ON CIRCULAR- $L(2,1)$-EDGE-LABELING OF GRAPHS

Wensong Lin and Jianzhuan Wu

Abstract

Let m, j and k be positive integers with $j \geq k$. An m-circular$L(j, k)$-edge-labeling of a graph G is an assignment f from $\{0,1, \ldots, m-1\}$ to the edges of G such that, for any two edges e_{1} and $e_{2},\left|f\left(e_{1}\right)-f\left(e_{2}\right)\right|_{m} \geq j$ if e_{1} and e_{2} are adjacent, and $\left|f\left(e_{1}\right)-f\left(e_{2}\right)\right|_{m} \geq k$ if e_{1} and e_{2} are at distance 2 , where $|a|_{m}=\min \{a, m-a\}$. The minimum m such that G has an m-circular$L(j, k)$-edge-labeling is defined as the circular- $L(j, k)$-edge-labeling number of G, denoted by $\sigma_{j, k}^{\prime}(G)$. This paper determines the circular- $L(2,1)$-edge-labeling numbers of the infinite Δ-regular tree for $\Delta \geq 2$ and the n-dimensional cube for $n \in\{2,3,4,5\}$.

1. Introduction

Let j and k be two positive integers with $j \geq k$. An $L(j, k)$-labeling of a graph G is an assignment of nonnegative integers, called labels, to the vertices of G such that the difference between labels of any two vertices at distance one is at least j, and the difference between labels of any two vertices that are distance two apart is at least k. Given a graph G, for an $L(j, k)$-labeling f of G, we define the span of $f, \operatorname{span}(f)$, to be the absolute difference between the maximum and minimum vertex labels of f. The $L(j, k)$-labeling number of G, denoted by $\lambda_{j, k}(G)$, is the minimum span over all $L(j, k)$-labelings of G.

Motivated from the channel assignment problem introduced by Hale [6], Griggs and Yeh [5] first proposed and studied the $L(2,1)$-labeling of a graph. Since then the $L(2,1)$-labelings and $L(j, k)$-labelings of graphs have been studied extensively, please refer to the surveys [1, 4, 14].

One interesting variation of $L(j, k)$-labeling number is the so called circular$L(j, k)$-labeling number, which was introduced by Heuvel, Leese, and Shepherd in [7].

[^0]Let m, j and k be positive integers with $j \geq k$. An m-circular- $L(j, k)$-labeling of a graph G is an assignment f from $\{0,1, \ldots, m-1\}$ to the vertices of G such that, for any two vertices u and $v,|f(u)-f(v)|_{m} \geq j$ if $u v \in E(G)$, and $|f(u)-f(v)|_{m} \geq k$ if $d_{G}(u, v)=2$, where $|a|_{m}=\min \{a, m-a\}$. The minimum m such that G has an m -circular- $L(j, k)$-labeling is called the circular- $L(j, k)$-labeling number of G, denoted by $\sigma_{j, k}(G)$.

Heuvel, Leese and Shepherd in [7] determined the circular- $L(j, k)$-labeling numbers of triangular lattice and square lattice for any two positive integers j and k with $j \geq k$. The relationship between the circular- $L(2,1)$-labeling number of a graph G and the path covering number of its complement was revealed by Liu in [9]. Wu and Yeh [13] showed that $\sigma_{j, 1}(T)=2 j+\Delta-1$ for any tree T with maximum degree Δ. In $[12,11]$, it was proved that, for $j \geq k, \sigma_{j, k}(T)=2 j+(\Delta-1) k$ for any tree T with maximum degree Δ. The circular- $L(j, k)$-labeling numbers of cycles for $j \geq k$ were completely determined in [11]. In [8], the circular- $L(j, k)$-labeling numbers of the Cartesian product of two complete graphs, the direct product of two complete graphs for $j \geq k$ were determined. Recently, the circular- $L(2,1)$-labeling numbers of the Cartesian products of three complete graphs were obtained in [10].

Let $G=(V(G), E(G))$ be a graph. Denote by $L(G)$ the line graph of G. Let $\Delta(G)$ denote the maximum degree of G and $\Delta_{L}(G)$ the maximum edge degree of G (or equivalently the maximum degree of $L(G)$). Let e_{1} and e_{2} be any two edges of G. The distance between e_{1} and e_{2}, denoted by $d\left(e_{1}, e_{2}\right)$, is defined as the distance between the corresponding two vertices in the line graph of G.

The edge version of $L(j, k)$-labeling and circular- $L(j, k)$-labeling of a graph G are defined as the $L(j, k)$-labeling and the circular- $L(j, k)$-labeling of $L(G)$, respectively. The $L(j, k)$-edge-labeling number of G is denoted by $\lambda_{j, k}^{\prime}(G)$ and the circular- $L(j, k)$ -edge-labeling number of G is denoted by $\sigma_{j, k}^{\prime}(G)$.

The edge version of distance two labeling was first investigated by Georges and Mauro in [3]. Several classes of graphs were studied by Georges and Mauro. Among them, they determined the $L(2,1)$-edge-labeling numbers of Δ-regular tree for $\Delta \geq 2$ and the n-dimensional cube for small n.

The following theorem was proved by Chen and Lin in [2].
Theorem 1.1. Let G be a simple graph and let Δ be the maximum degree of G. Suppose $\Delta \geq 2$. If G is $K_{1,3}-$ free then, except the case that G is a 5 -cycle and $j=k$, we have $\lambda_{j, k}(G) \leq k\left\lfloor\Delta^{2} / 2\right\rfloor+j \Delta-1$.

Since a line graph is $K_{1,3}$-free, the upper bound for $\lambda_{j, k}(G)$ in this theorem obviously holds for all line graphs, and hence $\lambda_{j, k}^{\prime}(G) \leq k\left\lfloor\Delta_{L}^{2} / 2\right\rfloor+j \Delta_{L}-1$ holds for any graph G.

