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ROUGH SINGULAR INTEGRALS ASSOCIATED TO SUBMANIFOLDS

Wenjuan Li and Kôzô Yabuta

Abstract. We investigate the Lp boundedness for a class of singular integral
operators associated to submanifolds, including surfaces of revolution, under the
L(logL)(Sn−1) or Block space condition on the kernel functions. Our results
improve known results.

1. INTRODUCTION

Let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn−1 be the unit sphere
in Rn equipped with the induced Lebesgue measure dσ = dσ(·).

The Lp boundedness of singular integrals has attracted the attention of many au-
thors. There are several papers concerning with rough kernels associated to surfaces
of revolution. Kim, Wainger, Wright and Ziesler [15], Chen and Fan [5], Lu, Pan and
Yang [20], Al-Salman and Pan [3], Al-Qassem and Pan [1], etc..

In 2001, Lu, Pan and Yang [20] gave the following theorem.

Theorem A. [[20]]. Let n ≥ 2. Let ψ(t) : [0,∞) → R be in C 1(0,∞) and satisfy
|ψ(t)−ψ(0)| ≤ C0t

α for some α > 0 and small t. Let Ω ∈ H 1(Sn−1), b ∈ L∞(R+).
Then TΩ,t,ψ,b(f)(x, xn+1) defined by

(1.1) TΩ,t,ψ,b(f)(x, xn+1) = p. v.
∫

Rn
b(|y|)Ω(y′)

|y|n f
(
x− y, xn+1 − ψ(|y|)

)
dy.

is bounded on Lp(Rn+1) for 1 < p <∞, provided the maximal function Mψ, defined
by

(1.2) Mψf(x1, x2) = sup
k∈Z

1
2k

∫ 2k+1

2k

|f(x1 − t, x2 − ψ(t))| dt,

is bounded on Lp(R2).

Received June 25, 2010, accepted October 4, 2011.
Communicated by Yongsheng Han.
2010 Mathematics Subject Classification: Primary 42B20; Secondary 42B25, 47G10.
Key words and phrases: Singular integrals, Lp boundedness, Rough kernel.
The second-named author was partly supported by Grant-in-Aid for Scientific Research (C) Nr. 20540195,
Japan Society for the Promotion of Science.

1557



1558 Wenjuan Li and Kôzô Yabuta

However, for ψ(t) = log(1 + t), Mψ is not bounded for any 1 < p < ∞, as is
noted in Stein and Wainger [23, p. 1291]. So, we cannot apply the above theorem to
this case.

In this paper, we will deal with singular integrals with two parameter functions,
which are essentially singular integrals associated to surface of revolution. As a
byproduct, using Example 1 and our Theorem 1 below, we can show that if Ω ∈
LlogL(Sn−1)∪B0,0

q (Sn−1) (q > 1), b(t) = h
(
log(1 + t)

)
t/

(
(1 + t) log(1 + t)

)
with

h ∈ ∆γ (γ > 1), then, for ψ(t) = log(1+t), the above operator TΩ,t,ψ,b is Lp bounded
provided |1/p− 1/2| < min{1/2, 1/γ ′}. The precise definitions of ∆γ and the block
spaces B0,0

q (Sn−1) will be given soon.
We comment the following: Al-Salman and Pan [3], Al-Qassem and Pan [1] gave

Lp boundedness results in the case Ω ∈ LlogL(S n−1) ∪ B0,0
q (Sn−1) (q > 1), b(t) ∈

L∞(R+), and ψ(t) is increasing and convex, and satisfy ψ(0) = 0. However, log(1+t)
is concave, and so we cannot apply their theorems to the above case, too.

Now, the singular integrals with two parameter functions are the following ones:

(1.3)
TΩ,φ,ψ,b(f)(x, xn+1)

:= p. v.
∫

Rn

b(|y|)Ω(y′)
|y|n f

(
x− φ(|y|)y′, xn+1 − ψ(|y|)

)
dy.

Here, b ∈ ∆γ , Ω ∈ LlogL(Sn−1)∪B0,0
q (Sn−1) (q > 1). φ(t) and ψ(t) are nonnegative

C1(R+) functions satisfying φ(t)/(tφ′(t)), ψ(t)/(tψ′(t)) ∈ L∞(R+) and doubling or
convexitylike conditions. Relating to this, we also consider two maximal operators
MΩ,φ,ψ,h and T ∗

Ω,φ,ψ,hf defined by

(1.4)
MΩ,φ,ψ,hf(x, xn+1)

= sup
r>0

1
rn

∫
|y|<r

∣∣f(
x− φ(|y|)y′, xn+1 − ψ(|y|)

)∣∣|Ω(y′)h(|y|)| dy,

and

(1.5)

T ∗
Ω,φ,ψ,hf(x, xn+1)

= sup
0<ε<A

∣∣∣∣
∫
ε<|y|<A

f
(
x− φ(|y|)y′, xn+1 − ψ(|y|)

)Ω(y′)
|y|n h(|y|) dy

∣∣∣∣.
Precise conditions on φ and ψ are the following assumptions (A-1) and (A-2).
(A-1) φ is a nonnegative C1(R+) function and φ(t)/

(
tφ′(t)

)
∈ L∞(R+).

(A-2) φ satisfies one of the following conditions:
(i) φ is increasing, and φ(2t) ≤ c1φ(t).
(ii) φ is increasing, and tφ′(t) is increasing.
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(iii) φ is decreasing, and φ(t) ≤ c2φ(2t).

(iv) φ is decreasing and convex.

Remark 1. Under the condition (A-1), if φ is increasing and convex, then tφ′(t)
is increasing. And if φ is decreasing and −tφ′(t) is decreasing, then φ is convex.

For 1 ≤ γ ≤ ∞, ∆γ(R+) is the collection of all measurable functions b : [0,∞) →
C satisfying

‖b‖∆γ = sup
R>0

(
1
R

∫ R

0

|b(t)|γdt
)1/γ

<∞.

