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H-SEMI-INVARIANT SUBMERSIONS

Kwang-Soon Park

Abstract. In this paper, we introduce the notions of the almost h-semi-invariant
submersion and the h-semi-invariant submersion which may be the extended ver-
sion of the notion of the semi-invariant submersion [18]. Using them, we obtain
some properties. Finally, we give some examples for them.

1. INTRODUCTION

Given a C∞−submersion F from a Riemannian manifold (M, gM) onto a Rie-
mannian manifold (N, gN), there are several kinds of submersions according to the
conditions on it: e.g. Riemannian submersion ([9], [15]), slant submersion ([6], [17]),
almost Hermitian submersion [19], contact-complex submersion [10], quaternionic sub-
mersion [11], almost h-slant submersion and h-slant submersion [16], semi-invariant
submersion [18], etc. As we know, Riemannian submersions are related with physics
and have their applications in the Yang-Mills theory ([5], [20]), Kaluza-Klein theory
([4], [12]), Supergravity and superstring theories ([13], [14]), etc. And the quater-
nionic Kähler manifolds have applications in physics as the target spaces for nonlinear
σ−models with supersymmetry [7]. For more information about Riemannian submer-
sions, there is a book which covers recent results on this topic [8]. The paper is
organized as follows. In section 2 we recall some notions needed for this paper. In
section 3 we give the definitions of the almost h-semi-invariant submersion and the
h-semi-invariant submersion and obtain some interesting properties about them. In sec-
tion 4 we construct some examples for the almost h-semi-invariant submersions and
the h-semi-invariant submersions.

2. PRELIMINARIES

Let (M, E, g) be an almost quaternionic Hermitian manifold, where M is a 4n-
dimensional differentiable manifold, g is a Riemannian metric on M , and E is a rank
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3 subbundle of End(TM) such that for any point p ∈ M with its some neighborhood
U , there exists a local basis {J1, J2, J3} of sections of E on U satisfying for all
α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

g(JαX, JαY ) = g(X, Y )

for all vector fields X, Y on M , where the indices are taken from {1, 2, 3} modulo
3. The above basis {J1, J2, J3} is said to be a quaternionic Hermitian basis. We
call (M, E, g) a quaternionic Kähler manifold if there exist locally defined 1-forms
ω1, ω2, ω3 such that for α ∈ {1, 2, 3}

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for any vector field X on M , where the indices are taken from {1, 2, 3} modulo 3. If
there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of sections of E
on M , then (M, E, g) is said to be hyperkähler. Furthermore, we call (J1, J2, J3, g) a
hyperkähler structure on M and g a hyperkähler metric. Let (M, gM) and (N, gN) be
Riemannian manifolds and F : M �→ N a C∞−submersion. The map F is said to be
Riemannian submersion if the differential F∗ preserves the lengths of horizontal vectors
[11]. Let (M, gM , J) be an almost Hermitian manifold. A Riemannian submersion
F : (M, gM , J) �→ (N, gN) is called a slant submersion if the angle θ(X) between JX
and the space ker(F∗)p is constant for any nonzero X ∈ TpM and p ∈ M [17]. We
call θ(X) a slant angle. Let (M, E, gM) be an almost quaternionic Hermitian manifold
and (N, gN) a Riemannian manifold. A Riemannian submersion F : (M, E, gM) �→
(N, gN) is said to be an almost h-slant submersion if given a point p ∈ M with its some
neighborhood U , there exists a quaternionic Hermitian basis {I, J, K} of sections of E
on U such that for R ∈ {I, J, K} the angle θR(X) betweenRX and the space ker(F∗)q

is constant for nonzero X ∈ ker(F∗)q and q ∈ U [16]. We call such a basis {I, J, K}
an almost h-slant basis. A Riemannian submersion F : (M, E, gM) �→ (N, gN) is
called a h-slant submersion if given a point p ∈ M with its some neighborhood U ,
there exists a quaternionic Hermitian basis {I, J, K} of sections of E on U such that
for R ∈ {I, J, K} the angle θR(X) between RX and the space ker(F∗)q is constant
for nonzero X ∈ ker(F∗)q and q ∈ U , and θI (X) = θJ (X) = θK(X) [16]. We call
such a basis {I, J, K} a h-slant basis and the angle θ h-slant angle. Let (M, gM , J)
be an almost Hermitian manifold and (N, gN) a Riemannian manifold. A Riemannian
submersion F : (M, gM , J) �→ (N, gN) is called a semi-invariant submersion if there
is a distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ (kerF∗)⊥,

where D2 is the orthogonal complement of D1 in ker F∗ [17].
Let (M, EM , gM) and (N, EN , gN) be almost quaternionic Hermitian manifolds.

