
that there are only four labels 1, 2, 4, 5which are legal for the three edges incident with
u3 other than wu3. It is clear that we can not label them properly. Therefore, there is
no vertex of type S1 in any 10-circular-L(2, 1)-edge-labeling of T∞(4).
If (x0, x1, x2, x3) = S2 = (3, 1, 1, 1), then we may assume that the labels assigned

to e0, e1, e2, e3 are 0, 4, 6, 8, respectively. This implies that the four labels assigned to
the four edges incident to u3 should be 1, 3, 5, 8, which is of type S1, contradicting the
previous case.
If (x0, x1, x2, x3) = S3 = (2, 1, 2, 1), then we may assume that the labels assigned

to e0, e1, e2, e3 are 0, 3, 5, 8, respectively. It is easy to check that the four labels assigned
to the four edges incident to u3 should be 1, 4, 6, 8, or 2, 4, 6, 8, which are of types S1

and S2 respectively. This is a contradiction. Hence T∞(4) has no 10-circular-L(2, 1)-
edge-labeling. The proof of Case 2 is completed.

Case 3. Δ = 5.
We show σ′

2,1(T∞(5)) = 2Δ + 3 = 13 by constructing a 13-circular-L(2, 1)-edge-
labeling of T∞(5).
Let v be any vertex and let e0, e1, e2, e3, e4 be five edges incident to v. Then the

set of labels assigned to them should be (13, 2)-circular separated. Without loss of
generality, assume that f(e0), f(e1), f(e2), f(e3), f(e4) occur in S(13) in this cyclic
order. For i = 0, 1, 2, 3, 4, let xi denote the number of integer points in the open interval
(f(ei), f(ei+1))13, where “+”s in the subscripts are taken modulo 5. Then 1 ≤ xi ≤ 4
for all i = 0, 1, 2, 3, 4 and x0 + x1 + x2 + x3 + x4 = 13 − 5 = 8. Each solution
of this equation corresponds to an ordered 5-tuple (x0, x1, x2, x3, x4). Two ordered
5-tuples (and so the corresponding two solutions) are said to be equivalent if one can
be obtained from the other by shifting each of its elements cyclically or by reversing
the order of its elements. For example, (3, 2, 1, 1, 1) is equivalent to (1, 3, 2, 1, 1) and
(1, 1, 1, 2, 3). The type of a vertex is defined similarly as in Case 2.
In the following, we shall label all vertices of T∞(5) such that each vertex is of

one of the three types: S1 = (3, 2, 1, 1, 1), S2 = (3, 1, 2, 1, 1), and S3 = (2, 2, 1, 2, 1).
We first choose a vertex v0 and label the five edges incident to it such that v0 becomes
one of the above three types. We then label edges at distance 1 from v0, and so on.
Each time when we are at a vertex v (other than v0) with exactly one incident edge



2068 Wensong Lin and Jianzhuan Wu

labeled, we try to label the other four edges and make that vertex of one of the above
three types. The only thing we need to prove is that, no matter what the type of its
father is, we can always properly label the other four unlabeled edges incident to the
vertex v and make it to be one of the three types. Let w be the father of v. We split
the proof into three cases according to the type of w.

Case 3.1. w is of type S1 = (3, 2, 1, 1, 1).
With no loss of generality, we may assume that the five labels assigned to the five

edges incident to w are 0, 4, 7, 9, 11. If wv is labeled by 0, then we can label the four
other edges by 2, 5, 8, 10 and make v be of type S3. If the label of wv is 4, then we
label the remaining four edges by 2, 6, 8, 12 and thus make v be of type S1. If the label
of wv is 7, then we label the remaining four edges by 1, 5, 10, 12 and make v be of
type S2. If the label of wv is 9, then we label the remaining four edges by 1, 3, 5, 12
and make v be of type S1. If the label of wv is 11, then we label the remaining four
edges by 1, 3, 6, 8 and make v be of type S3.