With this result, Chen and Lin in [2] proved that the conjecture " $\lambda_{2,1}(G) \leq \Delta^{2}(G)$ " (Griggs and Yeh [5]) holds for all $K_{1,3}$-free graphs and hence for all line graphs.
[3] and [2] are the only references we have found in the literature concerning the
$L(j, k)$-edge-labeling of graphs.
The following lemma was mentioned by Heuvel, Leese, and Shepherd in [7].
Lemma 1.1. For any graph G, we have $\lambda_{j, k}(G)+1 \leq \sigma_{j, k}(G) \leq \lambda_{j, k}(G)+j$.
We would like to point out that even in the case when $j=2$ and $k=1$ it is not easy to determine whether $\sigma_{2,1}(G)$ equals $\lambda_{2,1}(G)+1$ or $\lambda_{2,1}(G)+2$ provided that $\lambda_{2,1}(G)$ is known. We obviously have the edge version of Lemma 1.1.

Lemma 1.2. For any graph G, we have $\lambda_{j, k}^{\prime}(G)+1 \leq \sigma_{j, k}^{\prime}(G) \leq \lambda_{j, k}^{\prime}(G)+j$.
In this paper, we determine the circular- $L(2,1)$-edge-labeling numbers of the infinite Δ-regular tree for any $\Delta \geq 2$ and the n-dimensional cube for $n \in\{2,3,4,5\}$, and as a consequence, the $L(2,1)$-edge-labeling number of the 5 -dimensional cube.

For a positive real number r, let $S(r)$ denote the circle obtained from the interval $[0, r]$ by identifying 0 and r into a single point. For any $x \in \mathbb{R},[x]_{r} \in[0, r)$ denotes the remainder of x upon division of r. For $a, b \in S(r)$, the interval $[a, b]_{r}$ is defined as $[a, b]_{r}=\left\{x \in S(r): 0 \leq[x-a]_{r} \leq[b-a]_{r}\right\}$. And similarly, the open interval $(a, b)_{r}$ is defined as $(a, b)_{r}=\left\{x \in S(r): 0<[x-a]_{r}<[b-a]_{r}\right\}$. The length of the interval $[a, b]_{r}$ is equal to $[b-a]_{r}$. Two points $a, b \in S(r)$ partition $S(r)$ into two arcs: $[a, b]_{r}$ and $[b, a]_{r}$. The circular distance between a and b, denoted by $|a-b|_{r}$, is the length of the shorter arc. In other words, $|a-b|_{r}=\min \left\{[a-b]_{r},[b-a]_{r}\right\}=$ $\min \{|a-b|, r-|a-b|\}$.

A set of points on $S(r)$ is said to be $(r, 2)$-circular separated if any two elements from the set are at circular distance at least 2 on $S(r)$. A sequence of points $a_{1}, a_{2}, \ldots, a_{k}$ on $S(r)$ are said to be in cyclic order if $\left(a_{1}, a_{2}\right)_{r},\left(a_{2}, a_{3}\right)_{r}, \ldots$, $\left(a_{k-1}, a_{k}\right)_{r},\left(a_{k}, a_{1}\right)_{r}$ are pairwise disjoint open intervals on $S(r)$.

2. Circular- $L(2,1)$-Edge-labeling Numbers of Δ-Regular Trees

Let $\Delta(\geq 2)$ be any integer. A Δ-regular tree is an infinite tree with each vertex having degree Δ. Denote by $T_{\infty}(\Delta)$ the infinite Δ-regular tree. If $\Delta=2$, then $T_{\infty}(\Delta)$ is an infinite path and $\lambda_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)=4, \sigma_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)=5$. For $\Delta>2$, Georges and Mauro proved the following.

Theorem 2.1. ([3]). Let Δ be a positive integer greater than 2 . We have

$$
\lambda_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)= \begin{cases}2 \Delta+1, & \text { if } \Delta=3,4 \\ 2 \Delta+2, & \text { if } \Delta=5 \\ 2 \Delta+3, & \text { if } \Delta \geq 6\end{cases}
$$

Hereafter in this section, we assume $\Delta>2$. Let $e=x y$ be an edge and v a vertex. The distance between e and $v, d(e, v)$, is defined as $\min \{d(x, v), d(y, v)\}$.

Suppose we set a vertex v_{0} as the center of the tree $T_{\infty}(\Delta)$. If $e=x y$ is an edge with $d\left(x, v_{0}\right)+1=d\left(y, v_{0}\right)$, then we call x the father of y and y a son of x. Our main theorem in this section is the following.

Theorem 2.2. Let Δ be a positive integer greater than 2 . We have

$$
\sigma_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)= \begin{cases}2 \Delta+2, & \text { if } \Delta=3 \\ 2 \Delta+3, & \text { if } \Delta=4,5 \\ 2 \Delta+4, & \text { if } \Delta \geq 6\end{cases}
$$

Proof. By Theorems 2.1 and Lemma 1.2, we have $2 \Delta+2 \leq \sigma_{2,1}^{\prime}\left(T_{\infty}(3)\right) \leq$ $2 \Delta+3,2 \Delta+2 \leq \sigma_{2,1}^{\prime}\left(T_{\infty}(4)\right) \leq 2 \Delta+3,2 \Delta+3 \leq \sigma_{2,1}^{\prime}\left(T_{\infty}(5)\right) \leq 2 \Delta+4$, and $2 \Delta+4 \leq \sigma_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right) \leq 2 \Delta+5$ if $\Delta \geq 6$. The proof is split into the following four cases.

Case 1. $\Delta=3$.
We show $\sigma_{2,1}^{\prime}\left(T_{\infty}(3)\right)=2 \Delta+2=8$ by giving an 8 -circular- $L(2,1)$-edge-labeling of $T_{\infty}(3)$. Let v_{0} be a vertex of $T_{\infty}(3)$. We shall label its edges in the order according to the distance from v_{0} to the edges. We first label the 3 edges at distance 0 from v_{0} (i.e. the edges incident to v_{0}), and then label the 6 edges at distance 1 from v_{0}, and so on. Clearly the first three edges can be labeled properly. Suppose all edges at distance less than i from v_{0} have been labeled. We then label the edges at distance i from v_{0} in a greedy way. For any two adjacent edges e and e^{\prime} at distance i from v_{0}, notice that there are only three labeled edges, one at distance 1 from them and two at distance 2 from them, thus the number of labels that are forbidden for these two edges is at most 5 . It follows that there are at least three labels available for e and e^{\prime} and therefore we can label them properly. In this way, one can construct an 8 -circular- $L(2,1)$-edge-labeling of $T_{\infty}(3)$. Therefore $\sigma_{2,1}^{\prime}\left(T_{\infty}(3)\right)=2 \Delta+2=8$.

