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NONSELFADJOINT SINGULAR STURM-LIOUVILLE OPERATORS IN
LIMIT-CIRCLE CASE

Bilender P. Allahverdiev

Abstract. In this paper, we study the maximal dissipative singular Sturm-Liouville
operators (in Weyl’s limit-circle case at singular point b) acting in the Hilbert space
L2

w [a, b) (−∞ < a < b ≤ ∞ ). In fact, we consider all extensions of a minimal
symmetric operator and we investigate two classes of maximal dissipative opera-
tors with separated boundary conditions, called ‘dissipative at a’ and ‘dissipative
at b’. In both cases, we construct a selfadjoint dilation of the maximal dissipative
operator and determine its incoming and outgoing spectral representations. This
representations make it possible to determine the scattering matrix of the dila-
tion in terms of the Titchmarsh-Weyl function of a selfadjoint Sturm-Liouville
operator. We also construct a functional model of the maximal dissipative oper-
ator and determine its characteristic function in terms of the scattering matrix of
the dilation (or of the Titchmarsh-Weyl function). Finally we prove theorems on
the completeness of the eigenfunctions and associated functions of the maximal
dissipative Sturm-Liouville operators.

1. INTRODUCTION

The contour integration method is one of the general methods of the spectral anal-
ysis of nonselfadjoint operators. This method is about separating the spectrum with
expanding contours and may be applied to weak perturbations of selfadjoint operators
and also to operators with sparse discrete spectrum. However this method has doesn’t
have application because there are not asymptotics of solutions of some class of singular
differential equations.
In the spectral analysis of nonselfadjoint (dissipative) operators, the most adequate

way is the functional model theory which shows that the characteristic function is
unitary equivalent to the scattering function. In fact, in the spectral representation of
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dilation, the dissipative operator becomes the model. In the centre of this method, there
is an information on the spectral properties of the dissipative operator. For example, the
factorization of the characteristic function may help us about learning that whether the
system of all eigenvectors and associated vectors is complete or not. To construct the
characteristic function directly is quite hard. However, according to the results of Lax-
Phillips, this construction can be done with the selfadjoint dilation and scattering matrix
(see [11]). This approach for dissipative Schrödinger and Sturm-Liouville operators has
been done, for example, in [1-4,14,15].
In this paper, we investigate the spectral analysis of singular dissipative Sturm-

Liouville operators with the help of the extensions of a minimal symmetric operator
with defect index (2, 2) (in Weyl’s limit-circle case at singular end point b) acting in
the Hilbert space L2

w [a, b) (−∞ < a < b ≤ ∞). In this investigation, we investi-
gate two classes of maximal dissipative operators with separated boundary conditions,
called ‘dissipative at a’ and ‘dissipative at b’. In both cases, we construct a selfad-
joint dilation of maximal dissipative operator and its incoming and outgoing spectral
representations which will help us to determine the scattering matrix of the dilation
according to the theory of Lax and Phillips [11]. With the help of the incoming spec-
tral representation, we construct a functional model of maximal dissipative operator
and define its characteristic function in terms of the Titchmarsh-Weyl function of the
selfadjoint Sturm-Liouville operator. Finally, we prove the theorems on completeness
of the system of eigenfunctions and associated functions of the maximal dissipative
Sturm-Liouville operators with the help of the results obtained for the characteristic
functions.

2. PRELIMINARIES

Throughout this paper we consider the Sturm-Liouville differential expression with
singular point b as

(2.1)
�(y):

=
1

w(x)
[−(p(x)y′(x))′ + q(x)y(x)] (x ∈ I := [a, b) , −∞<a<b≤+∞),

where p, q and w are real-valued, Lebesgue measurable functions on I, and p−1, q, w ∈
L1

loc(I), w(x)> 0 for almost all x ∈ I.
Let us denote by D the linear set consisting of all vectors y ∈ L2

w(I) which
consists of all complex-valued functions y such that

∫ b
a w(x) | y(x) |2 dx < +∞

with the inner product (y, z) =
∫ b
a w(x)y(x)z(x)dx such that y and py′ are locally

absolutely continuous functions on I and, �(y) ∈ L2
w (I) and define the operator L on

D by the equality Ly = �(y).
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For y, z ∈ D from Green’s formula the equality

(2.2) (Ly, z)− (y, Lz) = [y, z]b − [y, z]a ,

holds, where [y, z]x:= Wx [y, z]:= (ypz′−py′zx) (x) , x ∈ I and [y, z]b:= lim
x→b−

[y, z]x .

In L2
w (I), we consider the dense linear set D′

0 consisting of smooth, compactly
supported functions on I. Denote by L′

0 the restriction of the operator L to D′
0. It

follows from (2.2) that L′
0 is symmetric. Consequently, it admits closure which we

denote by L0. The domain of L0 consists of precisely those vectors y ∈ D satisfying
the conditions

(2.3) y (a) = (py′) (a) = 0, [y, z]b = 0, ∀z ∈ D.

The operator L0 is a symmetric operator with defect index (1, 1) or (2, 2), and L =
L∗

0 [5-7,13,16,17]. The operators L0 and L are called the minimal and maximal oper-
ators, respectively.
Let symmetric operator L0 have defect index (1, 1), so the Weyl’s limit-point case

occurs for � or L0. It is known that all selfadjoint extensions Lα of the operator L0

are described by the boundary conditions y (a) cosα + (py′) (a) sinα = 0, α ∈ [0, π)
(y ∈ D) (see [5-7, 13, 16, 17]).
All maximal dissipative (maximal accretive) extensions Lh of the operator L0 are

described by the boundary conditions (py′) (a)−hy (a) = 0 (y ∈ D), where Imh ≥ 0
or h = ∞ (Imh ≤ 0 or h = ∞). For h = ∞, the corresponding boundary condition
has the form y (a) = 0.
In this paper, we assume that L0 has defect index (2, 2), so that the Weyl’s

limit-circle case holds for the differential expression � or the operator L0 (see [5-
7,9,10,13,16,17]).
Let u(x) and v(x) be the solutions of the equation

(2.4) �(y) = 0 (x ∈ I)

satisfying the initial conditions

(2.5) u(a) = 1, (pu′)(a) = 0, v(a) = 0, (pv′)(a) = 1.

