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GLOBAL NONEXISTENCE OF ARBITRARY INITIAL ENERGY
SOLUTIONS OF VISCOELASTIC EQUATION WITH NONLOCAL

BOUNDARY DAMPING

Jie Ma* and Hongrui Geng

Abstract. In this paper, we consider the long time behavior of solutions of the
initial value problem for the viscoelastic wave equation under boundary damping

utt − Δu +
∫ t

0

g(t − τ )div(a(x)∇u(τ ))dτ + ut = 0 inΩ × (0,∞).

For the low initial energy case, which is the non-positive initial energy, based
on concavity argument we prove the blow up result. As for the high initial energy
case, we give out sufficient conditions of the initial datum such that the solution
blows up in finite time.

1. INTRODUCTION

In this work, we are concerned with the following problem

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt−Δu+
∫ t

0

g(t−τ)div(a(x)∇u(τ))dτ+ut = 0, (x, t) ∈ Ω × (0,∞),

u = 0, (x, t) ∈ Γ1 × (0,∞),
∂u

∂ν
−

∫ t

0

g(t−τ)(a(x)∇u(τ)) · νdτ = f(u), (x, t) ∈ Γ0 × (0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain of Rn(n ≥ 1) with a smooth boundary Γ := ∂Ω, such
that Γ = Γ0∪Γ1, Γ0∩Γ1 = ∅ and Γ0, Γ1 have positive measures, ν is the unit outward
normal on ∂Ω.
This problem has its origin in the mathematical description of viscoelastic materials.

It is well known that viscoelastic materials exhibit natural damping, which is due to
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the special property of these materials to retain a memory of their past history. From
the mathematical point of view, these damping effects are modeled by intro-differential
operators. Therefore, the dynamics of viscoelastic materials are of great importance and
interest as they have wide applications in nature sciences. From the physical point of
view, the problem (1.1) describes the position u(x, t) of the material particle x at time
t, which is claimed in the portion Γ1 of its boundary with its portion Γ0 supported by
elastic bearings with nonlinear boundary responses, represented by the function f(u).
(see [3, 8, 14, 20, 21]).
The wave equation with memory has been considered by many mathematicians.

Cavalcanti et al. [6] firstly studied⎧⎪⎪⎨
⎪⎪⎩

utt − Δu +
∫ t
0 g(t− τ)Δu(τ)dτ + a(x)ut + |u|γu = 0, (x, t) ∈ Ω × (0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω,

and obtained an exponential decay rate of the solution under some assumption on
g(s) and a(x). At this point it is important to mention some papers in connection
with viscoelastic effects, among them, Alves and Cavalcanti [1], Aassila et al.[2] and
references therein. Rammaha [19] deals with wave equations that feature two competing
forces and analyzes the influence of these forces on the long-time behavior of solutions.
Cavalcanti and Oquendo [7] considered

utt − k0Δu +
∫ t

0
div[a(x)g(t− τ)∇u(τ)]dτ + b(x)h(ut) + f(u) = 0,

under the restrictive assumptions on both the damping function h and the kernel g.
And then Messaoudi [15] obtained the global existence of solutions for the viscoelastic
equation, at same time he also obtained a blow-up result with negative energy. Fur-
thermore, he improved his blow-up result in [16]. Recently, Wang and Wang [23]
investigated the following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt − Δu +
∫ t

0

g(t− τ)Δu(τ)dτ + ut = a1|u|p−1u, (x, t) ∈ Ω × (0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω,

and showed that the global existence of the solutions if the initial data are small enough.
Moreover, they derived decay estimate for the energy functional. And then, in [24]
Wang established the blow-up result for the above problem when the initial energy is
high. Also, in [25] Wang studied blow-up of solutions of the Klein-Gordon equation
with arbitrary positive initial energy. Zeng, Mu and Zhou [26] studied blow-up of
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solutions for the Kirchhoff type equation with arbitrary positive initial energy. Ma,
Mu and Zeng [17] obtained blow-up of solutions for the viscoelastic equations with
arbitrary positive initial energy.
Recently, boundary dispassion problems for wave equation have been considered