We note that
L∞(R+) ⊂ ∆β(R+) ⊂ ∆α(R+) for α < β,

Lγ(R+, dt/t) ⊂ ∆γ(R+) for 1 ≤ γ <∞,

and all these inclusions are proper.
We also note that our operator TΩ,φ,ψ,b is a singular integral of type in (1.1) with

rough kernel associated to surface of revolution. In fact, by using the polar coordinates,
changing the variable s = φ(r), and then changing the polar coordinates to the usual
ones, we get

TΩ,φ,ψ,b(f)(x, xn+1)

= p. v.
∫

Rn

b(|y|)Ω(y′)
|y|n f

(
x− φ(|y|)y′, xn+1 − ψ(|y|)

)
dy

= p. v.
∫
Sn−1

∫ ∞

0

b(r)Ω(y′)
r

f
(
x− φ(r)y′, xn+1 − ψ(r)

)
dr dσ

= p. v.
∫
Sn−1

∫ ∞

0

b(φ−1(s))s
φ−1(s)φ′(φ−1(s))

Ω(y′) f
(
x− sy′, xn+1 − ψ(φ−1(s))

) ds
s
dσ

= p. v.
∫

Rn

b(φ−1(|y|)) |y|
φ−1(|y|)φ′(φ−1(|y|))

Ω(y′)
|y|n f

(
x− y, xn+1 − ψ(φ−1(|y|))

)
dy.

So, setting

(1.6) b̃(t) = b(φ−1(t))
t

φ−1(t)φ′(φ−1(t))
=

[
b(t)

φ(s)
sφ′(s)

]
s=φ−1(t)

,

we see that

(1.7)
TΩ,φ,ψ,b(f)(x, xn+1) = TΩ,t,ψ(φ−1),b̃(f)(x, xn+1)

= p. v.
∫

Rn

b̃(|y|)Ω(y′)
|y|n f

(
x−y, xn+1−ψ(φ−1(|y|))

)
dy,
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i.e., TΩ,φ,ψ,b is a singular integral TΩ,t,ψ(φ−1),b̃ with rough kernel associated to surface
of revolution {xn+1 = ψ(φ−1(|y|))}. Here, we see that

(1.8) ‖b̃‖∆γ ≤
(
1 + ‖φ(t)/

(
tφ′(t)

)
‖∞

)
‖b‖∆γ .

However, it seems to be very complicated to study our operator TΩ,φ,ψ,b in the form of
TΩ,t,ψ(φ−1),b̃.

Example 1. Let φ(t) = et−1 and ψ(t) = t. Then φ satisfies (A−1) and (A−2)
(i) and (ii), and ψ satisfies (A − 1) and (A − 2) (ii). Since φ−1(t) = log(1 + t) and
φ′(t) = et, we have

(1.9)

TΩ,φ,ψ,b(f)(x, xn+1)

= p. v.
∫

Rn
b(log(1 + |y|)) |y|

(1 + |y|) log(1 + |y|)
Ω(y′)
|y|n

f
(
x− y, xn+1 − log(1 + |y|)

)
dy.

That is, in this case TΩ,φ,ψ,b(f)(x, xn+1) = TΩ,t,log(1+t),b̃(f)(x, xn+1) in (1.1) with
b̃(t) = b

(
log(1 + t)

)
t/

(
(1 + t) log(1 + t)

)
.

To state our theorem, we use two function spaces L(logL)(Sn−1) and the block
spaces B(0,0)

q (Sn−1). Let L(logL)α(Sn−1) (for α > 0) denote the class of all mea-
surable functions Ω which satisfy

‖Ω‖L(logL)α(Sn−1) =
∫
Sn−1

|Ω(y′)| logα(2 + |Ω(y′)|) dσ(y′) <∞.

For q ≥ 1, let B(0,γ)
q (Sn−1) denote the block space generated by q-blocks (its precise

definition will be given in Section 3).
Now, we can state our main theorem.

Theorem 1. Let h ∈ ∆γ for some 1 < γ ≤ ∞, and Ω ∈ L(logL)(Sn−1) ∪(
∪1<q<∞B

(0,0)
q (Sn−1)

)
, satisfying the cancelation condition

(1.10)
∫
Sn−1

Ω(x′) dσ(x′) = 0.

Let φ and ψ satisfy the assumptions (A-1) and (A-2). Then
(i) for every p satisfying |1/p − 1/2| < min{1/2, 1/γ ′}, there exists a positive

constant Cp such that

(1.11) ‖TΩ,φ,ψ,hf‖Lp(Rn+1) ≤ Cp‖f‖Lp(Rn+1)

for every f ∈ Lp(Rn+1).
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(ii) for all γ ′ < p ≤ ∞, there exists a positive constant Cp such that

(1.12) ‖MΩ,φ,ψ,hf‖Lp(Rn+1) ≤ Cp‖f‖Lp(Rn+1)

for every f ∈ Lp(Rn+1).
(iii) for all γ ′ < p < 1/(1/2−min{1/2, 1/γ′}) there exists a positive constant Cp

such that

(1.13) ‖T ∗
Ω,φ,ψ,hf‖Lp(Rn+1) ≤ Cp‖f‖Lp(Rn+1)

for every f ∈ Lp(Rn+1). We use the convention 1/0 = +∞.

In the case of L logL, Al-Salman and Pan [3] showed Theorem 1 (i) and (iii) for
φ(t) = t (i.e., in the case of surface of revolution) and ψ under the condition that it is
nonnegative, increasing, convex and ψ(0) = 0, and (ii) under the additional condition
on h ∈ L∞(R+).

In the case of the block spaces, Al-Qassem and Pan [1] showed Theorem 1 (i) and
(iii) for φ(t) = t and ψ under the condition that it is nonnegative, increasing, convex
and ψ(0) = 0, and (ii) under the additional condition on h ∈ L∞(R+).

To understand the relationship in the above results, we remark the following proper
inclusion relations:

(1.14) Lq(Sn−1) ⊂ L(logL)(Sn−1) ⊂ H1(Sn−1) ⊂ L1(Sn−1) (q ≥ 1),

(1.15) L(logL)β(Sn−1) ⊂ L(logL)α(Sn−1) if 0 < α < β,

(1.16) L(logL)α(Sn−1) ⊂ H1(Sn−1) for all α ≥ 1,

where H1(Sn−1) is the Hardy space on the unit sphere.
Note that L(logL)1+ε(Sn−1) does not contain B

(0,0)
q (Sn−1) for any ε > 0, and

B
(0,0)
q (Sn−1) ⊂ H1(Sn−1) for any q > 1.

