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H-SEMI-INVARIANT SUBMERSIONS

Kwang-Soon Park

Abstract. In this paper, we introduce the notions of the almost h-semi-invariant
submersion and the h-semi-invariant submersion which may be the extended ver-
sion of the notion of the semi-invariant submersion [18]. Using them, we obtain
some properties. Finally, we give some examples for them.

1. INTRODUCTION

Given a C°°—submersion F' from a Riemannian manifold (M, gas) onto a Rie-
mannian manifold (N, gn), there are several kinds of submersions according to the
conditions on it: e.g. Riemannian submersion ([9], [15]), slant submersion ([6], [17]),
almost Hermitian submersion [19], contact-complex submersion [10], quaternionic sub-
mersion [11], almost h-slant submersion and h-slant submersion [16], semi-invariant
submersion [18], etc. As we know, Riemannian submersions are related with physics
and have their applications in the Yang-Mills theory ([5], [20]), Kaluza-Klein theory
([4], [12]), Supergravity and superstring theories ([13], [14]), etc. And the quater-
nionic K#hler manifolds have applications in physics as the target spaces for nonlinear
o—models with supersymmetry [7]. For more information about Riemannian submer-
sions, there is a book which covers recent results on this topic [8]. The paper is
organized as follows. In section 2 we recall some notions needed for this paper. In
section 3 we give the definitions of the almost h-semi-invariant submersion and the
h-semi-invariant submersion and obtain some interesting properties about them. In sec-
tion 4 we construct some examples for the almost h-semi-invariant submersions and
the h-semi-invariant submersions.

2. PRELIMINARIES

Let (M, E, g) be an almost quaternionic Hermitian manifold, where M is a 4n-
dimensional differentiable manifold, g is a Riemannian metric on M, and E is a rank
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3 subbundle of End(7T'M) such that for any point p € M with its some neighborhood
U, there exists a local basis {.Ji, Jo, J3} of sections of E on U satisfying for all
a€{l1,2,3}
T2 = —id, Jodar1 = —Jat1Ja = Jai2,
9(JoX, JY) =g(X,Y)

for all vector fields X,Y on M, where the indices are taken from {1, 2,3} modulo
3. The above basis {.J1, Ja, J3} is said to be a quaternionic Hermitian basis. We
call (M, E,g) a quaternionic Kdhler manifold if there exist locally defined 1-forms
w1, wa, w3 such that for o € {1, 2, 3}

Vxda = wat2(X)Jat+1 — Wat1(X)Jat2

for any vector field X on M, where the indices are taken from {1, 2,3} modulo 3. If
there exists a global parallel quaternionic Hermitian basis {.J1, J2, J3} of sections of F
on M, then (M, E, g) is said to be hyperkdhler. Furthermore, we call (Jy, Ja, Js, g) a
hyperkdhler structure on M and g a hyperkdhler metric. Let (M, gar) and (N, gn) be
Riemannian manifolds and F': M — N a C°°—submersion. The map F’ is said to be
Riemannian submersion if the differential F), preserves the lengths of horizontal vectors
[11]. Let (M, gar, J) be an almost Hermitian manifold. A Riemannian submersion
F:(M,gn,J)— (N, gn) is called a slant submersion if the angle (X ) between J X
and the space ker(F), is constant for any nonzero X € T,M and p € M [17]. We
call 0(X) a slant angle. Let (M, E, gpr) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. A Riemannian submersion F' : (M, E, gpr) —
(N, gn) is said to be an almost h-slant submersion if given a point p € M with its some
neighborhood U, there exists a quaternionic Hermitian basis {1, J, K } of sections of F
on U such that for R € {I, J, K'} the angle 0 (X ) between RX and the space ker(F} ),
is constant for nonzero X € ker(F,), and ¢ € U [16]. We call such a basis {I, J, K'}
an almost h-slant basis. A Riemannian submersion F' : (M, E, gy) — (N, gn) is
called a h-slant submersion if given a point p € M with its some neighborhood U,
there exists a quaternionic Hermitian basis {1, J, K} of sections of E on U such that
for R € {I,J, K} the angle Or(X) between RX and the space ker(F}), is constant
for nonzero X € ker(Fy), and ¢ € U, and 6;(X) = 60;(X) = 0 (X) [16]. We call
such a basis {I, J, K} a h-slant basis and the angle 6 h-slant angle. Let (M, gar, J)
be an almost Hermitian manifold and (V, gn) a Riemannian manifold. A Riemannian
submersion F': (M, gar, J) — (N, gn) is called a semi-invariant submersion if there
1s a distribution Dy C ker F, such that