Case 2. $\Delta=4$.
We show $\sigma_{2,1}^{\prime}\left(T_{\infty}(4)\right)=2 \Delta+3=11$ by proving that there is no 10 -circular-$L(2,1)$-edge-labeling of $T_{\infty}(4)$. Suppose to the contrary that f is a 10 -circular- $L(2,1)$ -edge-labeling of $T_{\infty}(4)$. We shall reach a contradiction. Suppose the labels used by f are $0,1, \ldots, 9$.

Let v be any vertex and let $e_{0}, e_{1}, e_{2}, e_{3}$ be the four edges incident to v. Then the set of labels assigned to them should be $(10,2)$-circular separated. Without loss of generality, assume that $f\left(e_{0}\right), f\left(e_{1}\right), f\left(e_{2}\right), f\left(e_{3}\right)$ occur in $S(10)$ in this cyclic order. For $i=0,1,2,3$, let x_{i} denote the number of integer points in the open interval $\left(f\left(e_{i}\right), f\left(e_{i+1}\right)\right)_{10}$, where "+"s in the subscripts are taken modulo 4 . Then $1 \leq x_{i} \leq 3$ for all $i=0,1,2,3$ and $x_{0}+x_{1}+x_{2}+x_{3}=10-4=6$. Each solution of this equation corresponds to an ordered 4 -tuple ($x_{0}, x_{1}, x_{2}, x_{3}$). Two ordered 4 -tuples (and so the corresponding two solutions) are said to be equivalent if one can be obtained from the other by shifting each of its elements cyclically. For example, $(2,2,1,1)$ is
equivalent to each of $(1,2,2,1),(1,1,2,2)$, and $(2,1,1,2)$. Therefore, it is easy to see that the above system has only three non-equivalent integer solutions: $S_{1}=(2,2,1,1)$, $S_{2}=(3,1,1,1)$, and $S_{3}=(2,1,2,1)$.

We say that a vertex w is of type $S_{i}(i=1,2,3)$ if the corresponding system described in the previous paragraph has solution S_{i}. Let w be any vertex and $e_{i}=w u_{i}$ $(i=0,1,2,3)$ are the four edges incident to w. We shall get contradictions no matter of what type w is, thus complete the proof for the case $\Delta=4$.

If $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=S_{1}=(2,2,1,1)$, since the labels on $S(10)$ are cyclic, we may assume that the labels assigned to $e_{0}, e_{1}, e_{2}, e_{3}$ are $0,3,6,8$, respectively. It follows that there are only four labels $1,2,4,5$ which are legal for the three edges incident with u_{3} other than $w u_{3}$. It is clear that we can not label them properly. Therefore, there is no vertex of type S_{1} in any 10-circular- $L(2,1)$-edge-labeling of $T_{\infty}(4)$.

If $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=S_{2}=(3,1,1,1)$, then we may assume that the labels assigned to $e_{0}, e_{1}, e_{2}, e_{3}$ are $0,4,6,8$, respectively. This implies that the four labels assigned to the four edges incident to u_{3} should be $1,3,5,8$, which is of type S_{1}, contradicting the previous case.

If $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=S_{3}=(2,1,2,1)$, then we may assume that the labels assigned to $e_{0}, e_{1}, e_{2}, e_{3}$ are $0,3,5,8$, respectively. It is easy to check that the four labels assigned to the four edges incident to u_{3} should be $1,4,6,8$, or $2,4,6,8$, which are of types S_{1} and S_{2} respectively. This is a contradiction. Hence $T_{\infty}(4)$ has no 10 -circular- $L(2,1)$ -edge-labeling. The proof of Case 2 is completed.

Case 3. $\Delta=5$.
We show $\sigma_{2,1}^{\prime}\left(T_{\infty}(5)\right)=2 \Delta+3=13$ by constructing a 13 -circular- $L(2,1)$-edgelabeling of $T_{\infty}(5)$.

Let v be any vertex and let $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}$ be five edges incident to v. Then the set of labels assigned to them should be $(13,2)$-circular separated. Without loss of generality, assume that $f\left(e_{0}\right), f\left(e_{1}\right), f\left(e_{2}\right), f\left(e_{3}\right), f\left(e_{4}\right)$ occur in $S(13)$ in this cyclic order. For $i=0,1,2,3,4$, let x_{i} denote the number of integer points in the open interval $\left(f\left(e_{i}\right), f\left(e_{i+1}\right)\right)_{13}$, where " + "s in the subscripts are taken modulo 5 . Then $1 \leq x_{i} \leq 4$ for all $i=0,1,2,3,4$ and $x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=13-5=8$. Each solution of this equation corresponds to an ordered 5 -tuple $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$. Two ordered 5 -tuples (and so the corresponding two solutions) are said to be equivalent if one can be obtained from the other by shifting each of its elements cyclically or by reversing the order of its elements. For example, $(3,2,1,1,1)$ is equivalent to $(1,3,2,1,1)$ and $(1,1,1,2,3)$. The type of a vertex is defined similarly as in Case 2.

In the following, we shall label all vertices of $T_{\infty}(5)$ such that each vertex is of one of the three types: $S_{1}=(3,2,1,1,1), S_{2}=(3,1,2,1,1)$, and $S_{3}=(2,2,1,2,1)$. We first choose a vertex v_{0} and label the five edges incident to it such that v_{0} becomes one of the above three types. We then label edges at distance 1 from v_{0}, and so on. Each time when we are at a vertex v (other than v_{0}) with exactly one incident edge
labeled, we try to label the other four edges and make that vertex of one of the above three types. The only thing we need to prove is that, no matter what the type of its father is, we can always properly label the other four unlabeled edges incident to the vertex v and make it to be one of the three types. Let w be the father of v. We split the proof into three cases according to the type of w.