A map F : M �→ N is called a (EM , EN)−holomorphic map if given a point p ∈ M ,
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for any J ∈ (EM)p there exists J ′ ∈ (EN)F (p) such that

F∗ ◦ J = J ′ ◦ F∗.

A Riemannian submersion F : M �→ N which is a (EM , EN)−holomorphic map is
called a quaternionic submersion. Moreover, if (M, EM , gM) is a quaternionic Kähler
manifold (or a hyperkähler manifold), then we say that F is a quaternionic Kähler
submersion (or a hyperkähler submersion) [11].
Let (M, gM) and (N, gN) be Riemannian manifolds and F : (M, gM) �→ (N, gN)

a smooth map. The second fundamental form of F is given by

(∇F∗)(X, Y ) := ∇F
XF∗Y − F∗(∇XY ) for X, Y ∈ Γ(TM),

where∇F is the pullback connection and we denote conveniently by∇ the Levi-Civita
connections of the metrics gM and gN [1]. Recall that F is said to be harmonic if
trace(∇F∗) = 0 and F is called a totally geodesic map if (∇F∗)(X, Y ) = 0 for
X, Y ∈ Γ(TM) [1].

3. H-SEMI-INVARIANT SUBMERSIONS

Definition 3.1. Let (M, E, gM) be an almost quaternionic Hermitian manifold
and (N, gN) a Riemannian manifold. A Riemannian submersion F : (M, E, gM) �→
(N, gN) is called a h-semi-invariant submersion if given a point p ∈ M with its some
neighborhood U , there exists a quaternionic Hermitian basis {I, J, K} of sections of
E on U such that for any R ∈ {I, J, K}, there is a distribution D1 ⊂ ker F∗ on U
such that

kerF∗ = D1 ⊕ D2, R(D1) = D1, R(D2) ⊂ (kerF∗)⊥,

where D2 is the orthogonal complement of D1 in ker F∗.

We call such a basis {I, J, K} a h-semi-invariant basis.

Definition 3.2. Let (M, E, gM) be an almost quaternionic Hermitian manifold
and (N, gN) a Riemannian manifold. A Riemannian submersion F : (M, E, gM) �→
(N, gN) is called an almost h-semi-invariant submersion if given a point p ∈ M with its
some neighborhood U , there exists a quaternionic Hermitian basis {I, J, K} of sections
of E on U such that for each R ∈ {I, J, K}, there is a distribution DR

1 ⊂ kerF∗ on
U such that

kerF∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 , R(DR
2 ) ⊂ (kerF∗)⊥,

where DR
2 is the orthogonal complement of DR

1 in kerF∗.

We call such a basis {I, J, K} an almost h-semi-invariant basis.
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Remark 3.1. Let F be a h-semi-invariant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
invariant basis. Then the fibers of the map F are quaternionic CR-submanifolds [3].
More generally, it is also true when F : (M, E, gM) �→ (N, gN) is a h-semi-invariant
submersion with some additional conditions.

Let F : (M, E, gM) �→ (N, gN) be an almost h-semi-invariant submersion with an
almost h-semi-invariant basis {I, J, K}. We denote the orthogonal complement of
RDR

2 in (kerF∗)⊥ by μR for R ∈ {I, J, K}.
Then for X ∈ Γ(kerF∗), we have

RX = φRX + ωRX,

where φRX ∈ Γ(DR
1 ) and ωRX ∈ Γ(RDR

2 ) for R ∈ {I, J, K}.
For Z ∈ Γ((kerF∗)⊥), we get

RZ = BRZ + CRZ,

where BRZ ∈ Γ(DR
2 ) and CRZ ∈ Γ(μR) for R ∈ {I, J, K}.