The Wronskian of the two solutions of (2.4) does not depend on x so it follows from
(2.5) and the constancy of the Wronskian that the equality Wx [u, v] = Wa [u, v] = 1
(x ∈ I) holds. Consequently, u and v form a fundamental system of solutions of (2.4).
Since L0 has defect index (2, 2), u, v ∈ L2

w (I) and, moreover, u, v ∈ D.

It is clear that the set D0 being the domain of the operator L0 consists of all
functions y ∈ D satisfying the conditions

(2.6) y(a) = (py′)(a) = 0, [y, u]b = [y, v]b = 0.
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A linear operator T (with dense domain D(T )) acting on some Hilbert space H
is called dissipative (accretive) if Im(Tf , f) ≥ 0 (Im(Tf , f) ≤ 0) for all f ∈ D(T )
and maximal dissipative (maximal accretive) if it does not have a proper dissipative
(accretive) extension.
To construct the nonselfadjoint operator we need linear mappings. So let Γ1 and

Γ2 be linear mappings from D into E := C2 defined by

(2.7) Γ1y =
( −y(a)

[y, u]b

)
, Γ2y =

(
(py′)(a)
[y, v]b

)
.

Then we have (see [1])

Theorem 2.1. For any contractionK in E the restriction of the operator L to the
set of functions y ∈ D satisfying the boundary condition

(2.8) (K − I) Γ1y + i (K + I)Γ2y = 0

or

(2.9) (K − I) Γ1y − i (K + I)Γ2y = 0

is, respectively, a maximal dissipative or a maximal accretive extension of the operator
L0. Conversely, every maximal dissipative (maximal accretive) extension of L0 is the
restriction of L to the set of vectors y ∈ D satisfying (2.8) ((2.9)), and the contraction
K is uniquely, determined by the extensions. These conditions define a selfadjoint
extension if and only if K is unitary. In the latter case, (2.8) and (2.9) are equivalent
to the condition (cosA) Γ1y − (sinA) Γ2y = 0, where A is a selfadjoint operator
(Hermitian matrix) in E. The general form of the dissipative and accretive extensions
of the operator L0 is given by the conditions

(2.10) K (Γ1y + iΓ2y) = Γ1y − iΓ2y,Γ1y + iΓ2y ∈ D (K)

(2.11) K (Γ1y − iΓ2y) = Γ1y + iΓ2y,Γ1y − iΓ2y ∈ D (K)

respectively, whereK is a linear operator with ‖Kf‖ ≤ ‖f‖ , f ∈ D (K) . The general
form of symmetric extensions is given by the formulae (2.10) and (2.11), where K is
an isometric operator.
In particular, the boundary conditions (y ∈ D)

(2.12) (py′) (a) − h1y (a) = 0

(2.13) [y, u]b − h2 [y, v]b = 0
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with Imh1 ≥ 0 or h1 = ∞, and Imh2 ≥ 0 or h2 = ∞ (Imh1 ≤ 0 or h1 = ∞,

and Imh2 ≤ 0 or h2 = ∞) describe all the maximal dissipative (maximal accretive)
extensions of L0 with separated boundary conditions. The selfadjoint extensions of
L0 are obtained precisely when Imh1 = 0 or h1 = ∞, and Imh2 = 0 or h2 = ∞.
Here for h1 = ∞ (h2 = ∞), condition (2.12) ((2.13)) should be replaced by y (a) = 0
([y, v]b = 0) .
In the sequel we shall study the maximal dissipative operators Lh1h2 generated by

(2.1) and the boundary conditions (2.12) and (2.13) of two kinds: ‘dissipative at a’,
i.e. when either Imh1 > 0 and Imh2 = 0 or h2 = ∞; and ‘dissipative at b’, when
Imh1 = 0 or h1 = ∞ and Imh2 > 0.

3. SELFADJOINT DILATION OF THE MAXIMAL DISSIPATIVE OPERATOR IN THE
CASE OF DISSIPATIVE AT a’

To investigate the spectral analysis of the maximal dissipative operators, the func-
tional model theory of Sz.-Nagy-Foiaş may be helpful ([12]). In fact, to construct the
characteristic function of a contraction directly is quite hard. On the other hand the
abstract scattering function of Lax-Phillips is unitary equivalent to the characteristic
function of Sz.-Nagy-Foiaş ([11,12]). This equivalence helps us to reach our main
aim. So to pass to more easier, that is the scattering theory, we need to construct a
selfadjoint dilation of the maximal dissipative operator Lh1h2 (Imh1 > 0, Im h2 = 0 or
h2 = ∞). So we associate with H := L2

w (I) the ‘incoming’ and ‘outgoing’ channels
D−:= L2 (R−) (R−:= (−∞, 0]) and D+:= L2 (R+) (R+:= [0,∞)); we form the
orthogonal sum H = D− ⊕H ⊕D+.
Denote by P : H →H and P1 : H → H the mappings acting according to the

formulas P : 〈ϕ−, y, ϕ+〉 → y and P1 : y → 〈0, y, 0〉, respectively and we denote by
P+ : H → L2 (R+) and P+

1 : L2(R+) → D+ the mappings acting according to the
formulae P+ : 〈ϕ−, u, ϕ+〉 → ϕ+ and P+

1 : ϕ → 〈0, 0, ϕ〉 , respectively.
In the space H, we consider the operator Lh1h2 generated by the expression

(3.1) L〈ϕ−, y, ϕ+〉 = 〈idϕ−
dξ

, � (y) , i
dϕ+

dς
〉

on the setD (Lh1h2) of elements 〈ϕ−, y, ϕ+〉 satisfying the conditions ϕ∓ ∈W 1
2 (R∓) ,

y ∈ D and
(py′) (a) − h1y (a) = αϕ− (0) ,

(3.2) (py′) (a) − h̄1y (a) = αϕ+ (0) , [y, u]b − h2[y, v]b = 0,

where W 1
2 (R∓) is the Sobolev space, and α2:= 2Imh1, α > 0. Then we have
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Theorem 3.1. The operator Lh1h2 is selfadjoint inH and it is a selfadjoint dilation
of the maximal dissipative operator Lh1h2 .