by many authors. Vitillaro [22] considered the following problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt − Δu = 0, (x, t) ∈ Ω × (0,∞),

u = 0, (x, t) ∈ Γ1 × (0,∞),

∂u

∂ν
+ |ut|m−2ut = |u|p−2u, (x, t) ∈ Γ0 × (0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

and proved the local existence of the solutions in energy space when m > r
r+1−p or

n = 1, 2, where r = 2(n−1)
n−2 , and global existence when p ≤ m or the initial data

was chosen suitably. The authors in [4] considered a semilinear wave equation with
a nonlinear boundary dissipation and nonlinear boundary/interior sources and establish
a general decay estimate of the energy. Cavalcanti et al. [5] studied a problem of the
form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt − Δu +
∫ t
0 g(t − τ)Δu(τ) = 0, (x, t) ∈ Ω × (0,∞),

u = 0, (x, t) ∈ Γ1 × (0,∞),

∂u

∂ν
+

∫ t

0
h(t − τ)

∂u

∂ν
dτ + h(ut) = 0, (x, t) ∈ Γ0 × (0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

for g, h specific functions and established uniform decay rate results under quite re-
strictive assumptions on both the damping function h and the kernel g. Li ,Zhao and
Chen [13] studied a problem of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt − Δu +
∫ t

0

g(t− τ)div(a(x)∇u(τ))dτ + |u|γu = 0, (x, t) ∈ Ω × (0,∞),

u = 0, (x, t) ∈ Γ1 × (0,∞),

∂u

∂ν
−

∫ t

0
g(t− τ)(a(x)∇u(τ)) · νdτ + g(ut) = 0, (x, t) ∈ Γ0 × (0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

They proved the existence and uniqueness of its global solution bymeans of the Galerkin
method and showed the uniform decay rate of the energy. In [12] Li studied the
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following system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt−k0Δu+
∫ t

0
g(t−τ)div(a(x)∇u(τ))dτ + b(x)h(ut)=0, (x, t)∈Ω×(0,∞),

u=0, (x, t)∈Γ1×(0,∞),

−∂u

∂ν
+

∫ t

0

g(t−τ)(a(x)∇u(τ)) · νdτ =f(u), (x, t)∈Γ0×(0,∞),

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

and established the uniform decay estimates of solutions of the above problem. How-
ever, they did not give a sufficient condition for the initial data such that the corre-
sponding solution blows up in finite time with arbitrary positive initial energy.
Motivated by the above work, we intend to employing the so called concavity

argument which was first introduced by Levine (see [10, 11]), our main purpose is to
establish some sufficient conditions for initial data with arbitrary initial energy such
that the corresponding solution of (1.1) blows up in finite time.
In the paper, we denote

V = {u ∈ H1(Ω) |u = 0 on Γ1},
and give the assumptions on g(s), a(x) and f(s):

(A1) g : R+ → R+ is a bounded C1 function and non-increasing function satisfying
g(0) > 0.

(A2) The function e
t
2 g(t) is of positive type in the following sense:∫ t

0
v(s)

∫ s

0
e

s−τ
2 g(s− τ)v(τ)dτds ≥ 0

for all v ∈ C1([0,∞)) and t > 0.
(A3) a : Ω → R+ is a nonnegative bounded function and a(x) ≥ a0 > 0 on Ω with

‖a(x)‖L∞

∫ ∞

0

g(s)ds = k < 1.

(A4) There exists a positive constant α > 0 such that
sf(s) ≥ (2 + α)F (s), s ∈ R,

where
F (s) =

∫ s

0
f(τ)dτ.