As is easily checked, from the conditions in [2] it follows that φ(t)/
(
tφ′(t)

)
,

ψ(t)/
(
tψ′(t)

)
≤ 1. Hence, our results are improvements of theirs. In particular, we

can cover the case where φ(·), ψ(·) are positive, increasing and concave, such as
φ(t) = ta and ψ(t) = tb (0 < a, b < 1). We can also cover the case φ(t) = ta

(0 < t < 1), ψ(t) = atb/b (t ≥ 1), where 0 < a < 1 < b.

Remark 2. Taking Ω(y′) = y1/|y|, φ(t) = log1/n(1 + t) and ψ(t) = 0, our
singular integral has the form

(1.17) TΩ,φ,ψ,1f(x, xn+1) = p. v.
∫

Rn

f
(
x− y′ log1/n(1 + |y|), xn+1

) y1
|y|n+1

dy,

To this operator, Lp boundedness does not hold for any 1 < p < ∞. In this case, φ
satisfies (A-2) (i) but φ(t)/

(
tφ′(t)

)
/∈ L∞(R+), i.e., φ does not satisfy (A-1). This

gives a reason why we treat the assumption (A-1).
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Finally, we note that unfortunately we could not get similar results for H1(Sn−1)
kernels Ω, besides L2(Rn+1) boundedness.

The main tools in this paper come from Al-Qassem and Pan [2]. Besides their
ideas, we use two observations. One is about relations between monotonic functions
and the directional Hardy-Littlewood maximal function (Lemma 2.2). The other is
about behaviors of the Fourier transform of measures arising from our singular integral
operator (Lemma 3.1).

This paper is organized as follows. In Section 2, we recall some properties of mono-
tonic functions satisfying (A-1) and (A-2), and state Lemma 2.2, and that {Φ(ak)}k∈Z

is a lacunary sequence. We also give Fourier transform estimates of some measures in
this section. In Section 3, we prepare necessary lemmas to prove our theorems, in the
framework by Al-Qassem and Pan [2], such as Lemma 3.1. In Section 4, we discuss
the proof of Theorem 1 in the case of Ω ∈ L logL(Sn−1). The proof of Theorem 1
in the case of Ω ∈ ∪1<q<∞B

(0,0)
q (Sn−1) is given in Section 5. In the last section, we

shall give a proof of our claim in Remark 2.
Throughout this paper, the letter C will denote a positive constant that may vary at

each occurrence but is independent of the essential variables.

2. PRELIMINARIES

In this section, we recall fundamental properties between monotonic functions and
the directional Hardy-Littlewood maximal function. All lemmas in this section are
given in our paper [7], [17]. We begin with stating fundamental properties of positive
and monotone C1 functions Φ(t) satisfying the condition (A-1), i.e. Φ(t)/(tΦ′(t)) ∈
L∞(0,∞).

Lemma 2.1. ([7, 17]). (i) Suppose Φ is positive and increasing. Then Φ(t)/(tΦ ′(t))
≤ b (t > 0), if and only if Φ(at)/Φ(t) ≥ a1/b for all a > 1 and t > 0. Hence, if
a > 1, Φ(ak+1)/Φ(ak) ≥ a1/b for k ∈ Z, i.e. {Φ(ak)}k∈Z is a lacunary sequence.
Moreover,

Φ(t) ≤ Φ(1)t1/b (0 < t ≤ 1), Φ(t) ≥ Φ(1)t1/b (t ≥ 1),

tΦ′(t) ≥ Φ(1)
b

t1/b (t ≥ 1),

and hence limt→0 Φ(t) = 0, limt→∞ Φ(t) = +∞. Also, tΦ′(t) cannot be a decreasing
function on (0,∞).

(ii) Suppose Φ is positive and decreasing. Then −Φ(t)/(tΦ ′(t)) ≤ b (t > 0)
if and only if Φ(t)/Φ(at) ≥ a1/b for all a > 1 and t > 0. Hence, if a > 1,
Φ(a−(k+1))/Φ(a−k) ≥ a1/b for k ∈ Z, i.e. {Φ(a−k)}k∈Z is a lacunary sequence.
Moreover,
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Φ(t) ≥ Φ(1)t−1/b (0 < t ≤ 1), Φ(t) ≤ Φ(1)t−1/b (t ≥ 1),

− tΦ′(t) ≥ Φ(1)
b

t−1/b (0 < t ≤ 1),

and hence limt→0 Φ(t) = +∞, limt→∞ Φ(t) = 0. Also, −tΦ′(t) cannot be an in-
creasing function on (0,∞).

Now we recall several properties between monotonic functions and the directional
Hardy-Littlewood maximal functions.

Lemma 2.2. ([7, 17]). Let Ω ∈ L1(Sn−1). Suppose Φ is a positive function on
(0,∞) satisfying |Φ(t)/(tΦ ′(t))| ≤ b and satisfies one of the following conditions:

(i) Φ is increasing, and Φ(2t) ≤ c1Φ(t).

(ii) Φ is increasing, and tΦ ′(t) is increasing.

(iii) Φ is decreasing, and Φ(t) ≤ c2Φ(2t).

(iv) Φ is decreasing and convex.

Then there exists C > 0 such that∣∣∣∣
∫ ∫

t/2<|y|<t

Ω(y′)f
(
x− Φ(|y|)y′

)
|y|n dy

∣∣∣∣ ≤ C(1 + b)
∫
Sn−1

|Ω(y′)|My′f(x) dσ(y′),

where My′f(x) is the directional Hardy-Littlewood maximal function of f , defined by

sup
r>0

1
2r

∫
|t|<r

|f(x− ty′)| dt.

Remark 3. (i) If Φ is positive, increasing, and Φ(t)/(tΦ′(t)) is decreasing, then
tΦ′(t) is increasing on (0,∞).

(ii) If Φ is positive, increasing and convex, then tΦ′(t) is increasing on (0,∞).

(iii) If Φ is positive, decreasing, and −tΦ′(t) is decreasing on (0,∞), then Φ(t) is
convex.