Proof. Let f, g ∈ D (Lh1h2) where f = 〈ϕ−, y, ϕ+〉 and g = 〈ψ−, z, ψ+〉. Using
integration by parts and (2.2), we get that

(3.3) (Lh1h2f, g)H =

0∫
−∞

iϕ′
−ψ−dξ + (Ly, z)H +

∞∫
0

iϕ′
+ψ+dς = iϕ− (0)ψ− (0)

−iϕ+ (0)ψ+ (0) + [y, z]b − [y, z]a + (f,Lh1h2g)H .

Now, using the boundary conditions (3.2) for the components of the vectors f and g and
Lemma 2.1, a direct calculation shows that iϕ− (0)ψ− (0) − iϕ+ (0)ψ+ (0) +[y, z]b
− [y, z]a = 0. So, Lh1h2 is symmetric. Therefore, to prove that Lh1h2 is selfadjoint, it
suffices for us to show that L∗

h1h2
⊆ Lh1h2 . Take g = 〈ψ−, z, ψ+〉 ∈ D(L∗

h1h2
). Let

L∗
h1h2

g = g∗, g∗ = 〈ψ∗−, z∗, ψ∗
+〉 ∈ H, so that

(3.4) (Lh1h2f, g)H = (f, g∗)H , ∀f ∈ D (Lh1h2) .

By choosing suitable components for f ∈ (Lh1h2) in (3.4), it is easy to show that
ψ∓ ∈ W 1

2 (R∓), z ∈ D and g∗ = Lg, where the operator L is defined by (3.1).
Consequently, (3.4) takes the form (Lf, g)H = (f,Lg)H , ∀f ∈ D (Lh1h2) . Therefore,
the sum of the integral terms in the bilinear form (Lf, g)H must be equal to zero:

(3.5) iϕ− (0)ψ− (0)− iϕ+ (0)ψ+ (0) + [y, z]b − [y, z]a = 0

for all f = 〈ϕ−, y, ϕ+〉 ∈ D (Lh1h2) . Further, solving the boundary conditions (3.2)
for y (a) and (py′) (a) , we find that y (a) = − i

α (ϕ+ (0)−ϕ− (0) , (py′) (a) = αϕ− (0)
− ih1

α (ϕ+ (0) − ϕ− (0)). Therefore, using (2.7), we find that (3.5) is equivalent to the
equality

iϕ− (0)ψ− (0)− iϕ+ (0)ψ+ (0) = [y, z]a − [y, z]b

= − i

α
(ϕ+(0)− ϕ−(0))(pz′)(a) − α[ϕ−(0)− ih1

α2
(ϕ+(0) − ϕ−(0)]z(a)

−[y, u]b[z, u]b + [y, v]b[z, v]b = − i

α
(ϕ+(0) − ϕ−(0))(pz′)(a)

−α[ϕ−(0)− ih1

α2
(ϕ+(0)− ϕ−(0))]z(a) − ([z, u]b − h2[z, v]b)[y, v]b.

Since the values ϕ±(0) can be arbitrary complex numbers, a comparison of the co-
efficient of ϕ±(0) on the left and right of the last equality gives us that the vector
g = 〈ψ−, z, ψ+〉 satisfies the boundary conditions (pz′)(a) − h1z(a) = αψ−(0),
(pz′)(a) − h1z(a) = αψ+(0), [z, u]b − h2[z, v]b = 0. Consequently, the inclusion
L∗

h1h2
⊆ Lh1h2 is established, and hence Lh1h2 = L∗

h1h2
.
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It is well-known that the selfadjoint operator Lh1h2 generates in H a unitary
group Ut = exp[iLh1h2t] (t ∈ R:= ( − ∞,∞)). Let Zt = PUtP1 (t ≥ 0). Then
the family {Zt} (t ≥ 0) of operators becomes a strongly continuous semigroup of
nonunitary contraction on H . Denote by Bh1h2 the generator of this semigroup,
Bh1h2y = limt→+0(it)−1(Zty − y). The domain of Bh1h2 consists of all the vectors
for which the limit exists. The operator Bh1h2 is maximal dissipative. The operator
Lh1h2 is called the selfadjoint dilation of Bh1h2 . We shall show that Bh1h2 = Lh1h2 ,
and hence, Lh1h2 is a selfadjoint dilation of Lh1h2 . To do this, we first verify the
equality [14, 15]

(3.6) P (Lh1h2 − λI)−1P1y = (Lh1h2 − λI)−1y, y ∈ H, Imλ < 0.