Case 3.2. w is of type S2 = (3, 1, 2, 1, 1).
With no loss of generality, we may assume that the five labels assigned to the five

edges incident to w are 0, 4, 6, 9, 11. If wv is labeled by 0, then we can label the four
other edges by 2, 5, 7, 10 and make v be of type S3. If the label of wv is 4, then we
label the remaining four edges by 2, 7, 10, 12 and thus make v be of type S3. If the
label of wv is 6, then we label the remaining four edges by 1, 3, 8, 10 and make v be
of type S2. If the label of wv is 9, then we label the remaining four edges by 3, 5, 7, 12
and make v be of type S1. If the label of wv is 11, then we label the remaining four
edges by 1, 3, 5, 7 and make v be of type S1.

Case 3.3. w is of type S3 = (2, 2, 1, 2, 1).
With no loss of generality, we may assume that the five labels assigned to the five

edges incident to w are 0, 3, 6, 8, 11. If wv is labeled by 0, then we can label the four
other edges by 2, 5, 7, 10 and make v be of type S3. If the label of wv is 3, then we
label the remaining four edges by 1, 5, 9, 12 and thus make v be of type S1. If the label
of wv is 6, then we label the remaining four edges by 1, 4, 9, 12 and make v be of type
S3. If the label of wv is 8, then we label the remaining four edges by 1, 5, 10, 12 and
make v be of type S1. If the label of wv is 11, then we label the remaining four edges
by 2, 5, 7, 9 and make v be of type S1.

Case 4. Δ ≥ 6.
We shall recursively define a (2Δ + 4)-circular-L(2, 1)-edge-labeling of T∞(Δ)

for Δ ≥ 6.
Choose any vertex v0 of T∞(Δ). For all positive integers k, letWk = {u| d(u, v0) =

k}. Let X0 denote the set of even labels 0, 2, . . . , 2Δ+2 and X1 denote the set of odd
labels 1, 3, . . . , 2Δ+3. We first assign any Δ different labels from X0 to the Δ edges
incident to v0. Suppose all edges at distance less than k from v0 have been labeled.
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The next step is to label all edges at distance k from v0. We do it by considering
vertices in Wk one by one. Select any vertex u ∈ Wk that is not considered yet. Let w
be the father of u and let t be the father of w if k ≥ 2. Clearly, exactly one edge wu

incident to u has been labeled at this moment. Let h be the label assigned to wu and r
the label assigned to tw. We then label the remaining Δ − 1 edges incident to u with
Δ− 1 distinct labels from Xi − {h− 1, h + 1, r}, where i = 0 if k is even and i = 1
if k is odd. We can always do this since |Xi − {h − 1, h + 1, r}| ≥ Δ − 1. Since Xi

is (2Δ + 4, 2)-circular separated and since the Δ − 1 edges incident to w other than
tw are labeled with labels from X1−i, the labeling constructed in this way is proper.

3. CIRCULAR-L(2, 1)-EDGE-LABELING NUMBERS OF n-CUBES FOR n ≤ 5

For an integer n ≥ 2, the n-dimensional cube, denoted by Qn, is the simple graph
whose vertices are the n-tuples with entries in {0, 1} and whose edges are the pairs
of n-tuples that differ in exactly one position. The vertices of Qn will be denoted by
binary bit strings of length n. Let E ′ be a set of edges. Denote by N (E ′) the set
of edges that are adjacent to at least one edge in E ′. By N (E ′) we denote the set
N (E ′) ∪ E ′. In case E ′ = {e}, we simply write as N (e) and N (e).
For 1 ≤ i ≤ n, let Ei denote the set of edges whose two endvertices differ only in

the ith coordinate. Let uv be an edge in Ei. Denote by ξi(uv) the sum of coordinates
of u except the ith one. For h = 0, 1, let Eh

i denote the set of edges uv in Ei with
ξi(uv) ≡ h (mod 2). The following six observations were made by Georges and
Mauro in [3].
(A1) Each Ei is a perfect matching in Qn; hence |Ei| = 2n−1 and no two edges in

Ei are adjacent.
(A2) The set {E1, E2, . . . , En} is a partition of E(Qn).
(A3) For i ∈ {1, 2 . . . , n}, The set {E0

i , E1
i } is a partition of Ei, and for h ∈ {0, 1},

|Eh
i | = 2n−2 and the edges in Eh

i are pairwise at distance at least three.
(A4) For n ≥ 2 and i ∈ {1, 2 . . . , n}, Qn − Ei is isomorphic to the disjoint union of

two copies of Qn−1.
(A5) For h ∈ {0, 1} and i ∈ {1, 2 . . . , n}, every edge in Qn − Ei is adjacent to some

edge in Eh
i .

