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GENERALIZED INVEX SETS AND PREINVEX FUNCTIONS ON
RIEMANNIAN MANIFOLDS

R. P. Agarwal*, I. Ahmad, Akhlad Iqbal and Shahid Ali

Abstract. In this paper, a geodesic α-invex subset of a Riemannian manifold is
introduced. Geodesic α-invex and α-preinvex functions on a geodesic α-invex set
with respect to particular maps are also defined. Further, we study the relationships
between geodesic α-invex and α-preinvex functions on Riemannian manifolds.
Some results of a non smooth geodesic α-preinvex function are also discussed
using proximal subdifferentiation. At the end, mean value inequality and the mean
value theorem in α-invexity analysis are extended to Cartan-Hadamard manifolds.
Our results extend and generalize the known results in the literature.

1. INTRODUCTION

The notion of convexity plays an important and significant role in the theory of op-
timization. Since, convexity is often not enjoyed by real problems, various approaches
have been proposed by several researchers in order to extend the validity of results
to the larger classes of optimization. An important and significant generalization of
convexity is invexity, which was introduced by Hanson [7] in 1981. Hanson’s ini-
tial results inspired a great deal of subsequent work which has greatly expanded the
roles and applications of invexity in nonlinear optimization and other branches of pure
and applied sciences. Jeyakumar [8] and Noor [12, 13] have studied the properties
of preinvex and α-preinvex functions, respectively, and their roles in optimization and
mathematical programming.
It has been found that few properties of convex functions are needed for estabil-

ishing the results on Riemannian manifolds. Rapcsak [15] and Udriste [16] proposed
a generalization which differs from the others in the use of a Riemannian manifold.
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In their setting, the linear space is replaced by Riemannian manifold and the line seg-
ment by a geodesic. Pini [14] introduced the notion of invex function on Riemannian
manifold, while Mititelu [11] investigated its generalization. Ferrara and Mititelu [4]
developedMond-Weir type duality for vector programming problems on a differentiable
manifold. Barani et al. [3] introduced the concepts of geodesic invex set and geodesic
preinvex functions on Riemannian manifolds with respect to the particular maps. Re-
cently, Li et al. [10] studied the weak sharp minima for constrained optimization
problems on Riemannian manifolds and their characterizations. The methods involve
appropriate tools of variational analysis and generalized differentiation on Riemannian
and Hadamard manifolds.
In this paper, we define the concepts of geodesic α-invex set and geodesic α-

preinvex function on Riemannian manifold. Using suitable conditions, some relations
between geodesic α-invex set and geodesic α-preinvex function are established. We
prove the existence condition for global minima of these functions by relaxing the
smoothness condition on geodesic α-preinvex functions and considering lower semi-
continuity. At the end, we prove the mean value theorem for differentiable functions
on α-invex subsets of Riemannian manifolds which extends the results of Antczak [1]
and Azagra et al. [2].

2. PRELIMINARIES

First, we recall some basic definitions and known results about Riemannian mani-
folds. For the standard material on differential geometry, we refer to [9].
Let M be a C∞ smooth manifold modelled on a Hilbert space H , either finite

dimensional or infinite dimensional, endowed with a Riemannian metric 〈, 〉p on the
tangent space TpM ∼= H . The corresponding norm is denoted by ‖ ‖p and the length
of a piecewise C1 curve γ : [a, b] → M is defined by

L(γ) :=
∫

a

b

‖γ′(t)‖γ(t)dt.

For any two points p, q ∈ M , we define

d(p, q) := inf{L(γ) : γ is a piecewise C1 curve joining p to q}.