(iv) If Φ is positive, decreasing, and −Φ(t)/(tΦ′(t)) is increasing, then −tΦ′(t) is
decreasing, and hence Φ(t) is convex.

Next, we prepare the following estimates about Fourier transforms of some measures
on Rn+1.

Lemma 2.3. [17]. Let 1 < q ≤ ∞, Ω ∈ Lq(Sn−1) and ψ be a real valued function
on (0,∞).
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(i) If Φ is positive, increasing, Φ(2t) ≤ c1Φ(t), and ϕ(t) := Φ(t)/(tΦ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q ′∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2 dss ≤

Cα2α(log c1)1−α‖ϕ‖∞‖Ω‖2
Lq(Sn−1)

|Φ(t/2)ξ|α .

(ii) If Φ is positive, decreasing, Φ(t) ≤ c2Φ(2t), and ϕ(t) := Φ(t)/(tΦ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q ′∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2 dss ≤

Cα2α(log c2)1−α‖ϕ‖∞‖Ω‖2
Lq(Sn−1)

|Φ(t)ξ|α .

Lemma 2.4. ([17]). Let 1 < q ≤ ∞, Ω ∈ Lq(Sn−1) and ψ be a real valued
function on (0,∞).

(i) If Φ is positive, increasing, tΦ ′(t) is increasing, and ϕ(t) := Φ(t)/(tΦ ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q ′∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss ≤

Cα4α(log 2)1−α‖ϕ‖α∞‖Ω‖2
Lq(Sn−1)

|Φ(t/2)ξ|α .

(ii) If Φ is positive, decreasing and convex, and ϕ(t) := Φ(t)/(tΦ ′(t)) ∈ L∞(0,∞),
then it holds for any 0 < α < 1/q ′∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss ≤

Cα8α(log 2)1−α‖ϕ‖α∞‖Ω‖2
Lq(Sn−1)

|Φ(t)ξ|α .

Finally in this section, we will note the Littlewood-Paley operator for a lacunary
sequence.

Let {aj}j∈Z be a lacunary sequence of positive numbers satisfying
aj+1

aj
≥ a > 1, j ∈ Z.

Take a non-increasing C∞(
[0,∞)

)
function ϕ(t) such that

0 ≤ ϕ(t) ≤ 1
(
t ∈ [0,∞)

)
, ϕ(t) = 1 (0 ≤ t ≤ 1), ϕ(t) = 0 (t ≥ a).

We define functions ψj on (0, ∞) by

ψj(t) = ϕ
( t

aj+1

)
− ϕ

( t

aj

)
.

We set

(2.18) Ψj(x) = (2π)−n
∫

Rn

ψj(|ξ|)eix·ξdξ.

Then we can use the Littlewood-Paley theory and get
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Lemma 2.5. ([17]). Let a0 > 1 and 1 < p <∞. Let Ψj be as above. Then there
exists a positive constant Cp such that

(2.19)
∥∥∥∥
(∑
j∈Z

|Ψj ∗ f(x)|2
)1/2∥∥∥∥

p

≤ Cp‖f‖p, f ∈ Lp(Rn),

where Cp is independent of a ≥ a0.

3. SOME DEFINITIONS AND LEMMAS

In this section, we give some definitions and prepare some lemmas to prove our
theorems.

The block spaces originated in the work of Taibleson and Weiss on the convergence
of the Fourier series in connection with the developments of the real Hardy spaces. We
will recall the definition of block spaces on Sn−1. For further information about the
theory of spaces generated by blocks and its applications to harmonic analysis, see the
book [21] and a survey article [18].

Definition 1. A q-block on Sn−1 is an Lq(Sn−1) (1 < q ≤ ∞) function b(x) that
satisfies

(3.1)
(i) supp b ⊂ I ;

(ii) ‖b‖q ≤ |I |−1/q′,

where |I | = σ(I), and I = B(x′0, θ0) ∩ Sn−1 is a cap on Sn−1 for some x′0 ∈ Sn−1

and θ0 ∈ (0, 1].

Jiang and Lu [13] introduced the class of block spaces B (0,v)
q (Sn−1) (v > −1)

concerning the study of homogeneous singular integral operators.

Definition 2. For 1 < q ≤ ∞ and v > −1, the block space B(0,v)
q (Sn−1) is defined

by

(3.2) B(0,v)
q (Sn−1) =

{
Ω ∈ L1(Sn−1); Ω =

∞∑
j=1

λjbj, M
(0,v)
q ({λj}) <∞

}
,

where each λj is a complex number, each bj is a q-block supported on a cap Ij on
Sn−1, and

(3.3) M (0,v)
q ({λj}) =

∞∑
j=1

|λj|
{
1 + log(v+1)

(
|Ij|−1

)}
.
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Let ‖Ω‖
B

(0,v)
q (Sn−1)

= inf{M (0,v)
q ({λj}); Ω =

∑∞
j=1 λjbj and each bj is a q-

block supported on a cap Ij on Sn−1}. Then ‖ · ‖
B

(0,v)
q (Sn−1)

is a norm on the space

B
(0,v)
q (Sn−1), and

(
B

(0,v)
q (Sn−1), ‖ · ‖

B
(0,v)
q (Sn−1)

)
is a Banach space.

The following inclusion relations are known.

(3.4)

B(0,v1)
q (Sn−1) ⊂ B(0,v2)

q (Sn−1) if v1 > v2 > −1;

B(0,v)
q1 (Sn−1) ⊂ B(0,v)

q2 (Sn−1) if 1 < q2 < q1 for any v > −1;⋃
p>1

Lp(Sn−1) ⊂ B(0,v)
q (Sn−1) for any q > 1, v > −1;

⋃
q>1

B(0,v)
q (Sn−1) �⊂

⋃
q>1

Lq(Sn−1) for any v > −1;

B(0,v)
q (Sn−1) ⊂ H1(Sn−1) + L(logL)1+v(Sn−1) for any q > 1, v > −1.