(A6) For n ≥ 2, ifX ⊆ E(Qn) with |X | = 2n−2 such that elements of X are pairwise
at distance at least three, thenX = Eh

i for some i ∈ {1, 2 . . . , n} and h ∈ {0, 1}.
Georges and Mauro [3] proved that λ′

2,1(Qn) ≤ 3n − 2 for n ≥ 2. In addition,
they proved the following.

Theorem 3.1. ([3]).

(1) λ′
2,1(Q2) = 4,
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(2) λ′
2,1(Q3) = 7,

(3) λ′
2,1(Q4) = 10,

(4) λ′
2,1(Q5) = 12or13,

(5) λ′
2,1(Q6) = 15or16.

By Lemma 1.2, σ′
2,1(Qn) ≤ 3n for n ≥ 2. Our purpose in this section is to prove

the following theorem.

Theorem 3.2. σ′
2,1(Qn) = 3n for n ∈ {2, 3, 4, 5}. λ′

2,1(Q5) = 13.

Proof. By Theorem 3.1 and Lemma 1.2, we have 5 ≤ σ′
2,1(Q2) ≤ 6, 8 ≤

σ′
2,1(Q3) ≤ 9, and 11 ≤ σ′

2,1(Q4) ≤ 12. We prove the theorem case by case.

Case 1. σ′
2,1(Q2) = 6.

Q2 is a 4-cycle. And the line graph of a 4-cycle is also a 4-cycle. It follows from
Theorem 3.3 in [9] that σ′

2,1(Q2) = 6.

Case 2. σ′
2,1(Q3) = 9.

Suppose to the contrary that σ′
2,1(Q3) < 9. Then σ′

2,1(Q3) = 8. Let L be an
8-circular-L(2, 1)-edge-labeling of Q3. For j = 0, 1, . . . , 7, denote by Lj the set of
edges labeled by j and let lj = |Lj|. Clearly

∑7
j=0 lj = |E(Q3)| = 12. From (A6),

we know that 0 ≤ lj ≤ 2, for j = 0, 1, . . . , 7.
If there is some j with lj = lj+1 = 2, then by (A5) and (A6), lj−1 = lj+2 = 0,

where “+” and “−” in the subscripts are taken modulo 8. It follows that
∑7

i=0 lj < 12,
a contradiction. Thus for each j, lj + lj+1 ≤ 3. Since

∑7
j=0 lj = 12, we have

lj + lj+1 = 3 for each j. With no loss of generality, we assume l0 = 2. Then
l1 = l7 = 1 and l2 = 2. By (A6), L0 = Eh

i for some i and h. Then by (A5),
L7 ∪ L1 ⊆ Ei. And so L7 ∪ L0 ∪ L1 = Ei. But then it is easy to check that the only
four edges outside Ei not adjacent to the edge with label 1 are pairwise at distance less
than 3. This contradicts l2 = 2. Hence σ′

2,1(Q3) = 9.

Case 3. σ′
2,1(Q4) = 12.

Suppose to the contrary that σ′
2,1(Q4) < 12. Then σ′

2,1(Q4) = 11. Let L be an
11-circular-L(2, 1)-edge-labeling of Q4. For j = 0, 1, . . . , 10, denote by Lj the set of
edges labeled by j and let lj = |Lj|. Clearly

∑10
j=0 lj = |E(Q4)| = 32. From (A6),

we know that 0 ≤ lj ≤ 4, for j = 0, 1, . . . , 10. We first prove the following two
properties of the sequence (l0, l1, . . . , l10).