Remark 1.1. We note that Assumption 1.1 is also used in [12, 13]. For the
definition of b(t) of positive type in detail, we refer the readers to [18]. And an
example of b(t) of positive type is positive, decreasing, convex b(t) (see [9]). Thus, it
is obvious that g(t) = εe−t (0 < ε < 1) satisfies the assumptions (A1), (A2) and (A3).
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Remark 1.2. It is clear that f(s) = |s|ps, p > 2, α ≤ p satisfies the assumption
(A4).

Our result are based on the following existence and uniqueness theorem of solution
to the problem (1.1).

Theorem 1.1. Under the assumptions (A1)-(A4), let the initial data (u0, u1) ∈(
H2(Ω) ∩ V (Ω))× V (Ω), and f satisfying the following conditions: f(0) = 0 and

|f(u) − f(v)| ≤ c(|u|p−1 + |v|p−1)|u − v|

for all u, v ∈ R, some constant c > 0 and

1 < p ≤ n − 1
n − 2

when n ≥ 3

then there exists a unique solution u(t) to (1.1) satisfying

u ∈ L∞
loc

(
0,∞; V (Ω)) ∩ H2(Ω), ut ∈ L∞

loc
(
0,∞; V (Ω)), utt ∈ L∞

loc
(
0,∞; L2(Ω)).

Moreover, we have

u ∈ C
(
[0,∞); H1

0(Ω)), ut ∈ C
(
[0,∞); L2(Ω)).

Proof. The proof can be obtained by the Faedo-Galerkin method and calculus
theorem in an abstract (c.f. [12, 13]).

Our main blow-up result for the problem (1.1) with arbitrarily initial energy is
stated as follows.

Theorem 1.2. Under the assumptions (A1)-(A4), if k < α
2+α and either one of the

following states is satisfied:

(1) E(0) < 0;

(2) E(0) = 0 and
∫
Ω u0u1dx ≥ 0;

(3) E(0) > 0,
∫
Ω u0u1dx ≥ 0, I(u0) < 0 and ‖u0‖2

2 >
2(2+α)

α−(2+α)kC2
pE(0),

then the solution of the problem (1.1) blows up at a finite time T , upper bounds for T is
estimated by 0 < T ≤ G(0)

βG′(0) , here G(t) and β are given in (3.1) and (3.6) respectively.
where CP is the constant of the Poincaré’s inequality on Ω, the energy functional E(t)
and I(u, v) are defined as

(1.2) I(u, v) := ‖∇u‖2
2 −

∫
Γ0

uf(u)dΓ,
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E(t) :=
1
2
‖ut(t, ·)‖2

2 +
1
2
‖∇u(t, ·)‖2

2

− 1
2
‖
√

a(x)∇u(t, ·)‖2
2

∫ t

0

g(s)ds +
1
2
(g ◦ ∇u)(t)

−
∫

Γ0

F (u)dΓ,

(1.3)

and (g ◦ v)(t) =
∫ t
0 g(t− τ)‖√a(x)

(
v(t, ·)− v(τ, ·))∥∥2

2
dτ.

The rest of this paper is organized as follows. In section2, we introduce some
Lemmas needed for the proof of our main results. The proof of our main results is
presented in section 3.

2. PRELIMINARIES

In this section, we introduce some Lemmas which play a crucial role in proof of
our main result in next section.

Lemma 2.1. E(t) is a non-increasing function.

Proof. By differentiating (1.3) and using (1.1) and (A1), we get

(2.1) E ′(t) = −‖ut‖2
2 −

1
2
g(t)‖

√
a(x)∇u(t, ·)‖2

2 +
1
2
(g′ ◦ ∇u)(t) ≤ 0,

thus, Lemma 2.1 follows at once. At the same time, we have the following inequality

(2.2) E(t) ≤ E(0)−
∫ t

0
‖uτ‖2

2dτ.

Lemma 2.2. Assume that g(t) satisfies assumptions (A1) and (A2), H(t) is a
twice continuously differentiable function and satisfies{

H ′′(t) + H ′(t) > 2
∫ t
0 g(t− τ)

∫
Ω a(x)∇u(τ, x)∇u(t, x)dxdτ,

H(0) > 0, H ′(0) > 0,
(2.3)

for every t ∈ [0, T0), and u(x, t) is the solution of the problem (1.1). Then the function
H(t) is strictly increasing on [0, T0).