Case 3.1. w is of type $S_{1}=(3,2,1,1,1)$.
With no loss of generality, we may assume that the five labels assigned to the five edges incident to w are $0,4,7,9,11$. If $w v$ is labeled by 0 , then we can label the four other edges by $2,5,8,10$ and make v be of type S_{3}. If the label of $w v$ is 4 , then we label the remaining four edges by $2,6,8,12$ and thus make v be of type S_{1}. If the label of $w v$ is 7 , then we label the remaining four edges by $1,5,10,12$ and make v be of type S_{2}. If the label of $w v$ is 9 , then we label the remaining four edges by $1,3,5,12$ and make v be of type S_{1}. If the label of $w v$ is 11 , then we label the remaining four edges by $1,3,6,8$ and make v be of type S_{3}.

Case 3.2. w is of type $S_{2}=(3,1,2,1,1)$.
With no loss of generality, we may assume that the five labels assigned to the five edges incident to w are $0,4,6,9,11$. If $w v$ is labeled by 0 , then we can label the four other edges by $2,5,7,10$ and make v be of type S_{3}. If the label of $w v$ is 4 , then we label the remaining four edges by $2,7,10,12$ and thus make v be of type S_{3}. If the label of $w v$ is 6 , then we label the remaining four edges by $1,3,8,10$ and make v be of type S_{2}. If the label of $w v$ is 9 , then we label the remaining four edges by $3,5,7,12$ and make v be of type S_{1}. If the label of $w v$ is 11 , then we label the remaining four edges by $1,3,5,7$ and make v be of type S_{1}.

Case 3.3. w is of type $S_{3}=(2,2,1,2,1)$.
With no loss of generality, we may assume that the five labels assigned to the five edges incident to w are $0,3,6,8,11$. If $w v$ is labeled by 0 , then we can label the four other edges by $2,5,7,10$ and make v be of type S_{3}. If the label of $w v$ is 3 , then we label the remaining four edges by $1,5,9,12$ and thus make v be of type S_{1}. If the label of $w v$ is 6 , then we label the remaining four edges by $1,4,9,12$ and make v be of type S_{3}. If the label of $w v$ is 8 , then we label the remaining four edges by $1,5,10,12$ and make v be of type S_{1}. If the label of $w v$ is 11 , then we label the remaining four edges by $2,5,7,9$ and make v be of type S_{1}.

Case 4. $\Delta \geq 6$.
We shall recursively define a $(2 \Delta+4)$-circular- $L(2,1)$-edge-labeling of $T_{\infty}(\Delta)$ for $\Delta \geq 6$.

Choose any vertex v_{0} of $T_{\infty}(\Delta)$. For all positive integers k, let $W_{k}=\left\{u \mid d\left(u, v_{0}\right)=\right.$ $k\}$. Let X_{0} denote the set of even labels $0,2, \ldots, 2 \Delta+2$ and X_{1} denote the set of odd labels $1,3, \ldots, 2 \Delta+3$. We first assign any Δ different labels from X_{0} to the Δ edges incident to v_{0}. Suppose all edges at distance less than k from v_{0} have been labeled.

The next step is to label all edges at distance k from v_{0}. We do it by considering vertices in W_{k} one by one. Select any vertex $u \in W_{k}$ that is not considered yet. Let w be the father of u and let t be the father of w if $k \geq 2$. Clearly, exactly one edge $w u$ incident to u has been labeled at this moment. Let h be the label assigned to $w u$ and r the label assigned to $t w$. We then label the remaining $\Delta-1$ edges incident to u with $\Delta-1$ distinct labels from $X_{i}-\{h-1, h+1, r\}$, where $i=0$ if k is even and $i=1$ if k is odd. We can always do this since $\left|X_{i}-\{h-1, h+1, r\}\right| \geq \Delta-1$. Since X_{i} is $(2 \Delta+4,2)$-circular separated and since the $\Delta-1$ edges incident to w other than $t w$ are labeled with labels from X_{1-i}, the labeling constructed in this way is proper.
3. Circular- $L(2,1)$-Edge-labeling Numbers of n-Cubes for $n \leq 5$

For an integer $n \geq 2$, the n-dimensional cube, denoted by Q_{n}, is the simple graph whose vertices are the n-tuples with entries in $\{0,1\}$ and whose edges are the pairs of n-tuples that differ in exactly one position. The vertices of Q_{n} will be denoted by binary bit strings of length n. Let E^{\prime} be a set of edges. Denote by $N\left(E^{\prime}\right)$ the set of edges that are adjacent to at least one edge in E^{\prime}. By $\bar{N}\left(E^{\prime}\right)$ we denote the set $N\left(E^{\prime}\right) \cup E^{\prime}$. In case $E^{\prime}=\{e\}$, we simply write as $N(e)$ and $\bar{N}(e)$.

For $1 \leq i \leq n$, let E_{i} denote the set of edges whose two endvertices differ only in the i th coordinate. Let $u v$ be an edge in E_{i}. Denote by $\xi_{i}(u v)$ the sum of coordinates of u except the i th one. For $h=0,1$, let E_{i}^{h} denote the set of edges $u v$ in E_{i} with $\xi_{i}(u v) \equiv h(\bmod 2)$. The following six observations were made by Georges and Mauro in [3].
(A1) Each E_{i} is a perfect matching in Q_{n}; hence $\left|E_{i}\right|=2^{n-1}$ and no two edges in E_{i} are adjacent.
(A2) The set $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ is a partition of $E\left(Q_{n}\right)$.
(A3) For $i \in\{1,2 \ldots, n\}$, The set $\left\{E_{i}^{0}, E_{i}^{1}\right\}$ is a partition of E_{i}, and for $h \in\{0,1\}$, $\left|E_{i}^{h}\right|=2^{n-2}$ and the edges in E_{i}^{h} are pairwise at distance at least three.
(A4) For $n \geq 2$ and $i \in\{1,2 \ldots, n\}, Q_{n}-E_{i}$ is isomorphic to the disjoint union of two copies of Q_{n-1}.
(A5) For $h \in\{0,1\}$ and $i \in\{1,2 \ldots, n\}$, every edge in $Q_{n}-E_{i}$ is adjacent to some edge in E_{i}^{h}.
(A6) For $n \geq 2$, if $X \subseteq E\left(Q_{n}\right)$ with $|X|=2^{n-2}$ such that elements of X are pairwise at distance at least three, then $X=E_{i}^{h}$ for some $i \in\{1,2 \ldots, n\}$ and $h \in\{0,1\}$.