Property 1. For 0 ≤ j ≤ 10, if lj = 4 then Lj = Eh
i for some i, h and

Lj−1 ∪ Lj+1 ⊆ E1−h
i .

Proof. If lj = 4 then by (A6) Lj = Eh
i for some i, h. And by (A5), Lj−1∪Lj+1 ⊆

E1−h
i .
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Property 2. For 0 ≤ j ≤ 10, if lj = 3 then Lj ⊆ Eh
i for some i, h. Let e be the

only edge in Eh
i \ Lj . We have Lj−1 ∪ Lj+1 ⊆ E1−h

i ∪ N(e).

Proof. Let Lj = {e1, e2, e3}. We first prove that Lj ⊆ Ei for some i. Suppose to
the contrary there are two integers p and q such that e1 ∈ Ep and e2 ∈ Eq. Without
loss of generality, let e1 = (0101, 0001). Denote the edge (1110, 1010) by e4. Then
all edges outside Ep that are at distance greater than 2 from e1 are in N (e4). Thus
e2 ∈ N (e4) \ Ep. Note that all edges in N (e4) are pairwise at distance at most 2. It
follows that e3 should be in Ep. However, it is not difficult to see that any edge in
Ep at distance greater than 2 from e1 is at distance at most 2 from any edge in N (e4).
(See Figure 1 for illustration.) This is a contradiction. Thus Lj ⊆ Ei for some i. Note
that for any edge in Eh

i , there is only one edge in E1−h
i that is at distance greater than

2. Therefore Lj ⊆ Eh
i for some i, h.

Fig. 1. Q4 with e1 ∈ Lj .

Let e be the only edge in Eh
i \ Lj . By (A5), the edges outside Ei that can be

labeled by j − 1 or j + 1 are in N (e). Therefore Lj−1 ∪ Lj+1 ⊆ E1−h
i ∪ N (e)∪ {e}.

This proves Property 2.

We next prove that lj−1 + lj + lj+1 ≤ 8 for each j = 0, 1, . . . , 10.
If lj = 0 then clearly lj−1 + lj + lj+1 ≤ 8. Suppose lj = 1. If lj−1 + lj+1 = 8

then by Property 1, Lj−1 = Eh
i for some i, h and Lj+1 = Eh′

i′ for some i′, h′. It
follows that Lj ⊆ E1−h

i ∩ E1−h′
i′ = ∅, a contradiction. Thus lj−1 + lj+1 ≤ 7 and

lj−1 + lj + lj+1 ≤ 8. If lj = 4 then, by Property 1, lj−1 + lj + lj+1 ≤ 8.
If lj = 3 then by Property 2, Lj ⊆ Eh

i for some i, h. Let e be the only edge in
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Eh
i \ Lj . We have Lj−1 ∪ Lj+1 ⊆ E1−h

i ∪ N (e). If lj−1 = 4 then Lj−1 = E1−h
i .

Thus Lj+1 ⊆ N(e). Note that any two edges in N (e) are at distance at most 2.
We have lj+1 ≤ 1. Similarly, if lj+1 = 4 then lj−1 ≤ 1. In both cases we have
lj−1 + lj + lj+1 ≤ 8. Thus we now assume lj−1, lj+1 ≤ 3. If one of lj−1 and
lj+1 is less than 3, then we are done. If lj−1 = lj+1 = 3, then by Property 2,
Lj−1 ∪ Lj+1 ⊆ E1−h

i . This is a contradiction since |E1−h
i | = 4 < 6 = lj−1 + lj+1.

Therefore we conclude that if lj = 3 then lj−1 + lj + lj+1 ≤ 8.
Now suppose lj = 2. If one of lj−1 and lj+1 is less than 3, then we clearly have

lj−1 + lj + lj+1 ≤ 8. If lj−1 = lj+1 = 3, then we are done. Thus without loss of
generality we assume lj−1 = 4 and lj+1 ≥ 3. Then by Property 1, Lj−1 = Eh

i for
some i, h and Lj ⊆ E1−h

i . If lj+1 is also equal to 4, then Lj+1 = Eh′
i′ for some

i′, h′ and Lj ⊆ E1−h′
i′ . It follows that i = i′ and h = h′. This is a contradiction.