Proof. Consider the following auxiliary ODE{
h′′(t) + h′(t) = 2

∫ t
0 g(t− τ)

∫
Ω a(x)∇u(τ, x)∇u(t, x))dxdτ,

h(0) = H(0), h′(0) = 0,
(2.4)

for every t ∈ [0, T0).
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It is easy to see that the solution of (2.4) is written as follows

(2.5) h(t) = h(0) + 2
∫ t

0

∫ ζ

0

eξ−ζ

∫ ξ

0

g(ξ − τ)
∫

Ω

a(x)∇u(ζ, x)∇u(τ, x)dxdτdξdζ

for every t ∈ [0, T0).
By a direct computation, we obtain

h′(t) = 2
∫ t

0
eξe−t

∫ ξ

0
g(ξ − τ)

∫
Ω

a(x)∇u(ξ, x)∇u(τ, x)dxdτdξ

= 2e−t

∫
Ω

a(x)
∫ t

0
(e

ξ
2∇u(ξ, x))

∫ ξ

0
(e

ξ−τ
2 g(ξ − τ))(e

τ
2 ∇u(τ, x))dτdξdx

for every t ∈ [0, T0).
Because g(t) satisfies (A2) and a(x) satisfies (A3), then h′(t) ≥ 0, which implies

that h(t) ≥ h(0) = H(0). Moreover, we see that H ′(0) > h′(0).
Next, we show that

(2.6) H ′(t) > h′(t) for t ≥ 0.

Assume that (2.6) is not true, let us take

t0 = min{t ≥ 0 : H ′(t) = h′(t)}.

By the continuity of the solutions for the ODES (2.3) and (2.4), we see that t0 > 0
and H ′(t0) = h′(t0), and have{

H ′′(t) − h′′(t) + H ′(t) − h′(t) > 0, t ∈ [0, T0),

H(0)− h(0) = 0, H ′(0)− h′(0) ≥ 0,

which yields
H ′(t0) − h′(t0) > e−t0(H ′(0)− h′(0)) > 0.

This contradicts to H ′(t0) = h′(t0). Thus, we have H ′(t) > h′(t) ≥ 0, which implies
our desired result. The proof of Lemma 2.2 is complete.

Lemma 2.3. Suppose that (u0, u1) ∈
(
H2(Ω) ∩ V (Ω))× V (Ω) satisfies

(2.7)
∫

Ω
u0u1dx ≥ 0.

If the local solution u(t) of the problem (1.1) exists on [0, T ) and satisfies

(2.8) I
(
u(t)

)
< 0,
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then H(t) = ‖u(t, ·)‖2
2 is strictly increasing on [0, T ).

Proof. Since I(u) := ‖∇u‖2
2 −

∫
Γ0

uf(u)dΓ < 0, and u(t) is the local solution
of problem (1.1), by a simple computation, we have

1
2

dH

dt
=

∫
Ω

uutdx,

1
2

d2H

dt2
=

∫
Ω
|ut|2dx +

∫
Ω

uuttdx

= ‖ut‖2 −
∫

Ω
uutdx +

∫
Γ0

uf(u)dΓ − ‖∇u‖2

+
∫ t

0
g(t − τ)

∫
Ω

a(x)∇u(τ, x)∇u(t, x)dxdτ

> −
∫

Ω

uutdx +
∫ t

0

g(t− τ)
∫

Ω

a(x)∇u(τ, x)∇u(t, x)dxdτ,

which yields

1
2
(
d2H

dt2
+

dH

dt
) >

∫ t

0
g(t − τ)

∫
Ω

a(x)∇u(τ, x)∇u(t, x)dxdτ.

Therefore, by Lemma 2.2, the proof of Lemma 2.3 is complete.