Then, d is a distance which induces the original topology on M . We know that on
every Riemannian manifold there exists exactly one covariant derivation called Levi-
Civita connection, denoted by ∇XY, for any vector fields X, Y ∈ M . We also recall
that a geodesic is a C∞ smooth path γ whose tangent is parallel along the path γ ,
that is, γ satisfies the equation ∇dγ(t)/dtdγ(t)/dt = 0. Any path γ joining p and q
in M such that L(γ) = d(p, q) is a geodesic and is called a minimal geodesic. The
existence theorem for ordinary differential equation implies that for every v ∈ TM ,
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there exists an open interval J(v) containing 0 and exactly one geodesic γv : J(v) → M

with dγv(0)/dt = v. This implies that there is an open neighborhood TM of the
submanifoldM of TM such that for every v ∈ TM , the geodesic γv(t) is defined for
| t |< 2. The exponential mapping exp : TM → M is then defined as exp(v) = Jv(1)
and the restriction of exp to a fiber TpM in TM is denoted by expp for every p ∈ M .
We use parallel transport of vectors along geodesic. Recall that for a given curve
γ : I → M , a number t0 ∈ I and a vector v0 ∈ Tγ(t0)M , there exists exactly one
parallel vector field V (t) along γ(t) such that V (t0) = v0. Moreover, the mapping
defined by v0 
→ V (t) is linear isometry between the tangent spaces Tγ(t0)M and
Tγ(t)M , for each t ∈ I . We denote this mapping by P t

t0,γ and we call it the parallel
translation from Tγ(t0)M to Tγ(t)M along the curve γ .
If f is a differentiable map from the manifold M to the manifold N , then dfx,

denotes the differential of f at x. We also recall that a simply connected complete
Riemannian manifold of nonpositive sectional curvature is called a Cartan-Hadamard
manifold.

3. GEODESIC α-INVEX SETS AND α-INVEX FUNCTIONS

In this section, we define geodesic α-invex sets and α-invex functions by introduc-
ing a bifunction α : M × M → R \ {0}.
Definition 3.1. Let M be a Riemannian manifold and η : M × M → TM be a

function, and α : M × M → R \ {0} be a bifunction such that for every x, y ∈ M ,
α(x, y)η(x, y) ∈ TyM . A non-empty subset S of M is said to be a geodesic α-invex
set with respect to η and α if for every x, y ∈ S, there exists a unique geodesic
γx,y : [0, 1] → M such that

γx,y(0) = y, γ ′
x,y(0) = α(x, y)η(x, y), γx,y(t) ∈ S, for all t ∈ [0, 1].

Remark 3.1. If α(x, y) = 1, then above definition reduces to that of geodesic
invex set defined in [3].
We know that a subset S of a Riemannian manifold is called geodesic convex if

for any two points x, y ∈ S there exists exactly one geodesic of length d(x, y) which
belongs entirely to S (see [9, 16]).

Remark 3.2. If we consider M to be a Cartan-Hadamard manifold (either finite
dimensional or infinite dimensional), then on M there exists a natural map η playing
the role of x − y in the Euclidean space Rn, for every x, y ∈ Rn. Indeed, we can
define the function η as

(∗) α(x, y)η(x, y) := γ ′
x,y(0), for all x, y ∈ M.

where γx,y is the unique minimal geodesic joining y to x (see [9, p.253]) as follows:

γx,y(t) := expy(tα(x, y) exp−1
y x), for all t ∈ [0, 1].
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Therefore, every geodesic convex set S ⊆ M is a geodesic α-invex set with respect to
η and α defined in (∗). Note that the converse is not true in general.
Example 3.1. Let M be a Cartan-Hadamard manifold and x0, y0 ∈ M , x0 
= y0.

Let B(x0, r1) ∩ B(y0, r2) = ∅ for some 0 < r1, r2 < 1
2d(x0, y0), where B(x, r) =

{y ∈ M : d(x, y) < r} is an open ball with centre x and radius r. We define

S := B(x0, r1) ∪ B(y0, r2).

Then, S is not a geodesic convex set because every geodesic curve passing through x0

and y0 does not completely lie in S. Now we define the function η : M × M → M
such that

η(x, y) :=

{
exp−1

y x; x, y ∈ B(x0, r1) or x, y ∈ B(y0, r2),

0y; otherwise.

For every x, y ∈ M , consider a bifunction α : M × M → R \ {0} and γ : [0, 1] → M

defined by
γx,y(t) := expy(tα(x, y)η(x, y)), for all t ∈ [0, 1].

Hence,
γx,y(0) = y, γ ′

x,y(0) = α(x, y)η(x, y).