Therefore we assume lj+1 = 3. Let e′ be the only edge in Eh′
i′ \Lj+1. By Property 2,

Lj+1 ⊆ Eh′
i′ for some i′, h′ and Lj ⊆ E1−h′

i′ ∪N (e′)∪{e′}. Now we have Lj ⊆ E1−h
i

and Lj ∩ E1−h′
i′ �= ∅. It follows that i = i′ and h = h′. This is a contradiction.

Therefore 96 = 3 × 32 = 3 × ∑10
j=0 lj =

∑10
j=0(lj−1 + lj + lj+1) ≤ 8 × 11 = 88.

This is contradiction. Case 3 holds.

Case 4. σ′
2,1(Q5) = 15 and λ′

2,1(Q5) = 13.
Suppose to the contrary that σ′

2,1(Q5) < 15. Let L be a 14-circular-L(2, 1)-
edge-labeling of Q5. Clearly

∑13
j=0 lj = |E(Q5)| = 80. From (A6), we know that

0 ≤ lj ≤ 8, for j = 0, 1, . . . , 13. We first prove the following property of the sequence
(l0, l1, . . . , l13).
For convenience, we use [0, 13] to denote the set of integers 0, 1, . . . , 13.

Property 3. Let j ∈ [0, 13]. If lj ≥ 6 then Lj ⊆ Eh
i for some i, h.

Proof. Let j be any integer in [0, 13]. Suppose lj ≥ 6. For convenience, we name
the 16 edges in E3 as e1, e2, . . . , e16 (See Figure 2). Then E1

3 = {e1, e4, e6, e7, e10, e11,

e13, e16} and E0
3 = {e2, e3, e5, e8, e9, e12, e14, e15}.

Suppose without loss of generality that e1 ∈ Lj (e1 ∈ E1
3). Then after carefully

checking all edges outside E1
3 that are at distance at least 3 from e1, we may find that

Lj \E1
3 is contained in N(e8) ∪ N(e12) ∪ N (e14) ∪ N(e15). (Please see Figure 2 for

illustration.) Since edges in E3 that are at distance at least 3 from e1 are contained in
M = E3 \ {e2, e3, e5, e9}, we have Lj ∩ E3 ⊆ M .
In the following we want to show that if Lj \ E1

3 �= ∅ then lj ≤ 5 and thus prove
that Lj ⊆ E1

3 . We first construct a bipartite graph H(X, Y ) as follows. The partite
sets X = {N(e8), N(e12), N(e14), N(e15)} and Y = M \ {e1, e8, e12, e14, e15}. If
some edge e in N(e8) (or N (e12), or N (e14), or N(e15)) is in Lj , then the four edges
e4, e6, e7, e16 (or e4, e10, e11, e16, or e6, e10, e13, e16, or e7, e11, e13, e16) from Y can
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not be in Lj since they are at distance less than 3 from e8 (or e12, or e14, or e15). In
this case, we draw edges in H between N(e8) (or N(e12), or N (e14), or N(e15)) and
the vertices in Y corresponding to those edges. The graph H is presented in Figure 3.

Fig. 2. Q5 with e1 ∈ Lj .

Fig. 3. The graph H .

If Lj \ E1
3 �= ∅, then Lj ∩ (N(e8) ∪ N (e12) ∪ N(e14) ∪ N (e15)) �= ∅. Suppose

some edge in N (e8) is in Lj , then e4, e6, e7, e16 are not in Lj . The subgraph of H
induced by V (H) \ {N(e8), e4, e6, e7, e16} is a cycle of order 6. It is easy to see from
this subgraph that at most three edges corresponding to the vertices in this subgraph
can be in Lj . It follows that lj ≤ 5. It is not difficult to check that the same is true
for N(e12), N (e14), and N(e15). Thus we conclude that if Lj \ E1

3 �= ∅ then lj ≤ 5.
This implies that if lj ≥ 6 then Lj ⊆ Eh

i for some i, h. Property 3 holds.