ker F, = Dy ® Dq, J(Dy) = Dy, J(Dy) C (ker F,)*,

where D5 is the orthogonal complement of D; in ker F) [17].
Let (M, Ey,ga) and (N, En, gn) be almost quaternionic Hermitian manifolds.
A map F : M — N is called a (Eys, En)—holomorphic map if given a point p € M,
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for any J € (E), there exists J' € (En)p(p such that
F.oJ=.J oF,.

A Riemannian submersion F' : M +— N which is a (Ejs, Ey)—holomorphic map is
called a quaternionic submersion. Moreover, if (M, Eyr, gar) is a quaternionic Kahler
manifold (or a hyperkdhler manifold), then we say that F' is a quaternionic Kdhler
submersion (or a hyperkdhler submersion) [11].

Let (M, gar) and (N, gn) be Riemannian manifolds and F : (M, gar) — (N, gn)
a smooth map. The second fundamental form of F' is given by

(VE)(X,Y):=VEEY — F,(VxY) for X,Y € T(TM),

where V' is the pullback connection and we denote conveniently by V the Levi-Civita
connections of the metrics gp; and gx [1]. Recall that F' is said to be harmonic if
trace(VFy) = 0 and F is called a fotally geodesic map if (VF,)(X,Y) = 0 for
X, Y eT(TM) [1].

3. H-SEMI-INVARIANT SUBMERSIONS

Definition 3.1. Let (M, E, g)s) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. A Riemannian submersion F' : (M, E, gpr) —
(N, gn) is called a h-semi-invariant submersion if given a point p € M with its some
neighborhood U, there exists a quaternionic Hermitian basis {1, J, K} of sections of
E on U such that for any R € {I,J, K}, there is a distribution D; C ker Fy on U
such that

ker F, = D; ® Da, R(D;) = Dy, R(Ds) C (ker F,)*,

where Dy is the orthogonal complement of D; in ker F.
We call such a basis {I, J, K} a h-semi-invariant basis.

Definition 3.2. Let (M, E, g)s) be an almost quaternionic Hermitian manifold
and (N, ¢gn) a Riemannian manifold. A Riemannian submersion F' : (M, E, gpr) —
(N, gn) is called an almost h-semi-invariant submersion if given a point p € M with its
some neighborhood U, there exists a quaternionic Hermitian basis {/, J, K'} of sections
of E on U such that for each R € {I,J, K}, there is a distribution D C ker F, on
U such that

ker F, = DR @ DI, R(DF) = DE, R(DE) c (ker F,)*,
where DX is the orthogonal complement of DI in ker F..

We call such a basis {I, J, K} an almost h-semi-invariant basis.
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Remark 3.1. Let I’ be a h-semi-invariant submersion from a hyperkéhler manifold
(M, I,J, K, gn) onto a Riemannian manifold (N, gn) such that (I, J, K) is a h-semi-
invariant basis. Then the fibers of the map F' are quaternionic CR-submanifolds [3].
More generally, it is also true when F' : (M, E, gar) — (N, gn) is a h-semi-invariant
submersion with some additional conditions.

Let ' : (M,E,gym) — (N,gn) be an almost h-semi-invariant submersion with an
almost h-semi-invariant basis {I,.J, K'}. We denote the orthogonal complement of
RDE in (ker F,)* by pf for R € {I,J, K}.