Georges and Mauro [3] proved that $\lambda_{2,1}^{\prime}\left(Q_{n}\right) \leq 3 n-2$ for $n \geq 2$. In addition, they proved the following.

Theorem 3.1. ([3]).
(1) $\lambda_{2,1}^{\prime}\left(Q_{2}\right)=4$,
(2) $\lambda_{2,1}^{\prime}\left(Q_{3}\right)=7$,
(3) $\lambda_{2,1}^{\prime}\left(Q_{4}\right)=10$,
(4) $\lambda_{2,1}^{\prime}\left(Q_{5}\right)=12$ or 13 ,
(5) $\lambda_{2,1}^{\prime}\left(Q_{6}\right)=15$ or 16 .

By Lemma 1.2, $\sigma_{2,1}^{\prime}\left(Q_{n}\right) \leq 3 n$ for $n \geq 2$. Our purpose in this section is to prove the following theorem.

Theorem 3.2. $\sigma_{2,1}^{\prime}\left(Q_{n}\right)=3 n$ for $n \in\{2,3,4,5\}$. $\lambda_{2,1}^{\prime}\left(Q_{5}\right)=13$.
Proof. By Theorem 3.1 and Lemma 1.2, we have $5 \leq \sigma_{2,1}^{\prime}\left(Q_{2}\right) \leq 6,8 \leq$ $\sigma_{2,1}^{\prime}\left(Q_{3}\right) \leq 9$, and $11 \leq \sigma_{2,1}^{\prime}\left(Q_{4}\right) \leq 12$. We prove the theorem case by case.

Case 1. $\sigma_{2,1}^{\prime}\left(Q_{2}\right)=6$.
Q_{2} is a 4-cycle. And the line graph of a 4-cycle is also a 4-cycle. It follows from Theorem 3.3 in [9] that $\sigma_{2,1}^{\prime}\left(Q_{2}\right)=6$.

Case 2. $\sigma_{2,1}^{\prime}\left(Q_{3}\right)=9$.
Suppose to the contrary that $\sigma_{2,1}^{\prime}\left(Q_{3}\right)<9$. Then $\sigma_{2,1}^{\prime}\left(Q_{3}\right)=8$. Let L be an 8 -circular- $L(2,1)$-edge-labeling of Q_{3}. For $j=0,1, \ldots, 7$, denote by L_{j} the set of edges labeled by j and let $l_{j}=\left|L_{j}\right|$. Clearly $\sum_{j=0}^{7} l_{j}=\left|E\left(Q_{3}\right)\right|=12$. From (A6), we know that $0 \leq l_{j} \leq 2$, for $j=0,1, \ldots, 7$.

If there is some j with $l_{j}=l_{j+1}=2$, then by (A5) and (A6), $l_{j-1}=l_{j+2}=0$, where "+" and "-" in the subscripts are taken modulo 8. It follows that $\sum_{i=0}^{7} l_{j}<12$, a contradiction. Thus for each $j, l_{j}+l_{j+1} \leq 3$. Since $\sum_{j=0}^{7} l_{j}=12$, we have $l_{j}+l_{j+1}=3$ for each j. With no loss of generality, we assume $l_{0}=2$. Then $l_{1}=l_{7}=1$ and $l_{2}=2$. By (A6), $L_{0}=E_{i}^{h}$ for some i and h. Then by (A5), $L_{7} \cup L_{1} \subseteq E_{i}$. And so $L_{7} \cup L_{0} \cup L_{1}=E_{i}$. But then it is easy to check that the only four edges outside E_{i} not adjacent to the edge with label 1 are pairwise at distance less than 3 . This contradicts $l_{2}=2$. Hence $\sigma_{2,1}^{\prime}\left(Q_{3}\right)=9$.

Case 3. $\quad \sigma_{2,1}^{\prime}\left(Q_{4}\right)=12$.
Suppose to the contrary that $\sigma_{2,1}^{\prime}\left(Q_{4}\right)<12$. Then $\sigma_{2,1}^{\prime}\left(Q_{4}\right)=11$. Let L be an 11-circular- $L(2,1)$-edge-labeling of Q_{4}. For $j=0,1, \ldots, 10$, denote by L_{j} the set of edges labeled by j and let $l_{j}=\left|L_{j}\right|$. Clearly $\sum_{j=0}^{10} l_{j}=\left|E\left(Q_{4}\right)\right|=32$. From (A6), we know that $0 \leq l_{j} \leq 4$, for $j=0,1, \ldots, 10$. We first prove the following two properties of the sequence $\left(l_{0}, l_{1}, \ldots, l_{10}\right)$.

Property 1. For $0 \leq j \leq 10$, if $l_{j}=4$ then $L_{j}=E_{i}^{h}$ for some i, h and $L_{j-1} \cup L_{j+1} \subseteq E_{i}^{1-h}$.

Proof. If $l_{j}=4$ then by (A6) $L_{j}=E_{i}^{h}$ for some i, h. And by (A5), $L_{j-1} \cup L_{j+1} \subseteq$ E_{i}^{1-h}.

Property 2. For $0 \leq j \leq 10$, if $l_{j}=3$ then $L_{j} \subseteq E_{i}^{h}$ for some i, h. Let e be the only edge in $E_{i}^{h} \backslash L_{j}$. We have $L_{j-1} \cup L_{j+1} \subseteq E_{i}^{1-h} \cup \bar{N}(e)$.