Note that we denote the projection morphisms on the distributions kerF∗ and
(kerF∗)⊥ by V and H, respectively. Define the tensor T and A by

AEF = H∇HEVF + V∇HEHF

TEF = H∇VEVF + V∇VEHF

for vector fields E, F on M , where ∇ is the Levi-Civita connection of gM . Define

(∇XφR)Y := ∇̂XφRY − φR∇̂XY

and
(∇XωR)Y := H∇XωRY − ωR∇̂XY

for X, Y ∈ Γ(kerF∗) and R ∈ {I, J, K}, where ∇̂XY := V∇XY .
We look at the integrability of the distributions D1 and D2. Using the results of

([3], [2]), we easily have

Lemma 3.1. Let F be a h-semi-invariant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
invariant basis. Then

(i) the distribution D2 is always integrable.
(ii) the following conditions are equivalent :

(a) the distribution D1 is integrable.
(b) gM(TXIY − TY IX, IZ) = 0 for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).
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(c) gM(TXJY − TY JX, JZ) = 0 for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).
(d) gM(TXKY − TY KX, KZ) = 0 for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).

Using Theorem 5.1 of [2, p.63], we get

Proposition 3.1. Let F be a h-semi-invariant submersion from a hyperkähler man-
ifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a
h-semi-invariant basis. Then the following conditions are equivalent :

(a) the fibers of F are locally product Riemannian manifolds.
(b) (∇XφI)Y = 0 for X, Y ∈ Γ(ker F∗).
(c) (∇XφJ)Y = 0 for X, Y ∈ Γ(kerF∗).
(d) (∇XφK)Y = 0 for X, Y ∈ Γ(kerF∗).

Theorem 3.1. Let F be an almost h-semi-invariant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-invariant basis. Then the following conditions are equivalent :

(a) F is a totally geodesic map.
(b)

∇̂XφIY + TXωIY, ∇̂XBIZ + TXCIZ ∈ Γ(DI
1),

H∇XωIY + TXφIY, TXBIZ + H∇XCIZ ∈ Γ(IDI
2)

for X, Y ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥).

(c)
∇̂XφJY + TXωJY, ∇̂XBJZ + TXCJZ ∈ Γ(DJ

1 ),

H∇XωJY + TXφJY, TXBJZ + H∇XCJZ ∈ Γ(JDJ
2 )

for X, Y ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥).

(d)
∇̂XφKY + TXωKY, ∇̂XBKZ + TXCKZ ∈ Γ(DK

1 ),

H∇XωKY + TXφKY, TXBKZ + H∇XCKZ ∈ Γ(KDK
2 )

for X, Y ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥).

Proof. Given a complex structure R ∈ {I, J, K}, for X, Y ∈ Γ(kerF∗) and
Z, Z1, Z2 ∈ Γ((kerF∗)⊥) we have

(∇F∗)(Z1, Z2) = 0,

since F is a Riemannian submersion.
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Furthermore, using the properties ∇R = 0 and R2 = −id, we obtain

(∇F∗)(X, Y ) = −F∗(∇XY ) = F∗(R∇XRY )
= F∗(R∇XφRY + R∇XωRY )

= F∗(R(∇̂XφRY + TXφRY + H∇XωRY + TXωRY ))

= F∗(φR∇̂XφRY + ωR∇̂XφRY + BRTXφRY + CRTXφRY

+ BRH∇XωRY + CRH∇XωRY + φRTXωRY + ωRTXωRY ).

Thus,

(∇F∗)(X, Y ) = 0 ⇔ ωR(∇̂XφRY + TXωRY ) = 0, CR(TXφRY + H∇XωRY ) = 0.

Similarly,

(∇F∗)(X, Z) = 0 ⇔ ωR(∇̂XBRZ + TXCRZ) = 0, CR(TXBRZ + H∇XCRZ) = 0.

Hence, we get
a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, we obtain the result.