Then for X € I'(ker F), we have

RX = ¢rX +wrX,

where ¢ppX € T'(DI) and wg X € T(RDE) for R € {I,J,K}.
For Z € T'((ker F,)*), we get

RZ = BrZ + CrZ,

where BrZ € T'(D¥) and CrZ € T'(uf?) for R € {I,J, K}.
Note that we denote the projection morphisms on the distributions ker F, and
(ker F..)* by V and H, respectively. Define the tensor 7 and A by

ApF = HVygVF + VVyEHF
TpF = HVygVFEF + VVypHE

for vector fields F/, F' on M, where V is the Levi-Civita connection of g;;. Define
(Vxor)Y = VxorY — ¢rVxY

and R
(VXQJR>Y = HVXQJRY — wRVXY

for X,Y € I'(ker F,) and R € {I, J, K}, where VxY := VVyY.
We look at the integrability of the distributions D; and D,. Using the results of
([31, [2]), we easily have

Lemma 3.1. Let F' be a h-semi-invariant submersion from a hyperkdhler manifold
(M, 1,J, K, gn) onto a Riemannian manifold (N, gn) such that (1, J, K) is a h-semi-
invariant basis. Then

(i) the distribution Dy is always integrable.
(ii) the following conditions are equivalent :

(a) the distribution Dy is integrable.
(b) gu(TxIY — Ty IX,1Z) =0 for X,Y € (D) and Z € T(Dy).
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(¢) gu(IxJY =Ty JX,JZ) =0 for X, Y € I'(D;) and Z € T'(D3).
(d) gy (TxKY — Ty KX, KZ) =0 for X,Y € T(Dy) and Z € T(Ds).

Using Theorem 5.1 of [2, p.63], we get

Proposition 3.1. Let F' be a h-semi-invariant submersion from a hyperkdhler man-
ifold (M, 1,J, K, gy) onto a Riemannian manifold (N, gn) such that (I, J, K) is a
h-semi-invariant basis. Then the following conditions are equivalent :

(a) the fibers of F are locally product Riemannian manifolds.
(b) (Vxér)Y =0 for X,Y € T'(ker Fy).
(¢) (Vx¢s)Y =0 for X,Y € I'(ker F}).
(d) (Vxor)Y =0 for X,Y € I'(ker Fy).
Theorem 3.1. Let F' be an almost h-semi-invariant submersion from a hyperkdhler

manifold (M, I, J, K, gnr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-semi-invariant basis. Then the following conditions are equivalent :

(a) F is a totally geodesic map.

(0) . .
VxorY +TxwrY, VxBiZ +TxCrZ € (DY),
HY xwiY +Tx¢1Y, TxBiZ +HVxCiZ € F(I'Dé)

for X, Y € T(ker F,) and Z € T((ker F,)%).
() ~ ~ S
VxoiY +TxwyY, VXBJZ+TXcJZ€F(D1>,
HV xwyY +Txp;Y, TxByZ +HVxCy;Z € T(JDJ)
for X, Y € T(ker F,) and Z € T((ker F,)%).
%)(¢KY+TXwKYV, %)(BKZ—FT)(CKZ € F('Df),
HY xwigY + TX¢KK TxBrxZ +HVxCrZ € F(K'Df)

for X, Y € T(ker F,) and Z € T((ker F,)%).

Proof.  Given a complex structure R € {I,J, K}, for X, Y € I'(ker F}) and
Z, 71, Zy € T((ker F,)*) we have

(VF)(Z1,Z3) =0,

since F' is a Riemannian submersion.
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Furthermore, using the properties VR = 0 and R? = —id, we obtain
(VF)(X,Y)=—-F.(VxY)=F,(RVxRY)

= F*(RVX¢RY + RVXQJRY>

= F, (R($X¢RY +7Tx¢orY + HV xwRrY + ’TXwRY))

= Fu(¢rV X ORY + wrVxorY + BrTx¢rY + CrlxdrY
+ BRHV xwrY + CRHV xwrY + ¢RTXWRY + wRTXwRY).