Proof. Let $L_{j}=\left\{e_{1}, e_{2}, e_{3}\right\}$. We first prove that $L_{j} \subseteq E_{i}$ for some i. Suppose to the contrary there are two integers p and q such that $e_{1} \in E_{p}$ and $e_{2} \in E_{q}$. Without loss of generality, let $e_{1}=(0101,0001)$. Denote the edge $(1110,1010)$ by e_{4}. Then all edges outside E_{p} that are at distance greater than 2 from e_{1} are in $N\left(e_{4}\right)$. Thus $e_{2} \in N\left(e_{4}\right) \backslash E_{p}$. Note that all edges in $N\left(e_{4}\right)$ are pairwise at distance at most 2. It follows that e_{3} should be in E_{p}. However, it is not difficult to see that any edge in E_{p} at distance greater than 2 from e_{1} is at distance at most 2 from any edge in $N\left(e_{4}\right)$. (See Figure 1 for illustration.) This is a contradiction. Thus $L_{j} \subseteq E_{i}$ for some i. Note that for any edge in E_{i}^{h}, there is only one edge in E_{i}^{1-h} that is at distance greater than 2. Therefore $L_{j} \subseteq E_{i}^{h}$ for some i, h.

Fig. 1. Q_{4} with $e_{1} \in L_{j}$.
Let e be the only edge in $E_{i}^{h} \backslash L_{j}$. By (A5), the edges outside E_{i} that can be labeled by $j-1$ or $j+1$ are in $N(e)$. Therefore $L_{j-1} \cup L_{j+1} \subseteq E_{i}^{1-h} \cup N(e) \cup\{e\}$. This proves Property 2.

We next prove that $l_{j-1}+l_{j}+l_{j+1} \leq 8$ for each $j=0,1, \ldots, 10$.
If $l_{j}=0$ then clearly $l_{j-1}+l_{j}+l_{j+1} \leq 8$. Suppose $l_{j}=1$. If $l_{j-1}+l_{j+1}=8$ then by Property $1, L_{j-1}=E_{i}^{h}$ for some i, h and $L_{j+1}=E_{i^{\prime}}^{h^{\prime}}$ for some i^{\prime}, h^{\prime}. It follows that $L_{j} \subseteq E_{i}^{1-h} \cap E_{i^{\prime}}^{1-h^{\prime}}=\varnothing$, a contradiction. Thus $l_{j-1}+l_{j+1} \leq 7$ and $l_{j-1}+l_{j}+l_{j+1} \leq 8$. If $l_{j}=4$ then, by Property $1, l_{j-1}+l_{j}+l_{j+1} \leq 8$.

If $l_{j}=3$ then by Property $2, L_{j} \subseteq E_{i}^{h}$ for some i, h. Let e be the only edge in
$E_{i}^{h} \backslash L_{j}$. We have $L_{j-1} \cup L_{j+1} \subseteq E_{i}^{1-h} \cup \bar{N}(e)$. If $l_{j-1}=4$ then $L_{j-1}=E_{i}^{1-h}$. Thus $L_{j+1} \subseteq \bar{N}(e)$. Note that any two edges in $\bar{N}(e)$ are at distance at most 2 . We have $l_{j+1} \leq 1$. Similarly, if $l_{j+1}=4$ then $l_{j-1} \leq 1$. In both cases we have $l_{j-1}+l_{j}+l_{j+1} \leq 8$. Thus we now assume $l_{j-1}, l_{j+1} \leq 3$. If one of l_{j-1} and l_{j+1} is less than 3 , then we are done. If $l_{j-1}=l_{j+1}=3$, then by Property 2 , $L_{j-1} \cup L_{j+1} \subseteq E_{i}^{1-h}$. This is a contradiction since $\left|E_{i}^{1-h}\right|=4<6=l_{j-1}+l_{j+1}$. Therefore we conclude that if $l_{j}=3$ then $l_{j-1}+l_{j}+l_{j+1} \leq 8$.

Now suppose $l_{j}=2$. If one of l_{j-1} and l_{j+1} is less than 3 , then we clearly have $l_{j-1}+l_{j}+l_{j+1} \leq 8$. If $l_{j-1}=l_{j+1}=3$, then we are done. Thus without loss of generality we assume $l_{j-1}=4$ and $l_{j+1} \geq 3$. Then by Property $1, L_{j-1}=E_{i}^{h}$ for some i, h and $L_{j} \subseteq E_{i}^{1-h}$. If l_{j+1} is also equal to 4 , then $L_{j+1}=E_{i^{\prime}}^{h^{\prime}}$ for some i^{\prime}, h^{\prime} and $L_{j} \subseteq E_{i^{\prime}}^{1-h^{\prime}}$. It follows that $i=i^{\prime}$ and $h=h^{\prime}$. This is a contradiction. Therefore we assume $l_{j+1}=3$. Let e^{\prime} be the only edge in $E_{i^{\prime}}^{h^{\prime}} \backslash L_{j+1}$. By Property 2, $L_{j+1} \subseteq E_{i^{\prime}}^{h^{\prime}}$ for some i^{\prime}, h^{\prime} and $L_{j} \subseteq E_{i^{\prime}}^{1-h^{\prime}} \cup N\left(e^{\prime}\right) \cup\left\{e^{\prime}\right\}$. Now we have $L_{j} \subseteq E_{i}^{1-h}$ and $L_{j} \cap E_{i^{\prime}}^{1-h^{\prime}} \neq \varnothing$. It follows that $i=i^{\prime}$ and $h=h^{\prime}$. This is a contradiction.

Therefore $96=3 \times 32=3 \times \sum_{j=0}^{10} l_{j}=\sum_{j=0}^{10}\left(l_{j-1}+l_{j}+l_{j+1}\right) \leq 8 \times 11=88$. This is contradiction. Case 3 holds.

Case 4. $\sigma_{2,1}^{\prime}\left(Q_{5}\right)=15$ and $\lambda_{2,1}^{\prime}\left(Q_{5}\right)=13$.
Suppose to the contrary that $\sigma_{2,1}^{\prime}\left(Q_{5}\right)<15$. Let L be a 14 -circular- $L(2,1)$ -edge-labeling of Q_{5}. Clearly $\sum_{j=0}^{13} l_{j}=\left|E\left(Q_{5}\right)\right|=80$. From (A6), we know that $0 \leq l_{j} \leq 8$, for $j=0,1, \ldots, 13$. We first prove the following property of the sequence $\left(l_{0}, l_{1}, \ldots, l_{13}\right)$.