Definition 3. For arbitrary real-valued functions φ(·) and ψ(·) on (0,∞), a mea-
surable function h : (0,∞) → C and Ω : Sn−1 → C, we define the family {σt,h; t ∈
(0,∞)} of measures and the maximal operator σ∗h on Rn+1 by∫

Rn+1
f dσt,h =

∫
t/2<|y|≤t

f(φ(|y|)y′, ψ(|y|))h(|y|)Ω(y′)
|y|n dy,(3.5)

σ∗hf(x, xn+1) = sup
t>0

∣∣|σt,h| ∗ f(x, xn+1)
∣∣,(3.6)

where |σt,h| is defined in the same way as σt,h, but with Ω replaced by |Ω| and h by
|h|.

Furthermore, for m ∈ N, we define the family {σ̃m,k,h; k ∈ Z} of measures and
the maximal operator σ̃∗m,h on Rn+1 by

∫
Rn+1

f dσ̃m,k,h =
∫

2mk<|y|≤2m(k+1)

f(φ(|y|)y′, ψ(|y|))h(|y|)Ω(y′)
|y|n dy(3.7)

=
m(k+1)∑
l=mk+1

∫
Rn+1

f dσ2l,h,

σ̃∗m,hf(x, xn+1) = sup
k∈Z

∣∣|σ̃m,k,h| ∗ f(x, xn+1)
∣∣,(3.8)

where |σ̃m,k,h| is defined in the same way as σ̃m,k,h, but with Ω replaced by |Ω| and
h by |h|.



Singular Integrals Associated to Submanifolds 1567

Lemma 3.1. Let 1 < q ≤ +∞, m ∈ N, and Ω ∈ Lq(Sn−1) with ‖Ω‖L1(Sn−1) ≤ 1,
‖Ω‖Lq(Sn−1) ≤ 2m, satisfying the cancelation condition

∫
Sn−1 Ω(y′) dσ(y′) = 0. Let

ψ(·) be an arbitrary real-valued function on (0,∞), and h ∈ ∆ γ for some 1 < γ ≤ ∞.
Assume that φ is a positive C 1(0,∞) function satisfying the assumptions (A-1) and
(A-2).

Then there exist positive constants C and α < 1/q ′ such that in the case of
increasing φ

(3.9) |σ̂t,h(ξ, η)| ≤ C‖h‖∆1 ,

(3.10) |σ̂t,h(ξ, η)| ≤
C‖h‖∆γ (1 + ‖ϕ‖∞)

|φ(t/2)ξ|α/m
,

(3.11) |σ̂t,h(ξ, η)| ≤ C‖h‖∆1 |φ(t)ξ|α/m,

and in the case of decreasing φ, φ(t/2) is replaced by φ(t) in (3.10) and φ(t) is
replaced by φ(t/2) in (3.11).

Similarly, in the case of increasing φ

(3.12) |̂̃σm,k,h(ξ, η)| ≤ Cm‖h‖∆1 ,

(3.13) |̂̃σm,k,h(ξ, η)| ≤ Cm‖h‖∆γ (1 + ‖ϕ‖∞)
|φ(2mk)ξ|α/m

,

(3.14) |̂̃σm,k,h(ξ, η)| ≤ Cm‖h‖∆1 |φ(2m(k+1))ξ|α/m,

and in the case of decreasing φ, φ(2mk) is replaced by φ(2m(k+1)) in (3.13) and
φ(2m(k+1)) is replaced by φ(2mk) in (3.14).

Proof. From the definition we have

|σ̂t,h(ξ, η)| ≤
∫ t

t/2

|h(r)|
r

dr

∫
Sn−1

|Ω(y′)| dσ(y′) ≤ 2‖h‖∆1‖Ω‖L1(Sn−1) ≤ 2‖h‖∆1.

Next, we show (3.10). In the case 1 < γ ≤ 2, by a change of variable, Hölder’s
inequality and ‖Ω‖L1(Sn−1) ≤ 1 we have

|σ̂t,h(ξ, η)| ≤
∫ t

t/2

|h(r)|
∣∣∣∣
∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣ drr

≤ 21/γ‖h‖∆γ

(∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣γ

′
dr

r

)1/γ′

≤ 21/γ‖h‖∆γ

(∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣2 drr

)1/γ′

.
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In the case γ > 2, using Cauchy-Schwarz’ inequality in place of Hölder’s inequality,
we get a similar inequality. Together with, we have

|σ̂t,h(ξ, η)| ≤ 2‖h‖∆γ

(∫ t

t/2

∣∣∣∣
∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣2 drr

)1/max{γ′,2}
.

So, if φ satisfies (A-2) (i), by Lemma 2.3 we have for 0 < α < 1/q′

|σ̂t,h(ξ, η)| ≤ 2‖h‖∆γ

(Cα‖ϕ‖∞‖Ω‖2
Lq(Sn−1)

|φ(t/2)ξ|α

)1/max{γ′,2}

≤ C‖h‖∆γ (1 + ‖ϕ‖∞)
(

22m

|φ(t/2)ξ|α

)1/max{γ′,2}
.

From this and (3.9) we obtain

|σ̂t,h(ξ, η)| ≤ C‖h‖∆γ (1 + ‖ϕ‖∞)
(

22m

|φ(t/2)ξ|α

)1/(mmax{γ′,2})

≤
C‖h‖∆γ (1 + ‖ϕ‖∞)

|φ(t/2)ξ|α/(mmax{γ′,2}) .

Taking α/max{γ ′, 2} newly as α, we get (3.10). The other three cases can be proved
in a similar way, using Lemmas 2.4 (i), 2.3 (ii) and 2.4 (ii), respectively.

Finally we prove (3.11). Using the cancelation property of Ω and the monotonicity
of φ, we have

|σ̂t,h(ξ, η)| ≤
∫ t

t/2
|h(r)|

∣∣∣∣
∫
Sn−1

Ω(y′)
(
e−i(φ(r)y′·ξ+ψ(r)η) − e−iψ(r)η

)
dσ(y′)

∣∣∣∣ drr
≤ C‖h‖∆1 max{|φ(t)ξ|, |φ(t/2)ξ|}‖Ω‖L1(Sn−1).

Combining this with (3.9) yields the desired estimate (3.11).
Since

̂̃σm,k,h(ξ, η) =
∫

2mk≤|y|<2m(k+1)

e−i(ξ·φ(|y|)y′+ηψ(|y|))h(|y|)Ω(y′)
|y|n dy(3.15)

=
m(k+1)∑
l=mk+1

σ̂2l,h(ξ, η),

we obtain (3.12), (3.13) and (3.14) from (3.9), (3.10) and (3.11), respectively.