Thus,
(VE)(X,Y) =0 < wr(VxorY + TxwrY) = 0, Cr(TxdrY + HV xwrY) = 0.
Similarly,
(VE)(X,Z) =0 < wr(VxBrZ + TxCrZ) = 0, Cr(TxBrZ + HV x CrZ) = 0.
Hence, we get
a) b), a) = c), a) & d).

Therefore, we obtain the result. [

Proposition 3.2. Let F' be an almost h-semi-invariant submersion from a hy-
perkdhler manifold (M, 1,J, K, gyr) onto a Riemannian manifold (N, gn) such that

(1, J, K) is an almost h-semi-invariant basis. Then the following conditions are equiv-
alent :

(a) the distribution ker F defines a totally geodesic foliation.

(b) Tx,p1Xo+HV x,wi Xo € T(IDL), Vx,d1 Xo+Tx,wr X € T(D!) for X1, X €
['(ker Fy).

(C) TX1¢JX2 + HVXleXQ € F(JD2J>, VX1¢JX2 + TXleXQ € F('D{) for
X1, Xy € I'(ker Fy).

(d) TX1¢KX2 + HVx,wgXa € F(K'D?), Vx, ¢rxXo + TXl(.UKXQ S F(Df)for
X1, Xy € I'(ker Fy).

Proof. For X,Y € T'(ker F},),
VxY =—-IVxIY = —I(VX¢]Y + va]Y>
= —I(§X¢]Y + Tx¢]Y + TxwrY +HVXQJ]Y>

= —(¢1VxorY +wiVxdrY + BiTxorY + CrTxdrY
+ orTxwrY +wiZxwrY + BfHV xwrY + C]HVXQJ]Y).
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Thus,
VxY € I'(ker F})
& wi(VxorY + TxwrY) + Cr(Tx¢rY + HV xwiY) =0
& VxorY + TxwiY € T(Dy), TxérY + HV xwrY € [(IDy).
Hence,

a) < b).

Similarly, we get
a) < c¢) and a) < d).

Therefore, we obtain the result. [
Similarly, we have

Proposition 3.3. Let F' be an almost h-semi-invariant submersion from a hy-
perkdhler manifold (M, 1,J, K, gyr) onto a Riemannian manifold (N, gn) such that
(1, J, K) is an almost h-semi-invariant basis. Then the following conditions are equiv-
alent :

(a) the distribution (ker F, )" defines a totally geodesic foliation.

(b) AZlB]ZQ —i—HleC]ZQ S F(MI), .AZIC]ZQ + VV2122 S F(Dg)for Zl, Z2 S
['((ker F,)*4).

(C) AZlBJZQ —i—HleCJZQ S F(M‘]>, AzchZQ —i—VleZQ S F(DZJ)for Zi, 49 €
['((ker F,)*4).

(d) Az,BxZy + HV 7,CxZy € F(/LK), Az, CxZy + VN 7,75 € F('Df) for
71, Zy € T((ker F,)™1).

Using Proposition 3.1 and Proposition 3.3, we obtain

Theorem 3.2. Let F' be a h-semi-invariant submersion from a hyperkdhler manifold
(M, 1,J, K, gn) onto a Riemannian manifold (N, gn) such that (I, J, K) is a h-semi-
invariant basis. Then the following conditions are equivalent :

(a) M is locally a product Riemannian manifold Mp, X Mp, X M yer 7, )L, Where
Mp,, Mp,, and M(kerF*)L are integral manifolds of the distributions D1, D,
and (ker F*)L, respectively .

(b) (Vor) = 0 on ker Fy and Ay BiZs + HV 7,C1Zy € T(u), Az, CrZs +
VV 2,79 € T(Dy) for Z1, Zo € T((ker F,)™h).