Lemma 2.4. If (u0, u1) ∈
(
H2(Ω)∩V (Ω))×V (Ω) satisfy the assumptions (3) in

Theorem 1.2, then the solution u(x, t) of problem (1.1) satisfies

I(u(t, x)) < 0,(2.9)

‖u(t, x)‖2
2 >

2(2 + α)
α − (2 + α)k

C2
pE(0).(2.10)

for every t ∈ [0, T ).

Proof. We will prove the lemma by a contradiction argument. Firstly we assume
that (2.9) is not true over [0, T ), it means that there exists a time t1 such that

(2.11) t1 = min{t ∈ (0, T ) : I
(
u(t, x)

)
= 0} > 0.

Since I
(
u(t, x)

)
< 0 on [0, t1), by Lemma 2.3 we see that H(t) = ‖u(t, ·)‖2

2 is strictly
increasing over[0, t1), which implies

H(t) = ‖u(t, ·)‖2
2 > ‖u0‖2

2 >
2(2 + α)

α − (2 + α)k
C2

pE(0).

By the continuity of H(t) = ‖u(t, ·)‖2
2 on t, we have

(2.12) H(t1) = ‖u(t1, ·)‖2
2 >

2(2 + α)
α − (2 + α)k

C2
pE(0).
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On the other hand, by (2.2) we get

1
2
‖∇u(t1, ·)‖2

2−
1
2

∫ t1

0
g(s)ds‖

√
a(x)∇u(t1, ·)‖2

2−
∫

Γ0

F (u(t1))dΓ ≤ E(0).(2.13)

It follows from (A3), (A4) and (2.11) that(1 − k

2
− 1

2 + α

)‖∇u(t1, ·)‖2
2 ≤ E(0).(2.14)

Thus, by the Poincaré’s inequality and k < α
2+α , we see that

(2.15) H(t1) = ‖u(t1, ·)‖2
2 ≤

2(2 + α)
α − (2 + α)k

C2
pE(0).

Obviously, (2.15) contradicts to (2.12). Thus, (2.9) holds for every t ∈ [0, T ).
By Lemma 2.3, it follows that H(t) = ‖u(t, ·)‖2

2 is strictly increasing on [0, T ),
which implies

H(t) = ‖u(t, ·)‖2
2 > ‖u0‖2

2 >
2(2 + α)

α − (2 + α)k
C2

pE(0)

for every t ∈ [0, T ). The proof of Lemma 2.4 is complete.

3. THE PROOF OF THEOREM 1.2

To prove our main result, we adopt the concavity method introduced by Levine,
and define the following auxiliary function:

G(t) = ‖u(t, ·)‖2
2 +

∫ t

0

‖u(τ, ·)‖2
2dτ + (t2 − t)‖u0‖2

2 + a(t3 + t)2,(3.1)

where t2, t3 and a are certain positive constants determined later.

Proof of Theorem 1.2. By direct computation, we obtain

(3.2) G′(t) = 2
∫

Ω

uutdx + 2
∫ t

0

(u, uτ )dτ + 2a(t3 + t),

and

(3.3)

1
2
G′′ = ‖ut‖2

2 − ‖∇u‖2 +
∫

Γ0

uf(u)dΓ

+
∫ t

0
g(t − τ)

∫
Ω

a(x)∇u(τ, x)∇u(t, x)dxdτ + a

= ‖ut‖2
2 − ‖∇u‖2 +

∫
Γ0

uf(u)dΓ

+
∫ t

0
g(t − τ)

∫
Ω

a(x)∇u(t, x)(u(τ, x)−∇u(t, x))dxdτ + a

+
∫ t

0
g(t − τ)dτ‖

√
a(x)∇u(t, x)‖2

2.
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By the Young’s inequality, for any ε > 0, we have∫ t

0
g(t − τ)

∫
Ω

a(x)∇u(t, x)|∇u(τ, x)−∇u(t, x)|dxdτ

≤ 1
2ε

∫ t

0

g(τ)dτ‖
√

a(x)∇u(t, ·)‖2
2 +

ε

2
(g ◦ ∇u)(t).