With this purpose, let us set (Lh1h2 − λI)−1P1y = g = 〈ψ−, z, ψ+〉. Then (Lh1h2 −
λI)g = P1y, and hence, �(z)−λz = y, ψ−(ξ) = ψ−(0)e−iλξ, and ψ+(ς) = ψ+(0)e−iλς .
Since g ∈ D(Lh1h2), and hence ψ− ∈ L2(R−); it follows that ψ−(0) = 0, and conse-
quently, z satisfies the boundary conditions (py′)(a)−h1y(a) = 0, [y, u]b−[y, v]a = 0.
Therefore, z ∈ D(Lh1h2), and since a point λ with Imλ < 0 cannot be an eigenvalue
of a dissipative operator, it follows that z = (Lh1h2 −λI)−1y. We remark that ψ+(0) is
found from the formula ψ+(0) = α−1((pz′)(a)− h1z(a)). Thus, (Lh1h2 − λI)−1P1y

= 〈0, (Lh1h2 − λI)−1y, α−1((pz′)(a)− h1z1(a))e−iλς〉, for y ∈ H and Imλ < 0. By
applying the mapping P , one obtains (3.6).
It is now easy to show that Bh1h2 = Lh1h2 . Indeed, by (3.6),

(Lh1h2 − λI)−1 = P (Lh1h2 − λI)−1P1 = −iP
∞∫
0

Ute
−iλtdtP1

= −i
∞∫
0

Zte
−iλtdt = (Bh1h2 − λI)−1 (Imλ < 0),

and therefore Lh1h2 = Bh1h2 . Hence Theorem 3.1 is proved.

4. SCATTERING THEORY OF THE DILATION AND FUNCTIONAL MODEL OF THE MAXIMAL
DISSIPATIVE OPERATOR IN THE CASE OF ‘DISSIPATIVE AT a’

According to the Lax-Phillips scattering theory one can construct a scattering func-
tion acting from the incoming subspace D− to the outgoing subspace D+ only when
the unitary group Ut has the following properties
(1)UtD− ⊂ D−, t ≤ 0, and UtD+ ⊂ D+, t ≥ 0;
(2)

⋂
t≤0
UtD− =

⋂
t≥0
UtD+ = {0} ;

(3)
⋃
t≥0

UtD+ =
⋃
t≤0

UtD+ = H;
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(4)D−⊥D+.

Let D−:=
〈
L2(R−), 0, 0

〉
and D+:=

〈
0, 0, L2(R+)

〉
. Now we shall show that

the properties (1)-(4) are satisfied. Property (4) is obvious.
Let us set Rλ = (Lh1h2 − λI)−1, for all λ with Imλ < 0 to prove property (1) for

D+ (the proof for D− is similar). Then, for any f = 〈0, 0, ϕ+〉 ∈ D+, we have

Rλf = 〈0, 0,−ie−iλξ

ξ∫
0

eiλsϕ+(s)ds〉.

So Rλf ∈ D+. If g⊥D+, then the equality

0 = (Rλf, g)H = −i
∞∫
0

e−iλt(Utf, g)Hdt, Imλ < 0.

holds. From this it follows that (Utf, g)H = 0 for all t ≥ 0. Hence, UtD+ ⊂ D+ for
t ≥ 0, and property (1) is proved.
To prove property (2), we set U+

t = P+UtP
+
1 , t ≥ 0. Note that the semigroup

of isometries U+
t = P+UtP

+
1 , t ≥ 0, is a one-sided shift in L2 (R+). Indeed, the

generator of the semigroup of the one-sided shift Vt in L2 (R+) is the differential
operator i d

dξ with the boundary condition ϕ (0) = 0. On the other hand, the generator
S of the semigroup of isometries U+

t , t ≥ 0, is the operator Sϕ = P+Lh1h2P
+
1 ϕ

= P+Lh1h2 〈0, 0, ϕ〉 = P+
〈
0, 0, idϕ

dξ

〉
= idϕ

dξ , where ϕ ∈ W 1
2 (R+) and ϕ (0) = 0.

Since a semigroup is determined by its generator, it follows that U+
t = Vt, and hence,⋂

t≥0
UtD+ = 〈0, 0, ⋂

t≥0
VtL

2 (R+)〉 = {0}, so proof is completed.
The linear operator A (with domain D(A)) acting in the Hilbert space H is called

completely nonselfadjoint (or simple) if there is no invariant subspace M ⊆ D(A)
(M �= {0}) of the operator A on which the restriction of A to M is selfadjoint.
In this scheme of the Lax-Phillips scattering theory, the scattering matrix is defined

in terms of the theory of spectral representations. We proceed to their construction.
Along the way, we also prove property (3) of the incoming and outgoing subspaces.
We first prove the following lemma.

Lemma 4.1. The operator Lh1h2is completely nonselfadjoint (simple).

Proof. Let H ′ ⊂ H be a nontrivial subspace in which Lh1h2 induces a selfadjoint
operator L′

h1h2
with domain D(L′

h1h2
) = H ′ ∩D(Lh1h2). If f ∈ D(L′

h1h2
), then f ∈

D(L′∗
h1h2

), and (py′) (a)−h1y (a) = 0, (py′) (a)−h̄1y (a) = 0, [y, u]b−h2[y, v]b = 0.
From this discussion, for the eigenfunctions y(x, λ) of the operator Lh1h2 that lie in
H ′ and are eigenvectors of L′

h1h2
we have y(a, λ) = 0, (py′)(a, λ) = 0, and then by

the uniqueness theorem of the Cauchy problem for the equation �(y) = λy, x ∈ I, we
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have y(x, λ) ≡ 0. Since all solutions of �(y) = λy (x ∈ I) belong to L2
w(I), it can

be concluded that the resolvent Rλ(Lh1h2) of the operator Lh1h2 is a Hilbert-Schmidt
operator, and hence the spectrum of Lh1h2 is purely discrete. Hence by the theorem on
expansion in eigenvectors of the selfadjoint operator L′

h1h2
, we have H ′ = {0}, i.e.,

the operator Lh1h2 is simple. The lemma is proved.
We set

H− = ∪
t≥0
UtD−, H+ = ∪

t≤0
UtD+.