(¢) (Voy) = 0 on ker F, and Az, BjZs + HN 2,C;Zs € T(n), Az,Cj;Zs +
VV 2,79 € T(Dy) for Z1, Zo € T((ker F,)™*).

(d) (Vog) = 0 on ker Fy and Ay, BxZo + HNV 2,CxZs € T'(1n), Az,CrZs +
VV 2,79 € T(Dy) for Z1, Zo € T((ker F,)™*).
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Using Proposition 3.2 and Proposition 3.3, we have

Theorem 3.3. Let F' be a h-semi-invariant submersion from a hyperkdhler manifold
(M, 1,J, K, gn) onto a Riemannian manifold (N, gn) such that (I, J, K) is a h-semi-
invariant basis. Then the following conditions are equivalent :

(a) M is locally a product Riemannian manifold Mye, p, X M, (ker F,) L, Where Mier
and My, p,y1 are integral manifolds of the distributions ker I, and (ker F,)*,
respectively .

(b) TX1¢]X2 + HVXlw]XQ S F(IDQ), $X1¢]X2 + TXlw]XQ S F(D1> and
AZlB]ZQ + HVZIC]ZQ € F(/L), AZIC]ZQ + VV2122 € F(DQ) for X1, X5 €
T(ker F.) and Zy1, Z5 € T'((ker F,)™).

(C) TX1¢JX2 + HVXleXQ € F(JDQ), VX1¢JX2 + TXleXQ € F(D1> and
AZlBJZQ + HvzchZQ S F(/L), AzchZQ +VVg 2y € F(DQ) for X1, X9 €
T(ker F,) and Zy, Zy € T((ker F,)4).

(d) TX1¢KX2 + HVXleXQ € F(KDQ), VX1¢KX2 + TXleXQ € F(D1> and
.AleKZQ—l-HVZlCKZQ S F(/L), Azlc’KZQ+szle S F(Dg)for X, X5 €
T(ker F.) and Z1, Z5 € T'((ker F,)™).

Let F' be a semi-invariant submersion from a Kahler manifold (M, gy, J) onto a
Riemannian manifold (V, giy). Then there is a distribution D; C ker F, such that

ker F, = Dy ® Dq, J(Dy) = Dy, J(Dy) C (ker F})*,

where Ds is the orthogonal complement of D; in ker F.

We choose a local orthonormal frame {v1, - -, v;} of Dy and a local orthonormal
frame {ey, - -, ear} of Dy such that eg; = Jeg;—1 for 1 <i < k.

Since Fy(V jey; ,Je2i—1) = —Fx(Vey, ,€2i-1), 1 <i < k, we easily have

l
trace(VFy) =0 & ZF*(ijvj) = 0.
j=1

Thus, we get

Theorem 3.4. Let F' be a semi-invariant submersion from a Kdhler manifold
(M, gar, J) onto a Riemannian manifold (N, gn). Then F is a harmonic map if and
only if trace(VF,) = 0 on Ds.

Corollary 3.1. Let F' be a semi-invariant submersion from a Kdhler manifold
(M, gar, J) onto a Riemannian manifold (N, gn) such that ker F, = Dy. Then F is
a harmonic map.
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Theorem 3.5. Let F' be an almost h-semi-invariant submersion from a hyperkdhler
manifold (M, I, J, K, gnr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-semi-invariant basis. Then the following conditions are equivalent :

(a) F is a harmonic map.

(b) trace(VF,) =0 on Di.
(¢) trace(VF,) =0 on Dy.
(d) trace(VF,) =0 on DI,

Proof. By Theorem 3.4, we have
(a) & (b), (a) & ¢), (a) < (d).
Therefore, we obtain the result. [

Corollary 3.2. Let F' be an almost h-semi-invariant submersion from a hyperkdhler
manifold (M, 1,J, K, gn) onto a Riemannian manifold (N, gn) such that (I, J, K)
is an almost h-semi-invariant basis such that ker F, = DI for some R € {I,J, K}.
Then F is a harmonic map.