Remark 4. It is worthwhile to note that in order to get (3.9) and (3.10), we do not
need the cancelation condition on Ω.
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We next state a variant of the Lemma 3.4 in [2].

Lemma 3.2. Let {ak}k∈Z be a lacunary sequence of positive numbers with

ak+1

ak
≥ aA for some a > 1 and A > 0.

Let {σk}k∈Z be a sequence of Borel measures on Rn. Let L : Rn → Rm be a linear
transformation. Suppose that for all � ∈ Z, ξ ∈ R n, and some α > 0, C0 > 0,
�0, �1 ∈ N ∪ {0}, and p0 ≥ 2, we have

(i) |σ̂k(ξ)| ≤ C0 max
{
1, (ak+	0 |L(ξ)|)α/A, (ak−	1 |L(ξ)|)−α/A

}
,

(ii)
∥∥∥(∑

k∈Z

|σk ∗ gk|2
)1/2∥∥∥

p0
≤ C0

∥∥∥(
∑
k∈Z

|gk|2)1/2
∥∥∥
p0

for arbitrary functions g k on

Rn.

Then for p′0 < p < p0, there exists a positive constant Cp such that∥∥∥∑
k∈Z

σk ∗ f
∥∥∥
p
≤ CpC0‖f‖p

and ∥∥∥(∑
k∈Z

|σk ∗ f |2
)1/2∥∥∥

p
≤ CpC0‖f‖p

for all f ∈ Lp(Rn). The constant Cp is independent of A and of the linear transfor-
mation L.

In Al-Qassem and Pan [2], this lemma is given in the case �0 = 1 and �1 = 0, but
one can easily check that the above holds.

For the maximal function σ̃∗m,h(f), we can show the following lemma in the same
way as in the proof of the corresponding Lemma 3.3 in [2], by using Lemmas 2.2, 3.1,
and 3.2.

Lemma 3.3. Let 1 < q ≤ +∞, m ∈ N, h ∈ ∆γ(Rn) for some 1 < γ ≤ ∞, and
Ω ∈ Lq(Sn−1) with ‖Ω‖L1(Sn−1) ≤ 1, ‖Ω‖Lq(Sn−1) ≤ 2m. Assume that φ and ψ are
positive C1(0,∞) functions satisfying the assumptions (A-1) and (A-2).

Then for every γ ′ < p ≤ ∞, there exists a positive constant Cp independent of m
such that

(3.16) ‖σ̃∗
m,h(f)‖p ≤ Cpm‖f‖p

for every f ∈ Lp(Rn+1).
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Proof. We prove this only in the case of increasing φ. In the case p = ∞, we
have clearly∣∣|σ̃m,k,h| ∗ f(x, xn+1)

∣∣
=

∣∣∣∣
∫

2mk≤|u|<2m(k+1)
f
(
x− φ(|u|)u′, xn+1 − ψ(|u|)

)
|h(|u|)| |Ω(u′)|

|u|n du

∣∣∣∣
≤ ‖f‖∞

m(k+1)∑
l=mk+1

∫ 2l

2l−1

|h(r)|
r

dr

∫
Sn−1

|Ω(u′)| dσ(u′)

≤ 2m‖h‖∆1‖Ω‖L1(Sn−1)‖f‖∞.

From this (3.16) follows immediately.
Next, we shall prove the case (a) γ = ∞ and 1 < p < ∞. Fix a ϕ ∈ S(Rn)

such that ϕ̂(ξ) = 1 for |ξ| ≤ 1 and ϕ̂(ξ) = 0 for |ξ| ≥ 2. For each t > 0, let
ϕ̂t(ξ) = ϕ̂

(
φ(t)ξ

)
. Define the family of measures {Υm,t}t>0 and {ϑm,k}k∈Z by

(3.17)

Υ̂m,t(ξ, η) = µ̂m,t,h(ξ, η)− µ̂m,t,h(0, η)ϕ̂t(ξ),

ϑ̂m,k(ξ, η) =
k(m+1)∑
l=km+1

Υ̂m,2l(ξ, η),

where µm,t,h = |σm,t,h|. Then

(3.18) |σ̃m,k,h| =
k(m+1)∑
l=km+1

µm,2l,h

and

(3.19)

ϑm,k ∗ f(x, xn+1) = |σ̃m,k,h| ∗ f(x, xn+1)

=
k(m+1)∑
l=km+1

∫
Rn

(∫
2l−1≤|u|<2l

f
(
x− y, xn+1−ψ(|u|)

)
|h(|u|)| |Ω(u′)|

|u|n du

)
ϕ2l(y) dy.

Now, let

gm(f) =
(∑
k∈Z

|ϑm,k ∗ f |2
)1/2

, ϑ∗m(f) = sup
k∈Z

∣∣|ϑm,k| ∗ f |,
Mψf(x, xn+1) = sup

t>0

∣∣∣∣
∫ t

t/2
f
(
x, xn+1 − ψ(s)

) ds
s

∣∣∣∣.
By (3.19) we have
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(3.20)

σ̃∗
m,hf(x, xn+1) = sup

k∈Z

∣∣|σ̃m,k,h| ∗ f∣∣(x, xn+1)

≤ sup
k∈Z

∣∣|ϑm,k| ∗ f | + sup
k∈Z

k(m+1)∑
l=km+1

∫
Rn(∫

2l−1≤|u|<2l

∣∣f(x−y, xn+1−ψ(|u|)
)∣∣|h(|u|)| |Ω(u′)|

|u|n du

)
|ϕ2l(y)| dy

≤ gm(f)(x, xn+1) + ‖h‖∞‖Ω‖L1(Sn−1) sup
k∈Z

k(m+1)∑
l=km+1

∫
Rn(

sup
ε>0

∫ ε

ε/2

∣∣f(x−y, xn+1−ψ(r)
)∣∣

r
dr

)
|ϕ2l(y)| dy

≤ gm(f)(x, xn+1) + Cm‖h‖∞‖Ω‖L1(Sn−1)

(
(MRn ⊗ idR1) ◦Mψ

)
f(x, xn+1).