Proposition 3.2. Let F be an almost h-semi-invariant submersion from a hy-
perkähler manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that
(I, J, K) is an almost h-semi-invariant basis. Then the following conditions are equiv-
alent :

(a) the distribution ker F∗ defines a totally geodesic foliation.
(b) TX1φIX2+H∇X1ωIX2 ∈ Γ(IDI

2), ∇̂X1φIX2+TX1ωIX2 ∈ Γ(DI
1) forX1, X2 ∈

Γ(ker F∗).
(c) TX1φJX2 + H∇X1ωJX2 ∈ Γ(JDJ

2 ), ∇̂X1φJX2 + TX1ωJX2 ∈ Γ(DJ
1 ) for

X1, X2 ∈ Γ(kerF∗).
(d) TX1φKX2 + H∇X1ωKX2 ∈ Γ(KDK

2 ), ∇̂X1φKX2 + TX1ωKX2 ∈ Γ(DK
1 ) for

X1, X2 ∈ Γ(kerF∗).

Proof. For X, Y ∈ Γ(ker F∗),

∇XY = −I∇XIY = −I(∇XφIY + ∇XωIY )

= −I(∇̂XφIY + TXφIY + TXωIY + H∇XωIY )

= −(φI∇̂XφIY + ωI∇̂XφIY + BITXφIY + CITXφIY

+ φITXωIY + ωITXωIY + BIH∇XωIY + CIH∇XωIY ).
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Thus,

∇XY ∈ Γ(kerF∗)

⇔ ωI(∇̂XφIY + TXωIY ) + CI (TXφIY + H∇XωIY ) = 0

⇔ ∇̂XφIY + TXωIY ∈ Γ(D1), TXφIY + H∇XωIY ∈ Γ(ID2).

Hence,
a) ⇔ b).

Similarly, we get
a) ⇔ c) and a) ⇔ d).

Therefore, we obtain the result.
Similarly, we have

Proposition 3.3. Let F be an almost h-semi-invariant submersion from a hy-
perkähler manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that
(I, J, K) is an almost h-semi-invariant basis. Then the following conditions are equiv-
alent :

(a) the distribution (kerF∗)⊥ defines a totally geodesic foliation.
(b) AZ1BIZ2 + H∇Z1CIZ2 ∈ Γ(μI), AZ1CIZ2 + V∇Z1Z2 ∈ Γ(DI

2) for Z1, Z2 ∈
Γ((kerF∗)⊥).

(c) AZ1BJZ2 +H∇Z1CJZ2 ∈ Γ(μJ), AZ1CJZ2 +V∇Z1Z2 ∈ Γ(DJ
2 ) for Z1, Z2 ∈

Γ((kerF∗)⊥).
(d) AZ1BKZ2 + H∇Z1CKZ2 ∈ Γ(μK), AZ1CKZ2 + V∇Z1Z2 ∈ Γ(DK

2 ) for
Z1, Z2 ∈ Γ((kerF∗)⊥).

Using Proposition 3.1 and Proposition 3.3, we obtain

Theorem 3.2. Let F be a h-semi-invariant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
invariant basis. Then the following conditions are equivalent :

(a) M is locally a product Riemannian manifold MD1 × MD2 × M(kerF∗)⊥ , where
MD1 , MD2 , and M(kerF∗)⊥ are integral manifolds of the distributions D1, D2,
and (kerF∗)⊥, respectively .

(b) (∇φI) = 0 on kerF∗ and AZ1BIZ2 + H∇Z1CIZ2 ∈ Γ(μ), AZ1CIZ2 +
V∇Z1Z2 ∈ Γ(D2) for Z1, Z2 ∈ Γ((ker F∗)⊥).

(c) (∇φJ) = 0 on kerF∗ and AZ1BJZ2 + H∇Z1CJZ2 ∈ Γ(μ), AZ1CJZ2 +
V∇Z1Z2 ∈ Γ(D2) for Z1, Z2 ∈ Γ((ker F∗)⊥).

(d) (∇φK) = 0 on ker F∗ and AZ1BKZ2 + H∇Z1CKZ2 ∈ Γ(μ), AZ1CKZ2 +
V∇Z1Z2 ∈ Γ(D2) for Z1, Z2 ∈ Γ((ker F∗)⊥).
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Using Proposition 3.2 and Proposition 3.3, we have

Theorem 3.3. Let F be a h-semi-invariant submersion from a hyperkähler manifold
(M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is a h-semi-
invariant basis. Then the following conditions are equivalent :

(a) M is locally a product Riemannian manifoldMkerF∗×M(ker F∗)⊥ , whereMkerF∗
and M(kerF∗)⊥ are integral manifolds of the distributions kerF∗ and (kerF∗)⊥,
respectively .