Let F': (M, gn) — (N, gn) be a Riemannian submersion. The map F' is called a
Riemannian submersion with totally umbilical fibers if

TxY = gu(X,Y)H for X,Y € T'(ker F),
where H is the mean curvature vector field of the fiber.

Lemma 3.2. Let F' be a h-semi-invariant submersion with totally umbilical fibers
from a hyperkdhler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn)
such that (I, J, K) is a h-semi-invariant basis. Then

H eT(RDy) for Re{l,J K}.

Proof- Given a complex structure R € {I,J, K}, for X,Y € I'(D;) and
W e T'(u) we have

TxRY +VyRY = VxRY = RVyY
= BRTxY + CrTxY + ¢rVxY +wpVxY

so that
gM(TxRK W) = gM(C'RTXY, W)

By the assumption, with some computations we obtain

gM(X7 RY)QM(Hv W) = —9M (X7 Y)QM(Hv RW)
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Interchanging the role of X and Y, we get
gu (Y, RX)gu(H, W) = —gu (Y, X)gu(H, RW)
so that combining the above two equations, we have
g (X, Y)gu(H,RW) =0

which means H € I'(RDs), since Ry = p.
Therefore, we obtain the result. [

Theorem 3.6. Let F' be a h-semi-invariant submersion with totally umbilical fibers
from a hyperkdhler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn)
such that (1, J, K) is a h-semi-invariant basis. Then the fibers are totally geodesic.

Proof. By Lemma 3.2, we have
H eT(RDy) forRe{l,J K}

so that
<IH,JH,KH > C D,.

By Theorem 4.3 of [18], we obtain the result. [

Remark 3.2. Let F' be a semi-invariant submersion from a Kahler manifold (M,
gm, J) onto a Riemannian manifold (N, gn). Then there are distributions D; C ker F,
and p C (ker F,)* such that

ker F, = Dy ® Do, J(D1) = D1, J(Dy) C (ker F,)*, (ker F.)* = J(Dy) @

where Dy and p are the orthogonal complements of D; and J(D) in ker Fy and
(ker F, )+, respectively. As we know, the holomorphic sectional curvatures determine
the Riemannian curvature tensor in a Kahler manifold.

Given a plane P invariant by J in T,M, p € M, there is an orthonormal basis
{X,JX} of P. Denote by K(P), K,(P), and K(P) the sectional curvatures of the
plane P in M, N, and the fiber F~!(F(p)), respectively, where K,(P) denotes the
sectional curvature of the plane P, =< F, X, F,JX > in N. Using Corollary 1 of
[15, p.465], we obtain the following :

1. If P C (D), then with some computations we have
K(P) = K(P) + |Tx X |> = | Tx JX|? — gu(Tx X, J[J X, X]).
2. If P C (Dy ® JDs3), with X € (D3),, then we get

K(P) = gu((VoxT)xX,JX)+ |HIVx X|* = [VIVxX|*.
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3. If P C (u)p, then we obtain

K(P) = K.(P) = 3|]VJVxX|
4. EXAMPLES

Example 4.1. Let (M, E, gps) be an almost quaternionic Hermitian manifold and
(N, gn) a Riemannian manifold. Let F': (M, E, gps) — (N, gn) be an almost h-slant
submersion with its slant angles {0;,0;,0x} C {0,5} [16]. Then the map F is an
almost h-semi-invariant submersion.

Example 4.2. Let (M, E, g) be an almost quaternionic Hermitian manifold. Let
m : TM +— M be the natural projection. Then the map 7 is a h-semi-invariant
submersion with D; = ker F}, [11]. Furthermore, by Corollary 3.2, 7 is harmonic.

Example 4.3. Let (M, Er, gar) and (N, En, gn) be almost quaternionic Hermi-
tian manifolds. Let F': M +— N be a quaternionic submersion. Then the map F' is a
h-semi-invariant submersion with D; = ker F [11]. By Corollary 3.2, F' is harmonic.