For convenience, we use $[0,13]$ to denote the set of integers $0,1, \ldots, 13$.
Property 3. Let $j \in[0,13]$. If $l_{j} \geq 6$ then $L_{j} \subseteq E_{i}^{h}$ for some i, h.
Proof. Let j be any integer in $[0,13]$. Suppose $l_{j} \geq 6$. For convenience, we name the 16 edges in E_{3} as $e_{1}, e_{2}, \ldots, e_{16}$ (See Figure 2). Then $E_{3}^{1}=\left\{e_{1}, e_{4}, e_{6}, e_{7}, e_{10}, e_{11}\right.$, $\left.e_{13}, e_{16}\right\}$ and $E_{3}^{0}=\left\{e_{2}, e_{3}, e_{5}, e_{8}, e_{9}, e_{12}, e_{14}, e_{15}\right\}$.

Suppose without loss of generality that $e_{1} \in L_{j}\left(e_{1} \in E_{3}^{1}\right)$. Then after carefully checking all edges outside E_{3}^{1} that are at distance at least 3 from e_{1}, we may find that $L_{j} \backslash E_{3}^{1}$ is contained in $\bar{N}\left(e_{8}\right) \cup \bar{N}\left(e_{12}\right) \cup \bar{N}\left(e_{14}\right) \cup \bar{N}\left(e_{15}\right)$. (Please see Figure 2 for illustration.) Since edges in E_{3} that are at distance at least 3 from e_{1} are contained in $M=E_{3} \backslash\left\{e_{2}, e_{3}, e_{5}, e_{9}\right\}$, we have $L_{j} \cap E_{3} \subseteq M$.

In the following we want to show that if $L_{j} \backslash E_{3}^{1} \neq \emptyset$ then $l_{j} \leq 5$ and thus prove that $L_{j} \subseteq E_{3}^{1}$. We first construct a bipartite graph $H(X, Y)$ as follows. The partite sets $X=\left\{\bar{N}\left(e_{8}\right), \bar{N}\left(e_{12}\right), \bar{N}\left(e_{14}\right), \bar{N}\left(e_{15}\right)\right\}$ and $Y=M \backslash\left\{e_{1}, e_{8}, e_{12}, e_{14}, e_{15}\right\}$. If some edge e in $\bar{N}\left(e_{8}\right)$ (or $\bar{N}\left(e_{12}\right)$, or $\bar{N}\left(e_{14}\right)$, or $\bar{N}\left(e_{15}\right)$) is in L_{j}, then the four edges $e_{4}, e_{6}, e_{7}, e_{16}$ (or $e_{4}, e_{10}, e_{11}, e_{16}$, or $e_{6}, e_{10}, e_{13}, e_{16}$, or $e_{7}, e_{11}, e_{13}, e_{16}$) from Y can
not be in L_{j} since they are at distance less than 3 from e_{8} (or e_{12}, or e_{14}, or e_{15}). In this case, we draw edges in H between $\bar{N}\left(e_{8}\right)$ (or $\bar{N}\left(e_{12}\right)$, or $\bar{N}\left(e_{14}\right)$, or $\bar{N}\left(e_{15}\right)$) and the vertices in Y corresponding to those edges. The graph H is presented in Figure 3.

Fig. 2. Q_{5} with $e_{1} \in L_{j}$.

Fig. 3. The graph H.
If $L_{j} \backslash E_{3}^{1} \neq \emptyset$, then $L_{j} \cap\left(\bar{N}\left(e_{8}\right) \cup \bar{N}\left(e_{12}\right) \cup \bar{N}\left(e_{14}\right) \cup \bar{N}\left(e_{15}\right)\right) \neq \emptyset$. Suppose some edge in $\bar{N}\left(e_{8}\right)$ is in L_{j}, then $e_{4}, e_{6}, e_{7}, e_{16}$ are not in L_{j}. The subgraph of H induced by $V(H) \backslash\left\{\bar{N}\left(e_{8}\right), e_{4}, e_{6}, e_{7}, e_{16}\right\}$ is a cycle of order 6 . It is easy to see from this subgraph that at most three edges corresponding to the vertices in this subgraph can be in L_{j}. It follows that $l_{j} \leq 5$. It is not difficult to check that the same is true for $\bar{N}\left(e_{12}\right), \bar{N}\left(e_{14}\right)$, and $\bar{N}\left(e_{15}\right)$. Thus we conclude that if $L_{j} \backslash E_{3}^{1} \neq \emptyset$ then $l_{j} \leq 5$. This implies that if $l_{j} \geq 6$ then $L_{j} \subseteq E_{i}^{h}$ for some i, h. Property 3 holds.

For $j \in[0,13]$, denote by h_{j} the sum $l_{j-1}+l_{j}+l_{j+1}$.
Let $j \in[0,13]$. Suppose $l_{j} \geq 6$. Then, by Property $3, L_{j} \subseteq E_{i}^{h}$ for some i, h. Let $E^{\prime}=E_{i}^{h} \backslash L_{j}$. Then, by (A5), $L_{j-1} \cup L_{j+1} \subseteq\left(E_{i} \backslash L_{j}\right) \cup N\left(E^{\prime}\right)$. Let e^{\prime} be an edge in E^{\prime}. It is clear that $\left|\left(L_{j-1} \cup L_{j+1}\right) \cap \bar{N}\left(e^{\prime}\right)\right| \leq 2$. Furthermore, if the equality holds then at least two edges in E_{i}^{1-h} cannot be in $L_{j-1} \cup L_{j+1}$. It follows that if $l_{j} \geq 6$ then $h_{j} \leq 16$.

Now suppose $l_{j-1} \geq 6$ and $l_{j+1} \geq 6$. Then $L_{j-1} \subseteq E_{i}^{h}$ for some i, h and $L_{j+1} \subseteq E_{i^{\prime}}^{h^{\prime}}$ for some i^{\prime}, h^{\prime}. Let $E^{\prime}=E_{i}^{h} \backslash L_{j-1}$ and $E^{\prime \prime}=E_{i^{\prime}}^{h^{\prime}} \backslash L_{j+1}$. For any edge $e^{\prime} \in E^{\prime} \cup E^{\prime \prime}$, it is clear that $\left|L_{j} \cap \bar{N}\left(e^{\prime}\right)\right| \leq 1$. If $i \neq i^{\prime}$ then $L_{j} \subseteq \bar{N}\left(E^{\prime}\right) \cup \bar{N}\left(E^{\prime \prime}\right)$ and so $h_{j} \leq 16$. If $i \neq i^{\prime}$ then $h_{j} \leq 16$ since $l_{j-1}+\left|E^{\prime}\right|+l_{j+1}+\left|E^{\prime \prime}\right|=16$.