Now, we show that S is a geodesic α-invex set with respect to η and α. Let x, y ∈
B(x0, r1), since B(x0, r1) is geodesic convex (see [9, p.259]), it follows that,

γx,y(t) := expy(tα(x, y) exp−1
y x) ∈ B(x0, r1) ⊂ S, for all t ∈ [0, 1].

Similarly, for x, y ∈ B(y0, r2), we have

γx,y(t) ∈ S, for all t ∈ [0, 1].

If x ∈ B(x0, r1) and y ∈ B(y0, r2) or x ∈ B(y0, r2) and y ∈ B(x0, r1) then, we have

γx,y(t) := expy(tα(x, y)0y) = y ∈ S, for all t ∈ [0, 1].

Hence, S is a geodesic α-invex set with respect to η and α.
Let S be a geodesic convex subset of a finite dimensional Cartan-Hadamard man-

ifold M and x ∈ M . Then, there exists a unique point ps(x) ∈ S such that for each
y ∈ S, d(x, ps(x)) ≤ d(x, y). The point ps(x) is called the projection of x onto S
(see [6, p. 262]).

Example 3.2. Let S1 and S2 be two nonempty closed geodesic convex subsets of a
finite dimensional Cartan-Hadamard manifold M such that S1∩S2 = ∅. Let us define



Generalized Invex Sets and Preinvex Functions on Riemannian Manifolds 1723

S := S1 ∪ S2 and η : M × M → M by

η(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

exp−1
y (pS1(x)); y ∈ S1, x ∈ M,

exp−1
y (pS2(x)); y ∈ S2, x ∈ M,

0y; otherwise.

Now, for every x, y ∈ S we define

γx,y(t) := expy(tα(x, y)η(x, y)), for all t ∈ [0, 1],

we can see easily

γx,y(0) = y, γ ′
x,y(0) = α(x, y)η(x, y), γx,y(t) ∈ S, for all t ∈ [0, 1].

Hence, S is a geodesic α-invex set with respect to η and α.
Now, we introduce α-invexity and geodesic α-preinvexity on geodesic α-invex subset
of a Riemannian manifold.

Definition 3.2. Let M be a Riemannian manifold and S be an open subset of M

which is geodesic α-invex set with respect to η : M × M → TM and α : M × M →
R \ {0}. Let f be a real differentiable function on S. Then, f is said to be α-invex
with respect to η and α on S if

f(x)− f(y) ≥ dfy(α(x, y)η(x, y)) for all x, y ∈ S.

Definition 3.3. Let M be a Riemannian manifold and S ⊆ M be a geodesic
α-invex set with respect to η : M × M → TM and α : M × M → R \ {0}. The
function f : S → R is said to be geodesic α-preinvex if for every x, y ∈ S, we have

f(γx,y(t)) ≤ tf(x) + (1− t)f(y), for all t ∈ [0, 1],

where γx,y is the unique geodesic defined in Definition 3.1. If the above inequality is
strict, then f is called strictly geodesic α-preinvex function.

Proposition 3.1. Let M be a Riemannian manifold and S ⊆ M be a geodesic
α-invex set with respect to η : M × M → TM and α : M × M → R \ {0}. Suppose
that f : S → R is a geodesic α-preinvex function, then every lower section of f defined
by

Sλ := {x ∈ S : f(x) ≤ λ}, λ ∈ R,

is a geodesic α-invex set with respect to η and α.

Proof. Let x, y ∈ Sλ. Since S is a geodesic α-invex set with respect to η and α,
there exists exactly one geodesic γx,y : [0, 1] → M such that

γx,y(0) = y, γ ′
x,y(0) = α(x, y)η(x, y), γx,y(t) ∈ S, for all t ∈ [0, 1].
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By the geodesic α-preinvexity of f , we have for all t ∈ [0, 1]

f(γx,y(t)) ≤ tf(x) + (1− t)f(y)

≤ tλ + (1 − t)λ = λ.

Therefore, γx,y(t) ∈ Sλ for all t ∈ [0, 1], and the result is proved.