Lemma 4.2. H− +H+ = H.
Proof. Considering property (1) of the subspace D+, it is easy to show that the

subspace H′ = H � (H + H+) is invariant relative to group {Ut} and has the form
H′ = 〈0, H ′, 0〉 , where H ′ is a subspace in H . Therefore, if the subspace H′ (and
hence, alsoH ′) were nontrivial, then the unitary group {U ′

t}, restricted to this subspace,
would be a unitary part of the group {Ut}, and hence the restriction L′

h1h2
toH ′ would

be a selfadjoint operator in H ′. From the simplicity of the operator Lh1h2 , it follows
that H ′ = {0}, i.e. H′ = {0}. The lemma is proved.
Let us denote by L∞h2 the selfadjoint operator generated by the expression � and

the boundary conditions y(a) = 0, [y, v]b − h2[y, u]b = 0 (y ∈ D).
Let ϕ(x, λ) and ψ(x, λ) be the solution of the equation �(y) = λy (x ∈ I) satis-

fying the conditions ϕ(a, λ) = 0, (pϕ′)(a, λ) = 1, ψ(a, λ) = 1, (pψ′)(a, λ) = 0. The
Titchmarch-Weyl function m∞h2(λ) of the selfadjoint operator L∞h2 is determined by
the condition [ψ +m∞h2ϕ, u]b −h2[ψ +m∞h2ϕ, v]b = 0. Then it follows that

(4.1) m∞h2(λ) = − [ψ, u]b − h2[ψ, v]b
[ϕ, u]b − h2[ϕ, v]b

.

From (4.1), it is clear that m∞h2(λ) is a meromorphic function on the complex plane
C with a countable number of poles on the real axis and these poles coincide with the
eigenvalues of the operator L∞h2 . Further, it is possible to show that the functionm∞h2

has the following properties: ImλImm∞h2(λ) > 0 for Imλ �= 0 and m∞h2(λ) =
m∞h2(λ̄) for λ ∈ C, except the reel poles of m∞h2(λ).
Let us adopt the following notations: θ(x, λ):= ψ(x, λ)+m∞h2(λ)ϕ(x, λ),

(4.2) Sh1h2(λ): =
m∞h2(λ)− h1

m∞h2(λ)− h1

.

Let U−
λ (x, ξ, ς) = 〈e−iλξ, (m∞h2(λ)−h1)−1αθ(x, λ), S̄h1h2(λ)e−iλς〉. U−

λ (x, ξ, ς)
satisfies the equation LU = λU and the corresponding boundary conditions for the
operator Lh1h2 . But the vectors U−

λ (x, ξ, ς) for real λ do not belong to the space H.
Using U−

λ (x, ξ, ς), we define the transformation F− : f → f̃−(λ) by (F−f)(λ):=
f̃−(λ):= 1√

2π
(f,U−

λ )H on the vector f = 〈ϕ−, y, ϕ+〉 in which ϕ−, ϕ+, and y are
smooth, compactly supported functions.
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Lemma 4.3. The transformation F− isometrically maps H− onto L2(R). For all
vectors f, g ∈ H−, the Parseval equality and the inversion formula hold:

(f, g)H = (f̃−, g̃−)L2 =

∞∫
−∞

f̃−(λ)g̃−(λ)dλ, f =
1√
2π

∞∫
−∞

f̃−(λ)U−
λ dλ,

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ−, 0, 0〉, we have that

f̃−(λ) :=
1√
2π

(f,U−
λ )H =

1√
2π

0∫
−∞

ϕ−(ξ)eiλξdξ ∈ H2
−,

and, in view of the usual Parseval equality for Fourier integrals,

(f, g)H =

0∫
−∞

ϕ−(ξ)ψ−(ξ)dξ =

∞∫
−∞

f̃−(λ)g̃−(λ)dλ = (F−f,F−g)L2.

Here and below, H2± denote the Hardy classes in L2(R) consisting of the functions
analytically extendable to the upper and lower half-planes, respectively.
We now extend the Parseval equality to the whole of H−. For this purpose, we

consider in H− the dense set H ′− of vectors obtained from the smooth, compactly
supported functions in D− : f ∈ H ′− if f = UTf0, f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞

0 (R−),
where T = Tf is a nonnegative number (depending on f ). In this case, if f, g ∈ H−,
then for T > Tf and T > Tg we have that U−T f, U−T g ∈ D− and moreover, the
first components of these vectors belong to C∞

0 (R−). Therefore, since the operators
Ut (t ∈ R) are unitary, the equality F−U−T f = (U−T f, U

−
λ )H = e−iλT (f, U−

λ )H =
e−iλTF−f, implies that

(4.3)
(f, g)H = (U−T f, U−T g)H = (F−U−T f,F−U−T g)L2

= (e−iλTF−f, e−iλTF−g)L2 = (F−f,F−g)L2.

By taking the closure in (4.3), we obtain the Parseval equality for the whole space
H−. The inversion formula follows from the Parseval equality if all integrals in it are
understood as limits in the mean of integrals over finite intervals. Finally we arrive at

F−H− = ∪
t≥0

F−UtD− = ∪
t≥0
e−iλtH2− = L2(R),

i.e. F− maps H− onto the whole of L2(R). The lemma is proved.
We set U+

λ (x, ξ, ς) = 〈Sh1h2(λ)e−iλξ, (m∞h2(λ)−h1)−1αθ(x, λ), e−iλς〉. U+
λ (x, ξ, ς)

satisfies the equation LU = λU (λ ∈ R) and the boundary conditions (3.2). But the
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vectors U+
λ (x, ξ, ς) for real λ do not belong to the space H. Using U+

λ (x, ξ, ς), we
define the transformation F+ : f → f̃+(λ) on vectors f = 〈ϕ−, y, ϕ+〉, in which
ϕ−, ϕ+, and y are smooth, compactly supported functions by setting (F+f)(λ):=
f̃+(λ):= 1√

2π
(f,U+

λ )H.
The proof of the next result is analogous to that of Lemma 4.3.