Hence, by (3.19) we get

(3.21)
ϑ∗
m(f)(x, xn+1)

≤ gm(f)(x, xn+1)+2Cm‖h‖∞‖Ω‖L1(Sn−1)

(
(MRn ⊗ idR1) ◦Mψ

)
f(x, xn+1).

On the other hand, we have

(3.22) Υ̂m,t(ξ, η) =
∫
t/2<|y|<t

{
e−iφ(|y|)y′·ξ − ϕ̂

(
φ(t)ξ

)}
e−iψ(|y|)η |h(|y|)| |Ω(y′)|

|y|n dy.

So, if |φ(t)ξ| > 1, we get

∣∣Υ̂m,t(ξ, η)
∣∣ ≤ 2

∫ t

t/2

|h(r)|
r

dr

∫
Sn−1

|Ω(y′)| dσ(y′)

≤ 4‖h‖∆1‖Ω‖L1(Sn−1) ≤ 4‖h‖∆1‖Ω‖L1(Sn−1)|φ(t)ξ|.

And, if |φ(t)ξ| ≤ 1, we have

∣∣Υ̂m,t(ξ, η)
∣∣ =

∣∣∣∣
∫
t/2<|y|<t

{
e−iφ(|y|)y′·ξ − 1

}
e−iψ(|y|)η |h(|y|)| |Ω(y′)|

|y|n dy

∣∣∣∣
≤

∫
Sn−1

|Ω(y′)|
∫ t

t/2
|(φ(|y|)y′ · ξ| |h(r)|

r
dr dσ(y′)

≤ 2‖h‖∆1‖Ω‖L1(Sn−1)|φ(t)ξ|.

Hence, in any case, we have

(3.23)
∣∣Υ̂m,t(ξ, η)

∣∣ ≤ 4‖h‖∆1‖Ω‖L1(Sn−1)|φ(t)ξ|.
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Also, by (3.22) we have

∣∣Υ̂m,t(ξ, η)
∣∣ ≤ ∣∣∣∣

∫
t/2<|y|<t

e−i(φ(|y|)y′·ξ+ψ(|y|)η)|h(|y|)| |Ω(y′)|
|y|n dy

∣∣∣∣
+

∣∣ϕ̂(
φ(t)ξ

)∣∣ ∫
t/2<|y|<t

|h(|y|)Ω(y′)|
|y|n dy.

Using Lemma 3.1 to the first part and the assumption ϕ ∈ S(Rn) to the second part,
we see that there exist C > 0 and 0 < α < 1/q such that

(3.24)
∣∣Υ̂m,t(ξ, η)

∣∣ ≤ C
1

|φ(t/2)ξ|α/m
.

From (3.22) it is clear that

(3.25)
∣∣Υ̂m,t(ξ, η)

∣∣ ≤ 4‖h‖∆1‖Ω‖L1(Sn−1).

By (3.23), (3.24), (3.25) and the definition of ϑm,k , we see that there exist C > 0 and
0 < α < 1/q such that

(3.26) |ϑ̂m,k(ξ, η)| ≤ Cm‖h‖∆1 ,

(3.27) |ϑ̂m,k(ξ, η)| ≤
Cm‖h‖∆γ (1 + ‖ϕ‖∞)

|φ(2mk)ξ|α/m
,

(3.28) |ϑ̂m,k(ξ, η)| ≤ Cm‖h‖∆1 |φ(2m(k+1))ξ|α/m.

By (3.26), (3.27), (3.28), the lacunarity of {φ(2mk)}k∈Z (Lemma 2.1), and Plancherel’s
theorem, we get

(3.29) ‖gm(f)‖2 ≤ Cm‖f‖2.

By the boundedness of the Hardy-Littlewood maximal function on Lp(Rn) (1 < p <
∞), Lemma 2.3 and (3.29) we get

(3.30) ‖ϑ∗m(f)‖2 ≤ Cm‖f‖2.

By (3.29), (3.30) and applying the proof of the lemma in [9, p. 544] with p0 = 4 and
q = 2, we obtain

(3.31)
∥∥∥(∑

k∈Z

|ϑm,k ∗ gk|2
)1/2∥∥∥

4
≤ Cm

∥∥∥(∑
k∈Z

|gk|2
)1/2∥∥∥

4

for arbitrary functions {gk}k∈Z on Rn+1. By (3.26), (3.27), (3.28), (3.31) and applying
Lemma 3.3 we get
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(3.32) ‖gm(f)‖p ≤ Cm‖f‖p

for all p ∈ (4/3, 4) and f ∈ Lp(Rn+1). By replacing p = 2 with p = 4/3 + ε with
ε → 0 in (3.29) and repeating the preceding arguments, we obtain (3.31) for every
p ∈ (8/7, 8) and f ∈ Lp(Rn+1). By continuing this process we finally get

(3.33) ‖gm(f)‖p ≤ Cm‖f‖p

for all p ∈ (1, ∞) and f ∈ Lp(Rn+1). Therefore, by (3.33) and (3.20), we obtain
(3.16), which completes the proof of the lemma in the case γ = ∞.

Now, we shall treat the case 1 < γ <∞ and γ ′ < p ≤ ∞. By Hölder’s inequality
we get ∣∣|σ̃m,k,h| ∗ f(x, xn+1)

∣∣
≤

(∫
2mk<|y|≤2m(k+1)

|h(|y|)|γ|Ω(y′)|
|y|n dy

)1/γ

×
(∫

2mk<|y|≤2m(k+1)

∣∣f(
x− φ(|y|)y′, xn+1 − ψ(|y|)

)
|γ′ |Ω(y′)|

|y|n dy

)1/γ′

≤
(m(k+1)∑

l=mk

∫ 2l

2l−1

|h(r)|γ
r

dr

)1/γ

‖Ω‖1/γ
L1(Sn−1)

(
|σ̃m,k,1| ∗ |f |γ

′
(x, xn+1)

)1/γ′

≤ (2m‖Ω‖L1(Sn−1))
1/γ‖h‖∆γ

(
|σ̃m,k,1| ∗ |f |γ

′
(x, xn+1)

)1/γ′
,

and hence

(3.34) σ̃∗
m,h(f)(x, xn+1) ≤ (2m‖Ω‖L1(Sn−1))

1/γ‖h‖∆γ

(
σ̃∗m,1(|f |γ

′
)(x, xn+1)

)1/γ′
.