Taking ε = 1
2 into the above inequality, by (A4), (1.3), (2.2), (3.3), Lemma 2.3 and the

Poincaré’s inequality, we obtain

(3.4)

G′′ ≥ (4 + α)‖ut‖2
2 + α‖∇u‖2

2 − (
1
ε

+ α)
∫ t

0
g(τ)dτ‖

√
a(x)∇u‖2

2

+(2 + α − ε)(g ◦ ∇u)(t)− 2(2 + α)E(t) + 2a

≥ (4 + α)‖ut‖2
2 +

(
α − (α +

1
ε
)k

)∇u‖2
2 + (2 + α − ε)(g ◦ ∇u)(t)

+2(2 + α)
∫ t

0
‖uτ‖2

2dτ − 2(2 + α)E(0) + 2a

≥ (4 + α)‖ut‖2
2 + 2(2 + α)

∫ t

0
‖uτ‖2

2dτ +
α − (α + 1

ε )k
C2

p

‖u‖2
2

+(2 + α − ε)(g ◦ ∇u)(t)− 2(2 + α)E(0) + 2a

≥ (4 + α)‖ut‖2
2 + 2(2 + α)

∫ t

0
‖uτ‖2

2dτ

+
α − (α + 2)k

C2
p

‖u‖2
2 − 2(2 + α)E(0) + 2a

Case(I):E(0) < 0. From (3.4) it follows that

G′′ ≥ (4 + α)‖ut‖2
2 + 2(2 + α)

∫ t

0
‖uτ‖2

2dτ − 2(2 + α)E(0) + 2a.

which means that G′′(t) > 0 for every t ∈ (0, T ). Since G′(0) ≥ 0 and G(0) ≥ 0,
thus we obtain that G′(t) and G(t) are strictly increasing on [0, T ).
We now let the constant a satisfy

0 < a ≤ −2E(0).

And set

A := ‖u(t, ·)‖2
2 +

∫ t

0
‖u(τ, ·)‖2

2dτ + a(t3 + t)2,

B :=
1
2
G′(t),

C := ‖ut(t, ·)‖2
2 +

∫ t

0
‖uτ (τ, ·)‖2

2dτ + a.
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By (3.2) and a simple computation, for all s ∈ R, we have

As2 − 2Bs + C =
∫

Ω

(
su(t, x)− ut(t, x)

)2
dx

+
∫ t

0
‖su(τ, ·)− uτ (τ, ·)‖2

2dτ + a
(
s(t3 + t) − 1

)2 ≥ 0,

which implies that B2 − AC ≤ 0.
Since we assume that the solution u(t, x) to the problem (1.1) exists for every

t ∈ [0, T ), then for t ∈ [0, T ), one has

G(t) ≥ A, G′′(t) ≥ (4 + α)C

and
G′′(t)G(t) − 4 + α

4
(
G′(t)

)2 ≥ (4 + α)(AC − B2),

which yields
G′′(t)G(t)− 4 + α

4
(
G′(t)

)2 ≥ 0.

Let β = α
4 > 0. As 4+α

4 > 1, we see that

(3.5)

d
dt

(
G−β(t)

)
= −βG−β−1G′ < 0,

d2

dt2

(
G−β(t)

)
= −β(−β − 1)G−β−2G′2 − βG−β−1G′′

= −βG−β−2
[
G′′G− (1 + β)G′2]

≤ 0

for every t ∈ [0, T ), which means that the function G−β is concave.
Let t2 and t3 satisfy

t3 ≥ max{ 4
aα

‖u0‖2
2 −

1
a

∫
Ω

u0u1dx, 0},

t2 ≥ 1 +
a

‖u0‖2
2

t23,

from which, we deduce that

t2 ≥ G(0)
βG′(0)

.