Lemma 4.4. The transformation F+ isometrically maps H+ onto L2(R). For all
vectors f, g ∈ H+, the Parseval equality and the inversion formula hold:

(f, g)H = (f̃+, g̃+)L2 =
∫ ∞

−∞
f̃+(λ)g̃+(λ)dλ, f =

1√
2π

∫ ∞

−∞
f̃+(λ)U+

λ dλ,

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

According to (4.2), the function Sh1h2(λ) satisfies |Sh1h2(λ)| = 1 for λ ∈ R. So
it follows from the explicit formula for the vectors U+

λ and U−
λ that

(4.4) U−
λ = S̄h1h2(λ)U+

λ (λ ∈ R).

Therefore, it follows from Lemmas 4.3 and 4.4 that H− = H+. Together with Lemma
4.2, the equalities H = H− = H+ hold, and property (3) above is established for the
incoming and outgoing subspaces.
These calculations show that the transformation F− isometrically maps onto L2(R)

with the subspace D− mapped onto H2− and the operators Ut are transformed into the
operators of multiplication by eiλt. This means that F− is the incoming spectral
representation for the group {Ut}. Similarly, F+ is the outgoing spectral representation
for {Ut}. It follows from (4.4) that the passage from the F+-representation of a
vector f ∈ H to its F−-representation is realized by multiplication of the function
Sh1h2(λ) : f̃−(λ) = Sh1h2(λ)f̃+(λ). According to [11], the scattering function (matrix)
of the group {Ut} with respect to the subspaces D− and D+, is the coefficient by
which the F−-representation of a vector f ∈ H must be multiplied in order to get
the corresponding F+-representation: f̃+(λ) = S̄h1h2(λ)f̃−(λ). According to [11], we
have now proved the following theorem.

Theorem 4.5. The function S̄h1h2(λ) is the scattering matrix of the group {Ut}
(of the selfadjoint operator Lh1h2).

To summarize the equivalence of the characteristic function of Sz.-Nagy-Foiaş and
the scattering function of Lax-Phillips, let S(λ) be an arbitrary nonconstant inner
function [12] on the upper half-plane (we recall that a function S(λ) that is analytic
in the upper half-plane C+ is called inner function on C+ if | S(λ) |≤ 1 for λ ∈ C+,

and | S(λ) |= 1 for almost all λ ∈ R). Let us define K = H2
+�SH2

+. It is known that
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K �= {0} and is a subspace of the Hilbert space H2
+. Let us consider the semigroup

of the operators Zt (t ≥ 0) acting in K according to the formula Ztϕ = P
[
eiλtϕ

]
,

ϕ := ϕ(λ) ∈ K, where P is the orthogonal projection from H2
+ onto K . The generator

of the semigroup {Zt} is denoted by T : Tϕ = limt→+0(it)−1(Ztϕ− ϕ), which is a
maximal dissipative operator acting in K and with the domain D(T ) consisting of all
functions ϕ ∈ K, such that the limit exists. The operator T is called a model dissipative
operator. This model dissipative operator is a special case of a more general model
dissipative operator constructed by Sz.-Nagy and Foiaş ([12]). The basic assertion is
that S(λ) is the characteristic function of the operator T .
Let K = 〈0, H, 0〉, so that H = D− ⊕ K ⊕ D+. From the explicit form of the

unitary transformation F− it follows that

(4.5)
H → L2(R), f → f̃−(λ) = (F−f)(λ), D− → H2

−, D+ → Sh1h2H
2
+,

K → H2
+ � Sh1h2H

2
+, Utf → (F−UtF−1

− f̃−)(λ) = eiλtf̃−(λ).

The formulae (4.5) are exactly the model studied by Sz.-Nagy-Foiaş. Hence, our opera-
tor Lh1h2 is a unitary equivalent to the model dissipative operator with the characteristic
function Sh1h2(λ). Since the characteristic functions of unitary equivalent dissipative
operators coincide (see [12, 14, 15]), we have proved the following result.

Theorem 4.6. The characteristic function of the maximal dissipative operator
Lh1h2 coincides with the function Sh1h2(λ) defined in (4.2).

5. SELFADJOINT DILATION, SCATTERING THEORY OF THE DILATION AND
FUNCTIONAL MODEL OF THE MAXIMAL DISSIPATIVE
OPERATOR IN THE CASE OF ‘DISSIPATIVE AT b’

In this section we consider maximal dissipative operators Lh1h2 (Imh1 = 0 or
h1 = 0 and Imh2 > 0). Since the proofs in case of ‘dissipative at b’ are largely
analogous to those in the case of ‘dissipative at a’, we shall not give detailed proofs.

Lemma 5.1. The operator Lh1h2 is completely nonselfadjoint (simple).

In H we shall consider the operator Lh1h2 generated by the expression (3.1) on the
set D(Lh1h2) of vectors 〈ϕ−, y, ϕ+〉 , ϕ∓ ∈W 1

2 (R∓), y ∈ D,

(5.1)
(py′)(a)− h1y(a) = 0, [y, u]b − h2[y, v]b = αϕ−(0),

[y, u]b − h̄2[y, v]b = αϕ+(0) (α2: = 2Imh2, α > 0).

Theorem 5.2. The operator Lh1h2 is selfadjoint inH and it is a selfadjoint dilation
of the maximal dissipative operator Lh1h2 .



Nonselfadjoint Singular Sturm-Liouville Operators in Limit-circle Case 2047

The selfadjoint operator Lh1h2 generates in H a unitary group Ut = exp[iLh1h2t]
(t ∈ R).
We set

H− =
⋃
t≥0

UtD−, H+ =
⋃
t≤0

UtD+.

Lemma 5.3. H− +H+ = H.