(b) TX1φIX2 + H∇X1ωIX2 ∈ Γ(ID2), ∇̂X1φIX2 + TX1ωIX2 ∈ Γ(D1) and
AZ1BIZ2 + H∇Z1CIZ2 ∈ Γ(μ), AZ1CIZ2 + V∇Z1Z2 ∈ Γ(D2) for X1, X2 ∈
Γ(ker F∗) and Z1, Z2 ∈ Γ((kerF∗)⊥).

(c) TX1φJX2 + H∇X1ωJX2 ∈ Γ(JD2), ∇̂X1φJX2 + TX1ωJX2 ∈ Γ(D1) and
AZ1BJZ2 + H∇Z1CJZ2 ∈ Γ(μ), AZ1CJZ2 + V∇Z1Z2 ∈ Γ(D2) for X1, X2 ∈
Γ(ker F∗) and Z1, Z2 ∈ Γ((kerF∗)⊥).

(d) TX1φKX2 + H∇X1ωKX2 ∈ Γ(KD2), ∇̂X1φKX2 + TX1ωKX2 ∈ Γ(D1) and
AZ1BKZ2+H∇Z1CKZ2 ∈ Γ(μ), AZ1CKZ2+V∇Z1Z2 ∈ Γ(D2) for X1, X2 ∈
Γ(ker F∗) and Z1, Z2 ∈ Γ((kerF∗)⊥).

Let F be a semi-invariant submersion from a Kähler manifold (M, gM , J) onto a
Riemannian manifold (N, gN). Then there is a distribution D1 ⊂ ker F∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ (kerF∗)⊥,

where D2 is the orthogonal complement of D1 in ker F∗.
We choose a local orthonormal frame {v1, · · · , vl} of D2 and a local orthonormal

frame {e1, · · · , e2k} of D1 such that e2i = Je2i−1 for 1 ≤ i ≤ k.
Since F∗(∇Je2i−1Je2i−1) = −F∗(∇e2i−1e2i−1), 1 ≤ i ≤ k, we easily have

trace(∇F∗) = 0 ⇔
l∑

j=1

F∗(∇vjvj) = 0.

Thus, we get

Theorem 3.4. Let F be a semi-invariant submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN). Then F is a harmonic map if and
only if trace(∇F∗) = 0 on D2.

Corollary 3.1. Let F be a semi-invariant submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN) such that ker F∗ = D1. Then F is
a harmonic map.
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Theorem 3.5. Let F be an almost h-semi-invariant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-invariant basis. Then the following conditions are equivalent :

(a) F is a harmonic map.
(b) trace(∇F∗) = 0 on DI

2.
(c) trace(∇F∗) = 0 on DJ

2 .
(d) trace(∇F∗) = 0 on DK

2 .

Proof. By Theorem 3.4, we have

(a) ⇔ (b), (a) ⇔ c), (a) ⇔ (d).

Therefore, we obtain the result.

Corollary 3.2. Let F be an almost h-semi-invariant submersion from a hyperkähler
manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN) such that (I, J, K)
is an almost h-semi-invariant basis such that kerF∗ = DR

1 for some R ∈ {I, J, K}.
Then F is a harmonic map.

Let F : (M, gM) �→ (N, gN) be a Riemannian submersion. The map F is called a
Riemannian submersion with totally umbilical fibers if

TXY = gM(X, Y )H for X, Y ∈ Γ(ker F∗),

where H is the mean curvature vector field of the fiber.

Lemma 3.2. Let F be a h-semi-invariant submersion with totally umbilical fibers
from a hyperkähler manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN)
such that (I, J, K) is a h-semi-invariant basis. Then

H ∈ Γ(RD2) for R ∈ {I, J, K}.