Since G−β is a concave function and G(0) > 0, we obtain that

(3.6) G−β ≤ G(0)− βG′(0)t
G1+β(0)

,
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thus

(3.7) G ≥
[

G1+β(0)
G(0)− βG′(0)t

]1/β

.

Therefore, there exists a finite time T ≤ G(0)
βG′(0)

≤ t2, such that

lim
t→T−

‖u‖2
2 +

∫ t

0

∥∥uτ (τ, x)‖2
2dτ = ∞,

i.e. lim
t→T−

‖u‖2
2 = ∞.

Case(II):E(0) = 0. By (A3), (1.3) and (2.2) we have

(3.8) (1 − k)‖∇u‖2
2 − 2

∫
Γ0

F (u)dΓ < 0,

for every t ∈ [0, T ).
By (A4) and k < α

2+α , we obtain

I(u(t, x)) < 0,

for every t ∈ [0, T ).
Thus, by

∫
Ω u0u1dx ≥ 0 and Lemma 2.3, we see that H(t) = ‖u(t, ·)‖2

2 is strictly
increasing on [0, T ).
As (3.4) we also have

(3.9)
G′′ ≥ (4 + α)‖ut‖2

2 + 2(2 + α)
∫ t

0

‖uτ‖2
2dτ +

α − (α + 2)k
C2

p

‖u‖2
2 + 2a

≥ (4 + α)‖ut‖2
2 + 2(2 + α)

∫ t

0

‖uτ‖2
2dτ +

α − (α + 2)k
C2

p

‖u0‖2
2 + 2a

which means that G′′(t) > 0 for every t ∈ (0, T ). Since G′(0) ≥ 0 and G(0) ≥ 0,
thus we obtain that G′(t) and G(t) are strictly increasing on [0, T ).
We now let the constant a, t2, t3 satisfy

(2 + α)a ≤ α − (2 + α)k
C2

p

‖u0‖2
2,

t3 ≥ max{ 4
aα

‖u0‖2
2 −

1
a

∫
Ω

u0u1dx, 0},

t2 ≥ 1 +
2
α

t3,

Then by the same argument as Case I, we can claim that the corresponding local
solution of the equation (1.1) blows up in finite time.
Case (III): E(0) > 0. By (3.4), Lemma 2.3 and Lemma 2.4, we have
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(3.10)

G′′ ≥ (4 + α)‖ut‖2
2 + 2(2 + α)

∫ t

0
‖uτ‖2

2dτ

+
α − (α + 2)k

C2
p

‖u‖2
2 − 2(2 + α)E(0) + 2a

≥ (4 + α)‖ut‖2
2 + 2(2 + α)

∫ t

0
‖uτ‖2

2dτ

+
α − (α + 2)k

C2
p

‖u0‖2
2 − 2(2 + α)E(0) + 2a

which means that G′′(t) > 0 for every t ∈ (0, T ). Since G′(0) ≥ 0 and G(0) ≥ 0,
thus we obtain that G′(t) and G(t) are strictly increasing on [0, T ).
It follows from the assumptions (3) in Theorem 1.2 and k < α

2+α that, we can
choose a, t2, t3 to satisfy

(2 + α)a ≤ α − (α + 2)k
C2

p

‖u0‖2
2 − 2(2 + α)E(0).,

t3 ≥ max{ 4
aα

‖u0‖2
2 −

1
a

∫
Ω

u0u1dx, 0},

t2 ≥ 1 +
2
α

t3,

As the proof of Case I, by a concavity argument we can obtain that, there exists a finite
time T < ∞, such that

lim
t→T−

‖u‖2
2 = ∞.

The proof of Theorem 1.2 is complete.

REFERENCES

1. C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up
for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial
Differential Equations, 34(3) (2009), 377-411.

2. M. Aassila, M. M. Cavalcanti and J. A. Soriano, Asymptotic stability and energy decay
rates for solutions of the wave equation with memory in a star-shaped domain, SIAM J.
Control Optim., 38(5) (2000), 1581-1602.