Example 4.4. Define a map F : R* — R? by
F(zy1,-+,24) = (z18ina — x3cos o, T4, T2),

where « is constant. Then the map F' is a h-semi-invariant submersion with Dy =
ker F.

Example 4.5. Let ' : R* — R3 be a Riemannian submersion. Then the map F is
a h-semi-invariant submersion with Dy = ker F..

We can check it as follows: Given coordinates (z1, z2, 23, x4) on R*, we can
naturally choose the complex structures I, J, and K on R* defined by

I(i) _ 2 I(i) __ 9 I(i) _ 2 I(i) __9

0z Oxs’~ \ Oxy Ox1’ \ Oxs Ozxy’  \Oxy Ox3’
an) =5/ (5) =3 (o) =5/ (a) -5
“(am) = e (om) = 5 (a) = o ¥ (5) = o

Since F' is a Riemannian submersion, the dimension of the space ker(F}), is equal

to 1 for any p € R* Using the properties < RX,X >= 0 for X € TpR4 and
R e {I,J, K}, where <, > denotes the Euclidean metric on R*, we obtain the result.
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Example 4.6. Let (M, I, J, K, gar) be a 4n—dimensional hyperkéhler manifold and
(N, gn) a (4n — 1)—dimensional Riemannian manifold. Let F': (M, I, J, K, grr) —
(N, gn) be a Riemannian submersion. Then the map F is a h-semi-invariant submer-
sion with Dy = ker F.

Example 4.7. Let (M, 1, J1, K1, 91) be a 4m—dimensional hyperkéhler mani-
fold and (Mo, I3, Jo, K9, g2) a 4n—dimensional hyperkéhler manifold. Let (Ny, ¢})
be a (4m — 1)-dimensional Riemannian manifold and (Na, g5) a (4n — 1)-dimensional
Riemannian manifold. Let F; : (M;, I;, J;, K;, g;) — (N;, g.) be a Riemannian sub-
mersion for ¢ € {1,2}. Consider the product map F' = Fy x Fy : My x My +— N1 x Ny
given by

(Fl X FQ)([B, y) = (Fl(a:), Fg(y>> for x € M; and Yy e M.
Then the map F' is a h-semi-invariant submersion with Dy = ker F.

Example 4.8. Define a map F : R* — R? by
F(xq,- - ,x4) = (z1cosa — x3sina, o sin § — x4 cos (),

where o and 8 are constant with o + 3 = 7. Then the map F' is an almost h-
semi-invariant submersion such that DI = DJ = DI = ker F.. Furthermore, F is
harmonic, by Corollary 3.2.

Example 4.9. Define a map F : R* — R? by
F(xlu T 7[134) - (331,(132).

Then the map F' is an almost h-semi-invariant submersion such that I (ker F) = ker F,
J(ker F,) = (ker F,)*, and K (ker F,) = (ker F,)*+. By Corollary 3.2, F is also
harmonic.

Example 4.10. Define a map F : R® — RS by
F(fL’l,"' 7[138) - <x37"' 7[138)'

Then the map F' is an almost h-semi-invariant submersion such that I (ker F) = ker F,
J(ker F,) C (ker F,)*, and K (ker F,) C (ker F,)*. By Corollary 3.2, F' is harmonic.

Example 4.11. Define a map F : R® — R* by
F(xy,- - x8) = (21, T2, T5, T7).

Then the map F is an almost h-semi-invariant submersion such that D = DJ =
0 0 > DI=D] =<2 -2 > and K(ker F,) = (ker F,)~.

8_323’ a_l’4 Oxg’ Oxg
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Example 4.12. Define a map F : R® — R? by

F(xy,---,x8) = (26, T7, T8).
Then the map F' is a h-semi-invariant submersion such that D; =< 8%1, cee 8%4 >
and Dy =< 8%5 >,
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