4. GEODESIC α-PREINVEXITY AND DIFFERENTIABILITY

In this section, we introduce property and the condition (say condition (C)) on the
function η : M × M → TM and α : M × M → R \ {0} which will be use in the
subsequent analysis.

Definition 4.1. (Property (P)). Let M be a Riemannian manifold and γ : [0, 1] →
M be a curve on M such that γx,y(0) = y and γx,y(1) = x. Then, γx,y is said to
possess the property (P) with respect to y, x ∈ M if

γ ′
x,y(s)(t− s) = α(γx,y(t), γx,y(s))η(γx,y(t), γx,y(s)), ∀s, t ∈ [0, 1].

Remark 4.1. If α = 1, then the above property reduces to the property defined by
Pini [14].
LetM be a Riemannian manifold and γx,y possessing the property (P) with respect

to y, x ∈ M , then

α(x, y)η(x, y) = α(γx,y(1), γx,y(0))η(γx,y(1), γx,y(0)) = γ ′
x,y(0).

the case when γx,y is a geodesic, then

α(γx,y(0), γx,y(s))η(γx,y(0), γx,y(s)) = −sγ ′
x,y(s)

= −sP s
0,γx,y

[γ ′
x,y(0)]

= −sP s
0,γx,y

[α(x, y)η(x, y)],

or
P 0

s,γx,y
[α(y, γx,y(s))η(y, γx,y(s))] = −sα(x, y)η(x, y)

and

α(γx,y(1), γx,y(s))η(γx,y(1), γx,y(s)) = (1 − s)γ ′
x,y(s)

= (1 − s)P s
0,γx,y

[γ ′
x,y(0)]

= (1 − s)P s
0,γx,y

[α(x, y)η(x, y)],

or
P 0

s,γx,y
[α(x, γx,y(s))η(x, γx,y(s))] = (1− s)α(x, y)η(x, y).
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Hence

(C)
(C1) P 0

s,γx,y
[α(y, γx,y(s))η(y, γx,y(s))] = −sα(x, y)η(x, y),

(C2) P 0
s,γx,y

[α(x, γx,y(s))η(x, γx,y(s))] = (1− s)α(x, y)η(x, y)

⎫⎬
⎭

for all s ∈ [0, 1], which together called condition (C).

Theorem 4.1. Let M be a Riemannian manifold and S be an open subset of M

which is geodesic α-invex set with respect to η : M × M → TM and α : M × M →
R \ {0}. Let f : S → R be a differentiable and geodesic α-preinvex function on S.
Then, f is an α-invex function on S.

Proof. Since S is geodesic α-invex set with respect to η and α for all x, y ∈ S,
there exists a unique geodesic γx,y : [0, 1] → M such that

γx,y(0) = y, γ ′
x,y(0) = α(x, y)η(x, y), γx,y(t) ∈ S, for all t ∈ [0, 1].

But f is geodesic α-preinvex for t ∈ (0, 1), we have

f(γx,y(t)) ≤ tf(x) + (1− t)f(y),

or
f(γx,y(t))− f(y) ≤ t(f(x) − f(y)).

On dividing by t,
1
t
[f(γx,y(t)) − f(y)] ≤ f(x)− f(y).

Taking the limit as t → 0, we have

dfγx,y(0)(γ
′
x,y(0)) ≤ f(x) − f(y).

Therefore,
dfy(α(x, y)η(x, y))≤ f(x) − f(y).

Hence, f is α-invex on S.

Theorem 4.2. Let M be a Riemannian manifold and S be an open subset of M ,
which is geodesic α-invex set with respect to η : M × M → TM and α : M × M →
R \ {0}. Let f : S → R be a differentiable function and η satisfies the condition (C).
Then f is geodesic α-preinvex on S if f is α-invex on S.

Proof. We know that for geodesic α-invex set with respect to η and α for every
x, y ∈ S, there exists a unique geodesicγx,y : [0, 1] → M such that

γx,y(0) = y, γ ′
x,y(0) = α(x, y)η(x, y), γx,y(t) ∈ S, for all t ∈ [0, 1].
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Fix t ∈ [0, 1] and set x̄ := γx,y(t), then by geodesic α-invexity of f on S, we have

(1) f(x) − f(x̄) ≥ dfx̄(α(x, x̄)η(x, x̄)),

(2) f(y) − f(x̄) ≥ dfx̄(α(y, x̄)η(y, x̄)).