Let mh1∞(λ) be the Titchmarsh-Weyl function of the selfadjoint operator Lh1∞
generated by � and the boundary conditions (py′)(a)− h1y(a) = 0, [y, v]b = 0. Then,
mh1∞(λ) is expressed in terms of the Wronskian of the solutions:

mh1∞(λ) = − [ψ, v]b
[ϕ, v]b

,

where ϕ(x, λ) and ψ(x, λ) are solutions of the equation �(y) = λy (x ∈ I) and
satisfying the initial conditions

ϕ(a, λ) = − 1√
1 + h2

1

, (pϕ′)(a, λ) =
h1√

1 + h2
1

,

ψ(a, λ) =
h1√

1 + h2
1

, (pψ′)(a, λ) =
1√

1 + h2
1

.

Let us adopt the following notations:

(5.2)
k(λ): = kh1(λ): = − [ϕ, u]b

[ψ, v]b
, m(λ): = mh1∞(λ),

S(λ): = Sh1h2(λ): =
m(λ)k(λ)− h2

m(λ)k(λ)− h̄2
.

Let V−
λ (x, ξ, ς) = 〈e−iλξ, αm(λ)[(m(λ)k(λ)− h2)[ψ, v]b]−1ϕ(x, λ), S̄(λ)e−iλς〉.

V−
λ (x, ξ, ς) satisfies the equation LV = λV (λ ∈ R) and the boundary conditions (5.1).
But the vector V−

λ (x, ξ, ς) does not belong to H for real λ. Using V−
λ , we define the

transformation F− : f → f̃−(λ) by (F−f) (λ):= f̃−(λ):= 1√
2π

(f,V−
λ )H on the vector

f = 〈ϕ−, y, ϕ+〉 in which ϕ−, ϕ+, and y are smooth, compactly supported functions.

Lemma 5.4. The transformation F− isometrically maps H− onto L2(R). For all
vectors f, g ∈ H−, the Parseval equality and the inversion formula hold:

(f, g)H = (f̃−, g̃−)L2 =

∞∫
−∞

f̃−(λ)g̃−(λ)dλ, f =
1√
2π

∞∫
−∞

f̃−(λ)V−
λ dλ,

where f̃−(λ = (F−f) (λ) and g̃−(λ) = (F−g)(λ).
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We set V+
λ (x, ξ, ς) = 〈S(λ)e−iλξ, αm(λ)[(m(λ)k(λ)−h̄2)[ψ, v]b]−1ϕ(x, λ), e−iλς〉.

V+
λ (x, ξ, ς) V+

λ satisfies the equation LV = λV (λ ∈ R) and the boundary conditions
(5.1). But the vector V+

λ (x, ξ, ς) does not belong to H for real λ. Using V+
λ (x, ξ, ς),

we define the transformation F+ : f → f̃+(λ) on vectors f = 〈ϕ−, y, ϕ+〉, in which
ϕ−, ϕ+ and y are smooth, compactly supported functions, by setting (F+f) (λ) :=
f̃+(λ) := 1√

2π
(f,V+

λ )H.

Lemma 5.5. The transformation F+ isometrically maps H+ onto L2(R). For all
vectors f, g ∈ H+, the Parseval equality and the inversion formula hold:

(f, g)H = (f̃+, g̃+)L2 =

∞∫
−∞

f̃+(λ)g̃+(λ)dλ, f =
1√
2π

∞∫
−∞

f̃+(λ)U+
λ dλ,

where f̃+(λ) = (F+f) (λ) and g̃+(λ) = (F+g)(λ).

According to (5.2), the function Sh1h2(λ) satisfies |Sh1h2(λ)| = 1 for λ ∈ R.
Therefore, it follows from the explicit formula for the vectors V−

λ and V+
λ that

(5.3) V−
λ = S̄h1h2(λ)V+

λ (λ ∈ R).

It follows from Lemmas 5.4 and 5.5 that H− = H+. Together with Lemma 5.3, this
shows that H = H− = H+.
So the transformation F− isometrically maps H onto L2(R); the subspace D− is

mapped onto H2−, while the operators Ut go over into operators of multiplication by
eiλt. According to the theory of Lax-Phillips this means that F− is an incoming spectral
representation of the group {Ut}. Similarly, F+ is an outgoing spectral representation
of {Ut}. From the formula (5.3) it follows that passage from the F−-representation
of an element f ∈ H to its F+-representation is accomplished as follows: f̃+(λ) =
S̄h1h2(λ) f̃−(λ). According to [11], we have now proved the following statement.

Theorem 5.6. The function S̄h1h2(λ) is the scattering matrix of the group {Ut}
(of the selfadjoint operator Lh1h2).

From the explicit form of the unitary transformation F− it follows that

H → L2(R), f → f̃−(λ) = (F−f) (λ), D− → H2
−, D+ → Sh1h2H

2
+,

K → H2
+ � Sh1h2H

2
+, Utf → (F−UtF

−1
− f̃−)(λ) = eiλtf̃−(λ).

These formulae show that the operator Lh1h2 is a unitary equivalent to the model
dissipative operator with characteristic functions Sh1h2(λ). We have thus proved the
following theorem.

Theorem 5.7. The characteristic function of the maximal dissipative operator
Lh1h2 coincides with the function Sh1h2(λ) defined by (5.2).
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6. COMPLETENESS OF THE SYSTEM OF EIGENFUNCTIONS AND ASSOCIATED
FUNCTIONS OF THE MAXIMAL DISSIPATIVE OPERATORS