For j ∈ [0, 13], denote by hj the sum lj−1 + lj + lj+1.
Let j ∈ [0, 13]. Suppose lj ≥ 6. Then, by Property 3, Lj ⊆ Eh

i for some i, h. Let
E ′ = Eh

i \ Lj . Then, by (A5), Lj−1 ∪ Lj+1 ⊆ (Ei \ Lj) ∪ N (E ′). Let e′ be an edge
in E ′. It is clear that |(Lj−1 ∪Lj+1) ∩N (e′)| ≤ 2. Furthermore, if the equality holds
then at least two edges in E1−h

i cannot be in Lj−1 ∪ Lj+1. It follows that if lj ≥ 6
then hj ≤ 16.
Now suppose lj−1 ≥ 6 and lj+1 ≥ 6. Then Lj−1 ⊆ Eh

i for some i, h and
Lj+1 ⊆ Eh′

i′ for some i′, h′. Let E ′ = Eh
i \Lj−1 and E ′′ = Eh′

i′ \Lj+1. For any edge
e′ ∈ E ′ ∪ E ′′, it is clear that |Lj ∩ N (e′)| ≤ 1. If i �= i′ then Lj ⊆ N (E ′) ∪ N(E ′′)
and so hj ≤ 16. If i �= i′ then hj ≤ 16 since lj−1 + |E ′| + lj+1 + |E ′′| = 16.
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We conclude that if lj ≥ 6 or both lj−1 ≥ 6 and lj+1 ≥ 6 then hj ≤ 16.
Therefore, if hj ≥ 18 then lj ≤ 5 and lj−1 or lj+1 ≤ 5. This implies that if hj ≥ 18

then (lj−1, lj, lj+1) = (8, 5, 5) or (5, 5, 8). And so, hj ≤ 18 for all j ∈ [0, 13];
furthermore, if hj = 18 then hj−1 ≤ 16 or hj+1 ≤ 16. If hj = hj+1 = 18, then
(lj−1, lj, lj+1, lj+2) should be of the form (8, 5, 5, 8). In this case, we have hj−1 ≤ 16
and hj+2 ≤ 16. It is easy to see that the case hj = hj+1 + 2 = hj+2 = 18 will never
happen. From these discussions, we have

240 = 3 ×
13∑

j=0

lj =
13∑

j=0

hj ≤ 14 × 17 = 238.

This contradiction proves that σ′
2,1(Q5) = 15.

Since λ′
2,1(Q5) ≥ σ′

2,1(Q5)− 2 = 13, by Theorem 3.1, λ′
2,1(Q5) = 13.

It seems difficult to extend the method in this section to the case Qn for n ≥ 6.
We conclude this paper by proposing the following three questions.

Question 1. Notice that λ′
2,1(K1,Δ) = 2Δ − 2, Georges and Mauro in [3] asked

the question: for each integer from 2Δ − 2 to λ′
2,1(T∞(Δ)), is there a tree with

maximum degree Δ such that its L(2, 1)-edge-labeling number is that integer? Since
σ′

2,1(K1,Δ) = 2Δ, the similar question as above is: for each integer from 2Δ to
σ′

2,1(T∞(Δ)), is there a tree with maximum degree Δ such that its circular-L(2, 1)-
edge-labeling number is that integer?

Question 2. Is there a polynomial time algorithm to compute λ′
2,1(T ) (or σ′

2,1(T ))
for any tree T ?

Question 3. From Theorems 3.2 and 3.1, λ′
2,1(Qn) + 2 = σ′

2,1(Qn) = 3n for
n ∈ {2, 3, 4, 5}. That is, the upper bounds 3n − 2 and 3n for λ′

2,1(Qn) and σ′
2,1(Qn)

respectively are attained for n ∈ {2, 3, 4, 5}. This is an interesting phenomenon. Is it
true that λ′

2,1(Qn) + 2 = σ′
2,1(Qn) = 3n for all n ≥ 2?
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