On multiplying (1) by t and (2) by (1 − t), respectively, and then adding we get

(3) tf(x) + (1 − t)f(y) − f(x̄) ≥ dfx̄[tα(x, x̄)η(x, x̄) + (1− t)α(y, x̄)η(y, x̄)].

By the condition (C), we have

(4)

tα(x, x̄)η(x, x̄) +(1− t)α(y, x̄)η(y, x̄) = t(1 − t)P t
0,γ [α(x, y)η(x, y)]

−(1− t)tP t
0,γ [α(x, y)η(x, y)]

= 0.

This together with (3) implies

tf(x) + (1 − t)f(y) ≥ f(x̄).

Hence, f is geodesic α-preinvex on S.

5. GEODESIC α-PREINVEXITY AND SEMICONTINUITY

In this section, we discuss α-preinvexity on Riemannian manifold under proximal
subdifferential of a lower semicontinuous function. First, we recall the definition of a
proximal subdifferential of a function defined on a Riemannian manifold in [5].

Definition 5.1. Let M be a Riemannian manifold and f : M → (−∞,∞] be a
lower semicontinuous function. A point ζ ∈ TyM is said to be a proximal subgradient
of f at y ∈ dom(f), if there exist positive numbers δ and σ such that

f(x) ≥ f(y) + 〈ζ, exp−1
y x〉y − σd2(x, y), for all x ∈ B(y, δ),

where dom(f) := {x ∈ M : f(x) < ∞}.
The set of all proximal subgradients of f at y ∈ M is denoted by ∂pf(y) and is called
the proximal subdifferential of f at y.

Theorem 5.1. Let M be a Riemannian manifold and S be an open subset of M ,
which is geodesic α-invex with respect to η : M × M → TM and α : M × M →
R \ {0}. Let f : S → R be geodesic α-preinvex. If x̄ ∈ S is a local minimum of the
problem

(P ) Minimize f(x)

subject to x ∈ S,
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then x̄ is a global minimum of (P).

Proof. Let x̄ ∈ S be a local minimum. Then, there exists a neighborhood Nε(x̄)
such that

(5) f(x̄) ≤ f(x), for all x ∈ S ∩ Nε(x̄).

If x̄ is not a global minimum of f , then there exists a point x∗ ∈ S such that

f(x∗) < f(x̄).

As S is a geodesic α-invex set with respect to η and α, there exists a unique geodesic
γ such that

γ(0) = x̄, γ ′(0) = α(x∗, x̄)η(x∗, x̄), γ(t) ∈ S, for all t ∈ [0, 1].

If we choose ε > 0 such that d(γ(t), x̄) < ε, then γ(t) ∈ Nε(x̄). From the geodesic
α-preinvexity of f , we have

f(γ(t)) ≤ tf(x∗) + (1 − t)f(x̄) < f(x̄), for all t ∈ (0, 1).

Therefore, for each γ(t) ∈ S ∩Nε(x̄), f(γ(t)) < f(x̄), which is a contradiction to (5).

Theorem 5.2. Let M be a Cartan-Hadamard manifold and S be an open subset of
M , which is geodesic α-invex with respect to η : M ×M → TM and α : M ×M →
R \ {0} with α(x, y)η(x, y) 
= 0 for all x 
= y. Assume that f : S → (−∞,∞] is
a lower semicontinuous geodesic α-preinvex function and y ∈ dom(f), ζ ∈ ∂pf(y).
Then there exists a positive number δ such that

(6) f(x) ≥ f(y) + 〈ζ, α(x, y)η(x, y)〉y, for all x ∈ S ∩ B(y, δ).

Proof. From the definition of ∂pf(y), there are positive numbers δ and σ such that

(7) f(x) ≥ f(y) + 〈ζ, exp−1
y x〉y − σd2(x, y), for all x ∈ B(y, δ).