Let A denote the linear operator in the Hilbert space H with the domain D(A).
The complex number λ0 is called an eigenvalue of the operator A if there exists
a nonzero element y0 ∈ D(A) such that Ay0 = λ0y0. Such element y0 is called
the eigenvector of the operator A corresponding to the eigenvalue λ0. The elements
y1, y2, ..., yk are called the associated vectors of the eigenvector y0 if they belong to
D(A) and Ayj = λ0yj +yj−1, j = 1, 2, ..., k. The element y ∈ D(A), y �= 0 is called
a root vector of the operator A corresponding to the eigenvalue λ0, if all powers of
A are defined on this element and (A − λ0I)ny = 0 for some integer n. The set of
all root vectors of A corresponding to the same eigenvalue λ0 with the vector y = 0
forms a linear set Nλ0 and is called the root lineal. The dimension of the lineal Nλ0

is called the algebraic multiplicity of the eigenvalue λ0. The root lineal Nλ0 coincides
with the linear span of all eigenvectors and associated vectors of A corresponding to
the eigenvalue λ0. Consequently, the completeness of the system of all eigenvectors
and associated vectors of A is equivalent to the completeness of the system of all root
vectors of this operator.
The studies about the characteristic function of contractions say that one can get

some informations about eigenfunctions and associated functions of the characteristic
function only when showing the absence of a singular factor of the characteristic func-
tion Sh1h2(λ) in the factorization Sh1h2(λ) = s(λ)B(λ), where B(λ) is a Blaschke
product ([12,14,15]). So we shall show this absence.

Theorem 6.1. For all values of h2 with Imh2 > 0, except possibly for a single
value h2 = h0

2, and for fixed h1 (Imh1 = 0 or h1 = ∞), the characteristic function
Sh1h2(λ) of the maximal dissipative operator Lh1h2 is a Blaschke product, and the
spectrum of Lh1h2 is purely discrete and belongs to the open upper half-plane. The
operator Lh1h2(h1 �= h0

2) has a countable number of isolated eigenvalues with finite
algebraic multiplicity and limit points at infinity, and the system of all eigenfunctions
and associated functions (or all root functions) of this operator is complete in the
space L2

w(I).

Proof. It is clear from the explicit formula (5.2) that the Sh1h2(λ) is an inner
function in the upper half-plane and, moreover, it is meromorphic in the whole λ-
plane. Therefore, it can be factored as follows

(6.1) Sh1h2(λ) = eiλcBh1h2(λ), c = c(h2) ≥ 0,

where Bh1h2(λ) is a Blaschke product. It follows from (6.1) that

(6.2) |Sh1h2(λ)| ≤ e−c(h2)Imλ, Imλ ≥ 0.
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Further, expressing nh1(λ):= mh1,∞(λ)kh1(λ) in terms of Sh1h2(λ), we find from
(5.2) that

(6.3) nh1(λ) =
h̄2Sh1h2(λ)− h2

Sh1h2(λ)− 1
.

If c(h2) > 0 for a given value h2 (Imh2 > 0), then (6.2) implies that limt→+∞ Sh1h2(it)
= 0, and then (6.3) gives us that limt→+∞ nh1(it) = h0

2. Since nh1(λ) does not depend
on h2 this implies that c(h2) can be nonzero at not more than a single point h2 = h0

2

(and, further, h0
2 = limt→+∞ nh1(it)). The theorem is proved.

The next result can be proved similarly.

Theorem 6.2. For all values of h1 with Imh1 > 0, except possibly for a single
value h1 = h0

1, and for fixed h2 (Imh2 = 0 or h2 = ∞), the characteristic function
Sh1h2(λ) of the maximal dissipative operator Lh1h2 is a Blaschke product, and the
spectrum of Lh1h2 is purely discrete and belongs to the open upper half-plane. The
operator Lh1h2(h1 �= h0

1) has a countable number of isolated eigenvalues with finite
algebraic multiplicity and limit points at infinity, and the system of all eigenfunctions
and associated functions of this operator is complete in the space L2

w(I).
Let p(x) > 0 (almost all x ∈ I) and for positive η > 0

(6.4)
∫ x

a

∣∣w (t) − ηp−1(t)
∣∣dt = o

(∫ x

a
p−1(t)dt

)
, x→ a+.

Then we have [8]

(6.5) m−1
∞h2

(λ) =
i

η
1
2
√
λ
{1 + o(1)} , as λ→ ∞ in Sε,

where Sε = {λ ∈ C : 0 < ε < arg λ < π − ε} , ε ∈ (0, π
2 ).

Moreover, we prove that Sh1h2 (λ) (Imh1 > 0, Imh = 0 or h2 = ∞) is the
Blaschke product. Suppose the contrary, i.e., let Sh1h2 (λ) have a singular factor (for
Imh1 > 0, Imh2 = 0 or h2 = ∞). Then

Sh1h2 (λ) = eiλb(h1)B (λ) , b (h1) > 0,

where B (λ) is the Blaschke product. Then as λ→ ∞ in Sε, we have

|Sh1h2 (λ)| =
∣∣∣eiλb(h1)

∣∣∣ |B (λ)| ≤ e−Imλb(h1) → 0.

However, according to (4.2) and (6.5), we have

lim
λ→∞
λ∈Sε

|Sh1h2 (λ)| = 1.
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The obtained contradiction shows that b(h1) = 0, i.e. Sh1h2 (λ) is the Blaschke product.
Thus we have proved the following theorem.

Theorem 6.3. For all values of h1 (Imh1 > 0) and h2 (Imh2 = 0 or h2 = ∞)
the characteristic function Sh1h2(λ) of the maximal dissipative operator Lh1h2 is a
Blaschke product. The spectrum of Lh1h2 is purely discrete and belongs to the open
upper half-plane. The operator Lh1h2 has a countable number of isolated eigenvalues
with finite algebraic multiplicity and limit points at infinity. Moreover, the whole
spectrum, except for, possibly, a finite number of points, belongs to the angles 0 <

argλ < ε and π − ε < arg λ < π, ε ∈ (0, π
2 ). The system of all eigenfunctions and

associated functions of the operator Lh1h2 is complete in the space L2
w(I).

Remark. Since a linear operator S acting in the Hilbert space H is maximal
accretive if and only if −S is maximal dissipative, all results concerning maximal
dissipative operators can be immediately transferred to maximal accretive operators.
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