3. M. M. Cavalcanti, V. N. D. Cavalcanti and J. Ferreira, Existence and uniform decay for
nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001),
1043-1053.

4. M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal
decay rates for the wave equation with nonlinear boundary damping-source interaction,
J. Differential Equations, 236(2) (2007), 407-459.

5. M. M. Cavalcanti, V. N. D. Cavalcanti and J. A. Soriano, Existence and uniform decay
rate for viscoelastic problems with nonlinear boundary damping, Differential Intergral
Equation, 14 (2001), 85-116.



2032 Jie Ma and Hongrui Geng

6. M. M. Cavalcanti, V. N. D. Cavalcanti and J. A. Soriano, Exponential decay for the
solution of the semilinear viscoelastic wave equations with localized damping, Electron.
J. Differential Equations, 44 (2002), 1-14.

7. M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semi-
linear wave equation, SIAM J. Control Optim., 42(4) (2003), 1310-1324.

8. M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, SIAM Stud.
Appl. Math, Philadelphia, 1992.

9. K. B. Hannsgen, Indirect abelian theorems and a linear Volterra equation, Trans. Amer.
Math. Soc., 142 (1969), 539-555.

10. H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equation
of the form Putt = Δu + F (u), Trans. Amer. Math. Soc., 192 (1974), 1-21.

11. H. A. Levine, Some additional remarks on the nonexistence of global solutions to non-
linear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.

12. F. S. Li and C. L. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave
equation with nonlocal boundary damping, Nonlinear Anal., 74 (2011), 3465-3477.

13. F. S. Li, Z. Q. Zhao and Y. F. Chen, Global existence uniqueness and decay estimates for
nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal. RWA,
12 (2011), 1759-1773.

14. A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover, New York,
1944.

15. S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation,
Math. Nachr., 260 (2003), 58-66.

16. S. A. Messaoudi, Blow up of positive-initial-energy solutions of a nonlinear viscoelastic
hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902-915.

17. J. Ma, C. L. Mu and R. Zeng, A blow up result for viscoelastic equations with arbitary
positive initial energy, Boundary Value Problems, 2011, 2011:6.

18. J. A. Nobel and D. F. Shea, Frequency domain methods for Volterra equations, Adv.
Math., 22 (1976), 278-304.

19. M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear
wave equations, Bol. Soc. Parana. Math., 25(1-2) (2007), 77-90.

20. M. Renardy, W. J. Hausa and J. A. Nohel, Mathematical Problems in Viscoelasticity,
Pitman Monographs and Surveys in pure and Applied Mathematics, Vol. 35, John Wiley
and Sons, New York, 1987.

21. S. A. Messaoudi and N. -E. Tatar, Global existence and uniform stability of solutions
for a quailinear viscoleastic problem, Math. Meth. Appl. Sci., 30 (2007), 665-680.

22. E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping
and source terms, J. Differential Equations, 186(1) (2002), 259-298.



Global Nonexistence of Arbitrary Initial Energy Solutions of Viscoelastic Equation 2033

23. Y. J. Wang and Y. F. Wang, Exponential energy decay of solutions of viscoelastic wave
equations, J. Math. Anal. Appl., 347 (2008), 18-25.

24. Y. J. Wang, A global nonexistence theorem for viscoelastic equations with arbitrary
positive initial energy, Appl. Math. Letters, 22 (2009), 1394-1400.

25. Y. J. Wang, A sufficient condition for finite time for the nonlinear Klein-Gordon equations
with arbitarility positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.

26. R. Zeng, C. L. Mu and S. M. Zhou, A blow up result for Kirchhoff type equations with
high energy, Math. Meth. Appl. Sci., 34(4) (2011), 479-486.

Hongrui Geng and Jie Ma
College of Mathematics and Statistics
Chongqing University
Chongqing 401331
P. R. China
E-mail: ghr03@tom.com