We conclude that if $l_{j} \geq 6$ or both $l_{j-1} \geq 6$ and $l_{j+1} \geq 6$ then $h_{j} \leq 16$.
Therefore, if $h_{j} \geq 18$ then $l_{j} \leq 5$ and l_{j-1} or $l_{j+1} \leq 5$. This implies that if $h_{j} \geq 18$ then $\left(l_{j-1}, l_{j}, l_{j+1}\right)=(8,5,5)$ or $(5,5,8)$. And so, $h_{j} \leq 18$ for all $j \in[0,13]$; furthermore, if $h_{j}=18$ then $h_{j-1} \leq 16$ or $h_{j+1} \leq 16$. If $h_{j}=h_{j+1}=18$, then $\left(l_{j-1}, l_{j}, l_{j+1}, l_{j+2}\right)$ should be of the form $(8,5,5,8)$. In this case, we have $h_{j-1} \leq 16$ and $h_{j+2} \leq 16$. It is easy to see that the case $h_{j}=h_{j+1}+2=h_{j+2}=18$ will never happen. From these discussions, we have

$$
240=3 \times \sum_{j=0}^{13} l_{j}=\sum_{j=0}^{13} h_{j} \leq 14 \times 17=238 .
$$

This contradiction proves that $\sigma_{2,1}^{\prime}\left(Q_{5}\right)=15$.
Since $\lambda_{2,1}^{\prime}\left(Q_{5}\right) \geq \sigma_{2,1}^{\prime}\left(Q_{5}\right)-2=13$, by Theorem 3.1, $\lambda_{2,1}^{\prime}\left(Q_{5}\right)=13$.
It seems difficult to extend the method in this section to the case Q_{n} for $n \geq 6$.
We conclude this paper by proposing the following three questions.
Question 1. Notice that $\lambda_{2,1}^{\prime}\left(K_{1, \Delta}\right)=2 \Delta-2$, Georges and Mauro in [3] asked the question: for each integer from $2 \Delta-2$ to $\lambda_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)$, is there a tree with maximum degree Δ such that its $L(2,1)$-edge-labeling number is that integer? Since $\sigma_{2,1}^{\prime}\left(K_{1, \Delta}\right)=2 \Delta$, the similar question as above is: for each integer from 2Δ to $\sigma_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)$, is there a tree with maximum degree Δ such that its circular- $L(2,1)$ -edge-labeling number is that integer?

Question 2. Is there a polynomial time algorithm to compute $\lambda_{2,1}^{\prime}(T)$ (or $\sigma_{2,1}^{\prime}(T)$) for any tree T ?

Question 3. From Theorems 3.2 and 3.1, $\lambda_{2,1}^{\prime}\left(Q_{n}\right)+2=\sigma_{2,1}^{\prime}\left(Q_{n}\right)=3 n$ for $n \in\{2,3,4,5\}$. That is, the upper bounds $3 n-2$ and $3 n$ for $\lambda_{2,1}^{\prime}\left(Q_{n}\right)$ and $\sigma_{2,1}^{\prime}\left(Q_{n}\right)$ respectively are attained for $n \in\{2,3,4,5\}$. This is an interesting phenomenon. Is it true that $\lambda_{2,1}^{\prime}\left(Q_{n}\right)+2=\sigma_{2,1}^{\prime}\left(Q_{n}\right)=3 n$ for all $n \geq 2$?

References

1. T. Calamoneri, The $L(h, k)$-labelling problem: a survey and annotated bibliography, The Computer Journal, 49(5) (2006), 585-608.
2. Q. Chen and W. Lin, $L(j, k)$-Labelings and $L(j, k)$-edge-Labelings of graphs, to appear in Ars Combin., 2007.
3. J. P. Georges and D. W. Mauro, Edge labelings with a condition at distance two, Ars Combin., 70 (2004), 109-128.
4. J. R. Griggs and X. T. Jin, Recent progress in mathematics and engineering on optimal graph labellings with distance conditions, J. of Combin. Optim., 14(2-3) (2007), 249257.
5. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math., 5 (1992), 586-595.
6. W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE, 68 (1980), 1497-1514.
7. J. Heuvel, R. A. Leese and M. A. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory, 29 (1998), 263-283.
8. P. C. B. Lam, W. Lin and J. Wu, $L(j, k)$ - and circular $L(j, k)$-labellings for the products of complete graphs, J. Combin. Optim., 14 (2007), 219-227.
9. D. D. F. Liu, Hamiltonicity and circular distance two labellings, Discrete Math., 232 (2001), 163-169.
10. D. Lü, W. Lin, and Z. Song, $L(2,1)$-circular labelings of Cartesian products of complete graphs, J. Mathematical Research \& Exposition, 29(1) (2009), 91-98.
11. R. A. Leese and S. D. Noble, Cyclic labellings with constraints at two distance, Electronic J. Combin., 11 (2004), $\sharp R 16$.
12. D. D. F. Liu and X. Zhu, Circulant Distant Two Labeling and Circular Chromatic Number, Ars Combin., 69 (2003), 177-183.
13. K. Wu and R. K. Yeh, Labelling graphs with the circular difference, Taiwanese J. Math., 4 (2000), 397-405.
14. R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math., 306 (2006), 1217-1231.

Wensong Lin and Jianzhuan Wu
Department of Mathematics
Southeast University
Nanjing 210096
P. R. China
E-mail: wslin@seu.edu.cn

[^0]: Received November 13, 2011, accepted March 9, 2012.
 Communicated by Gerard Jennhwa Chang.
 2010 Mathematics Subject Classification: 05C15.
 Key words and phrases: Circular- $L(j, k)$-edge-labeling number, Δ-Regular tree, n-Dimensional cube. Project 10971025 supported by NSFC.