Proof. Given a complex structure R ∈ {I, J, K}, for X, Y ∈ Γ(D1) and
W ∈ Γ(μ) we have

TXRY + ∇̂XRY = ∇XRY = R∇XY

= BRTXY + CRTXY + φR∇̂XY + ωR∇̂XY

so that
gM(TXRY, W ) = gM(CRTXY, W ).

By the assumption, with some computations we obtain

gM(X, RY )gM(H, W ) = −gM (X, Y )gM(H, RW ).
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Interchanging the role of X and Y , we get

gM(Y, RX)gM(H, W ) = −gM(Y, X)gM(H, RW )

so that combining the above two equations, we have

gM (X, Y )gM(H, RW ) = 0

which means H ∈ Γ(RD2), since Rμ = μ.
Therefore, we obtain the result.

Theorem 3.6. Let F be a h-semi-invariant submersion with totally umbilical fibers
from a hyperkähler manifold (M, I, J, K, gM) onto a Riemannian manifold (N, gN)
such that (I, J, K) is a h-semi-invariant basis. Then the fibers are totally geodesic.

Proof. By Lemma 3.2, we have

H ∈ Γ(RD2) for R ∈ {I, J, K}

so that
< IH, JH, KH > ⊂ D2.

By Theorem 4.3 of [18], we obtain the result.

Remark 3.2. Let F be a semi-invariant submersion from a Kähler manifold (M,

gM , J) onto a Riemannian manifold (N, gN). Then there are distributionsD1 ⊂ kerF∗
and μ ⊂ (kerF∗)⊥ such that

kerF∗ = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ (kerF∗)⊥, (kerF∗)⊥ = J(D2) ⊕ μ,

where D2 and μ are the orthogonal complements of D1 and J(D2) in kerF∗ and
(kerF∗)⊥, respectively. As we know, the holomorphic sectional curvatures determine
the Riemannian curvature tensor in a Kähler manifold.
Given a plane P invariant by J in TpM , p ∈ M , there is an orthonormal basis

{X, JX} of P . Denote by K(P ), K∗(P ), and K̂(P ) the sectional curvatures of the
plane P in M , N , and the fiber F−1(F (p)), respectively, where K∗(P ) denotes the
sectional curvature of the plane P∗ =< F∗X, F∗JX > in N . Using Corollary 1 of
[15, p.465], we obtain the following :

1. If P ⊂ (D1)p, then with some computations we have

K(P ) = K̂(P ) + |TXX |2 − |TXJX |2 − gM(TXX, J[JX, X ]).

2. If P ⊂ (D2 ⊕ JD2)p with X ∈ (D2)p, then we get

K(P ) = gM((∇JXT )XX, JX) + |HJ∇XX |2 − |VJ∇XX |2.
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3. If P ⊂ (μ)p, then we obtain

K(P ) = K∗(P ) − 3|VJ∇XX |2.

4. EXAMPLES

Example 4.1. Let (M, E, gM) be an almost quaternionic Hermitian manifold and
(N, gN) a Riemannian manifold. Let F : (M, E, gM) �→ (N, gN) be an almost h-slant
submersion with its slant angles {θI , θJ , θK} ⊂ {0, π

2} [16]. Then the map F is an
almost h-semi-invariant submersion.

Example 4.2. Let (M, E, g) be an almost quaternionic Hermitian manifold. Let
π : TM �→ M be the natural projection. Then the map π is a h-semi-invariant
submersion with D1 = kerF∗ [11]. Furthermore, by Corollary 3.2, π is harmonic.

Example 4.3. Let (M, EM , gM) and (N, EN , gN) be almost quaternionic Hermi-
tian manifolds. Let F : M �→ N be a quaternionic submersion. Then the map F is a
h-semi-invariant submersion with D1 = kerF∗ [11]. By Corollary 3.2, F is harmonic.

Example 4.4. Define a map F : R
4 �→ R

3 by

F (x1, · · · , x4) = (x1 sin α − x3 cosα, x4, x2),

where α is constant. Then the map F is a h-semi-invariant submersion with D2 =
kerF∗.

Example 4.5. Let F : R
4 �→ R

3 be a Riemannian submersion. Then the map F is
a h-semi-invariant submersion with D2 = kerF∗.