Now, fix x ∈ S ∩ B(y, δ). Since S is a geodesic α-invex set with respect to η and α,
there exists a unique geodesic γx,y : [0, 1] → M such that

γx,y(0) = y, γ ′
x,y(0) = α(x, y)η(x, y), γx,y(t) ∈ S, for all t ∈ [0, 1].

Given thatM is a Cartan-Hadamard manifold, then γx,y(t) = expy(tα(x, y)η(x, y)) for
each t ∈ [0, 1] (see [9, p. 253]). If we choose t0 = δ

‖α(x,y)η(x,y)‖y
, then expy(tα(x, y)

η(x, y)) ∈ S ∩ B(y, δ) for all t ∈ (0, t0).
From the geodesic α-preinvexity of f , we get

(8) f(expy(tα(x, y)η(x, y)))≤ tf(x) + (1 − t)f(y) for all, t ∈ (0, t0).
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Using (7) for each t ∈ (0, t0), we get

(9)

f(expy(tα(x, y)η(x, y))) ≥ f(y) + 〈ζ, exp−1
y expy(tα(x, y)η(x, y))〉y

−σd2(expy(tα(x, y)η(x, y), y)

= f(y) + 〈ζ, tα(x, y)η(x, y)〉y
−σd2(expy(tα(x, y)η(x, y), y).

Since M is a Cartan-Hadamard manifold, for each t ∈ (0, t0), we have

d2(expy(tα(x, y)η(x, y), y) = ‖tα(x, y)η(x, y)‖2
y = t2‖α(x, y)η(x, y)‖2

y.

Thus, from (8) and (9), we have

tf(x) + (1− t)f(y) ≥ f(expy(tα(x, y)η(x, y)))

≥ f(y) + 〈ζ, tα(x, y)η(x, y)〉y − σt2‖α(x, y)η(x, y)‖2
y.

Hence

t(f(x)− f(y)) ≥ t〈ζ, α(x, y)η(x, y)〉y − σt2‖α(x, y)η(x, y)‖2
y.

Dividing by t we obtain

f(x)− f(y) ≥ 〈ζ, α(x, y)η(x, y)〉y − σt‖α(x, y)η(x, y)‖2
y.

Taking limit as t → 0, we obtain

f(x) − f(y) ≥ 〈ζ, α(x, y)η(x, y)〉y.

Note that x ∈ S ∩B(y, δ) is arbitrary. Then relation (6) holds for all x ∈ S ∩B(y, δ).

Corollary 5.1. Let M be a Cartan-Hadamard manifold and S be an open subset
of M which is geodesic α-invex set with respect to η : M × M → TM and α :
M × M → R \ {0}. Assume that f : S → R be a lower semicontinuous geodesic
α-preinvex function. Let y ∈ S and 0 ∈ ∂pf(y). Then, y is a global minimum of f .

6. MEAN VALUE INEQUALITY AND MEAN VALUE THEOREM

In this section, we introduce mean value inequality and mean value theorem for
Cartan-Hadamard manifold which are the extension of the results proved by Antczak
[1].

Definition 6.1. Let S be a nonempty subset of a Riemannian manifold M , which
is geodesic α-invex set with respect to η : M ×M → TM and α : M ×M → R\{0};
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and x and u be two arbitrary points of S. Let γ : [0, 1] → M be the unique geodesic
such that

γ(0) = u, γ ′(0) = α(x, u)η(x, u), γ(t) ∈ S, for all t ∈ [0, 1].

A set Puv is said to be a closed η-path joining the points u and v := γ(1), if

Puv := {y : y = γ(t); t ∈ [0, 1]}.
An open η-path joining the points u and v is a set of the form

P 0
uv := {y : y = γ(t); t ∈ (0, 1)}.

If u = v we set P 0
uv := ∅.

Example 6.1. Suppose thatM is a Cartan-Hadamard manifold and S is a geodesic
α-invex set with respect to η and α defined in Ex 3.2. Let x and u be two arbitrary
points of S and γ(t) := expu(tα(x, u)η(x, u)). Then, for u ∈ S1, x ∈ S2 and
α(x, u) = 1, we have v := γ(1) = PS1(x), and Puv is the unique geodesic with end
points u and PS1(x).