We can check it as follows: Given coordinates (x1, x2, x3, x4) on R
4, we can

naturally choose the complex structures I, J , and K on R
4 defined by

I

(
∂

∂x1

)
=

∂

∂x2
, I

(
∂

∂x2

)
= − ∂

∂x1
, I

(
∂

∂x3

)
=

∂

∂x4
, I

(
∂

∂x4

)
= − ∂

∂x3
,

J

(
∂

∂x1

)
=

∂

∂x3
, J

(
∂

∂x2

)
= − ∂

∂x4
, J

(
∂

∂x3

)
= − ∂

∂x1
, J

(
∂

∂x4

)
=

∂

∂x2
,

K

(
∂

∂x1

)
=

∂

∂x4
, K

(
∂

∂x2

)
=

∂

∂x3
, K

(
∂

∂x3

)
= − ∂

∂x2
, K

(
∂

∂x4

)
= − ∂

∂x1
.

Since F is a Riemannian submersion, the dimension of the space ker(F∗)p is equal
to 1 for any p ∈ R

4. Using the properties < RX, X >= 0 for X ∈ TpR
4 and

R ∈ {I, J, K}, where <, > denotes the Euclidean metric on R
4, we obtain the result.
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Example 4.6. Let (M, I, J, K, gM) be a 4n−dimensional hyperkähler manifold and
(N, gN) a (4n − 1)−dimensional Riemannian manifold. Let F : (M, I, J, K, gM) �→
(N, gN) be a Riemannian submersion. Then the map F is a h-semi-invariant submer-
sion with D2 = ker F∗.

Example 4.7. Let (M1, I1, J1, K1, g1) be a 4m−dimensional hyperkähler mani-
fold and (M2, I2, J2, K2, g2) a 4n−dimensional hyperkähler manifold. Let (N1, g

′
1)

be a (4m− 1)-dimensional Riemannian manifold and (N2, g
′
2) a (4n− 1)-dimensional

Riemannian manifold. Let Fi : (Mi, Ii, Ji, Ki, gi) �→ (Ni, g
′
i) be a Riemannian sub-

mersion for i ∈ {1, 2}. Consider the product map F = F1×F2 : M1×M2 �→ N1×N2

given by

(F1 × F2)(x, y) = (F1(x), F2(y)) for x ∈ M1 and y ∈ M2.

Then the map F is a h-semi-invariant submersion with D2 = ker F∗.

Example 4.8. Define a map F : R
4 �→ R

2 by

F (x1, · · · , x4) = (x1 cos α − x3 sinα, x2 sinβ − x4 cos β),

where α and β are constant with α + β = π
2 . Then the map F is an almost h-

semi-invariant submersion such that DI
1 = DJ

2 = DK
2 = kerF∗. Furthermore, F is

harmonic, by Corollary 3.2.

Example 4.9. Define a map F : R
4 �→ R

2 by

F (x1, · · · , x4) = (x1, x2).

Then the map F is an almost h-semi-invariant submersion such that I(kerF∗) = kerF∗,
J(kerF∗) = (kerF∗)⊥, and K(kerF∗) = (kerF∗)⊥. By Corollary 3.2, F is also
harmonic.

Example 4.10. Define a map F : R
8 �→ R

6 by

F (x1, · · · , x8) = (x3, · · · , x8).

Then the map F is an almost h-semi-invariant submersion such that I(kerF∗) = kerF∗,
J(kerF∗) ⊂ (kerF∗)⊥, andK(kerF∗) ⊂ (kerF∗)⊥. By Corollary 3.2, F is harmonic.

Example 4.11. Define a map F : R
8 �→ R

4 by

F (x1, · · · , x8) = (x1, x2, x5, x7).

Then the map F is an almost h-semi-invariant submersion such that DI
1 = DJ

2 =<
∂

∂x3
, ∂

∂x4
>, DI

2 = DJ
1 =< ∂

∂x6
, ∂

∂x8
>, and K(kerF∗) = (kerF∗)⊥.
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Example 4.12. Define a map F : R
8 �→ R

3 by

F (x1, · · · , x8) = (x6, x7, x8).

Then the map F is a h-semi-invariant submersion such that D1 =< ∂
∂x1

, · · · , ∂
∂x4

>

and D2 =< ∂
∂x5

>.
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