Theorem 6.1. (Mean value inequality). Let M be a Cartan-Hadamard manifold
and S be an open subset of M , which is geodesic α-invex set with respect to η :
M × M → TM and α : M × M → R \ {0} such that α(a, b)η(a, b) 
= 0 for all
a, b ∈ S, a 
= b. Let γb,a(t) = expa(tα(b, a)η(b, a)) for every a, b ∈ S, t ∈ [0, 1] and
c = γb,a(1). Then, a necessary and sufficient condition for a function f : S → R to
be geodesic α-preinvex is that the inequality

(10) f(x) ≤ f(a) +
f(b)− f(a)

α(b, a)〈η(b, a), η(b, a)〉a〈exp−1
a x, η(b, a)〉a

is true for all x ∈ Pca.

Proof. Let f : S → R be a geodesic α-preinvex function, a, b ∈ S and x ∈ Pca. If
x = a or x = c then (10) is true trivially. If x ∈ P 0

ca, then x := expa(tα(b, a)η(b, a)),
for some t ∈ (0, 1). From the geodesic α-invexity of S, we have x ∈ S and

t =
〈exp−1

a x, α(b, a)η(b, a)〉a
〈α(b, a)η(b, a), α(b, a)η(b, a)〉a =

〈exp−1
a x, η(b, a)〉a

α(b, a)〈η(b, a), η(b, a)〉a .

Since f is geodesic α-preinvex on S, it follows that

f(x) = f(expa(tα(b, a)η(b, a))

≤ tf(b) + (1 − t)f(a)

= f(a) + t[f(b)− f(a)]

= f(a) +
f(b)− f(a)

α(b, a)〈η(b, a), η(b, a)〉a〈exp−1
a x, η(b, a)〉a.
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For sufficiency suppose that the mean value inequality (10) is true. Let a, b ∈ S and
x := expa(tα(b, a)η(b, a)), for some t ∈ [0, 1]. Then x ∈ S, and we have

f(x) = f(expa(tα(b, a)η(b, a)))

≤ f(a) +
f(b)− f(a)

α(b, a)〈η(b, a), η(b, a)〉a〈exp−1
a (expa(tα(b, a)η(b, a)), η(b, a)〉a

= f(a) +
f(b)− f(a)

α(b, a)〈η(b, a), η(b, a)〉atα(b, a)〈(η(b, a)), η(b, a)〉a
= f(a) + t[f(b)− f(a)]

= tf(b) + (1− t)f(a),

which shows that f is a geodesic α-preinvex function on S.

Theorem 6.2. (Mean value theorem). Let M be a Cartan-Hadamard manifold and
S be an open subset of M , which is nonempty, open geodesic α-invex set with respect
to η : M × M → TM and α : M × M → R \ {0}. Let f : S → R be differentiable
on S. Then, for every a, b ∈ S there exists c ∈ P 0

ab such that

f(expa(α(b, a)η(b, a)))− f(a) = dfc[(d expa)u(α(b, a)η(b, a))],

where u := t0α(b, a)η(b, a), t0 ∈ (0, 1) and (d expa)u : Tu(TaM) ∼= TaM → TcM is
differential of expa at u.

Proof. Let us define the function g : [0, 1] → R as follows

(11) g(t) := f(expa(tα(b, a)η(b, a)))− f(a) − t[f(expa(α(b, a)η(b, a)))− f(a)].

Since g(1) = g(0) = 0, using Rolle’s theorem, it follows that there exists t0 ∈ (0, 1)
such that g′(t0) = 0. Let c := expa(t0α(b, a)η(b, a)), then from (11) we have

0 = g′(t0) = dfc[(d expa)u(α(b, a)η(b, a))]− f(expa(α(b, a)η(b, a)))+ f(a).

or
f(expa(α(b, a)η(b, a)))− f(a) = dfc[(d expa)u(α(b, a)η(b, a))].

Since t0 ∈ (0, 1), it follows from the definition that c ∈ P 0
ab, and the proof is complete.
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