Thus, applying the case (a) to σ̃∗m,1(|f |γ
′
) for γ′ < p ≤ ∞, we get

‖σ̃∗m,h(f)‖p ≤ (2m‖Ω‖L1(Sn−1))
1/γ‖h‖∆γ‖σ̃∗m,1(|f |γ

′
)‖1/γ′
p/γ′

≤ Cm‖h‖∆γ‖f‖p.

This completes the proof of the lemma.

Lemma 3.4. Let h ∈ �γ for some 1 < γ ≤ 2 and 2 ≤ p < 2γ/(2− γ). Again let
m, Ω, φ, ψ be as in Lemma 3.3. Then there exists a positive constant C p such that

(3.35)
∥∥∥(∑

k∈Z

|σ̃m,k,h ∗ gk|2
)1/2∥∥∥

p
≤ Cpm

1/2
∥∥∥(

∑
k∈Z

|gk|2)1/2
∥∥∥
p

for any sequence {gk} of functions on Rn+1.
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Proof. By duality there exists a nonnegative function f ∈ L(p/2)′(Rn+1) with
‖f‖(p/2)′ = 1 such that

∥∥∥(∑
k∈Z

|σ̃m,k,h ∗ gk|2
)1/2∥∥∥2

p
=

∑
k∈Z

|σ̃m,k,h ∗ gk(x, xn+1)|2f(x, xn+1) dxdxn+1.

By Schwarz’s inequality

|σ̃m,k,h ∗ gk(x, xn+1)|2

≤ C

∫ 2m(k+1)

2mk

∫
Sn−1

∣∣gk(x− φ(r)y′, xn+1 − ψ(r)
)∣∣2|Ω(y′)||h(r)|2−γ dσ(y′)

dr

r
.

Thus, by a change of variable we have

(3.36)
∥∥∥(∑

k∈Z

|σ̃m,k,h ∗ gk|2
)1/2∥∥∥2

p

≤ C

∫
Rn+1

(∑
k∈Z

|gk(x, xn+1)|2
)
σ̃∗m,|h|2−γ (f̃)(−x,−xn+1) dxdxn+1,

where f̃(x, xn+1) = f(−x,−xn+1). By Lemma 3.3 and noting |h(·)|2−γ ∈ ∆γ/(2−γ)
(R+) and (p/2)′ =

(
γ/(2− γ)

)′ we obtain

(3.37) ‖σ̃∗
m,|h|2−γ (f̃)‖L(p/2)′(Rn+1) ≤ Cpm‖f‖L(p/2)′(Rn+1) = Cpm.

Therefore, by (3.36), (3.37) and Hölder’s inequality we get (3.35) for 2 ≤ p < 2γ/(2−
γ).

4. PROOF OF THEOREM 1 IN THE CASE OF Ω ∈ L(logL)(Sn−1)

Using Lemma 3.2 and Lemma 3.4 in the case q = 2, we shall show our Theorem
1 in a quite similar way in the proof of Theorems 1.1 in [2].

Proof of Theorem 1. We first show (i). Assume that Ω satisfies (1.1) and belongs
to L logL(Sn−1). For m ∈ N, set Em = {y′ ∈ Sn−1 : 2m−1 ≤ |Ω(y′)| < 2m}, and
E0 = {y′ ∈ Sn−1; |Ω(y′)| < 1}. For m ∈ N ∪ {0}, set Am = ‖ΩχEm‖L1(Sn−1), and
Λ = {m ∈ N : Am > 2−m}. For m ∈ Λ define the sequence {Ωm}m∈Λ of functions
by

Ωm(y′) =
1
Am

(
Ω(y′)χEm(y′) − 1

|Sn−1|

∫
Em

Ω(x′) dσ(x′)
)
,

and
Ω0(y′) = Ω(y′) −

∑
m∈Λ

AmΩm(y′).
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Then it is easy to verify that for all m ∈ Λ ∪ {0} and some positive constant C,

‖Ωm‖L2(Sn−1) ≤ C2m, ‖Ωm‖L1(Sn−1) ≤ C,(4.1)

A0 +
∑
m∈Λ

mAm ≤ C‖Ω‖L logL(Sn−1),(4.2)

∫
Sn−1

Ωm(y′) dσ(y′) = 0, Ω = Ω0 +
∑
m∈Λ

AmΩm.(4.3)

From the above, we see that

(4.4) ‖TΩ,φ,ψ,hf‖p ≤ ‖T0,φ,ψ,hf‖p +
∑
m∈Λ

Am‖Tm,φ,ψ,hf‖p,

where

Tm,φ,ψ,hf(x, xn+1) = p. v.
∫

Rn

f(x− φ(|y|)y′, xn+1 − ψ(|y|))Ωm(y′)
|y|n h(|y|)dy.

However,
Tm,φ,ψ,hf(x, xn+1)

=
∑
k∈Z

∫
2mk<|y|≤2m(k+1)

f(x− φ(|y|)y′, xn+1 − ψ(|y|))Ωm(y′)
|y|n h(|y|)dy

=
∑
k∈Z

(k+1)m∑
i=km+1

∫
2i−1<|y|≤2i

f(x− φ(|y|)y′, xn+1 − ψ(|y|))Ωm(y′)
|y|n h(|y|)dy

=
∑
k∈Z

(k+1)m∑
i=km+1

σm,2i,h ∗ f(x, xn+1).

Since �γ ⊆ �2 for γ ≥ 2, we may assume that 1 < γ ≤ 2 and |1p −
1
2 | <

1
γ′ . For

k ∈ Z and m ∈ N, let θm,k = φ(2mk). From Lemma 2.1, we easily see that {θm,k} is
a lacunary sequence with θm,k+1/θm,k ≥ 2m/b > 1, where b = ‖φ(t)/(tφ′(t))‖∞. Let
{Ψ̂m,k, k ∈ Z} be a smooth partition of unity in (0,∞), defined in Lemma 2.5, and
set ̂(Tm,kf)(ξ, η) = Ψ̂m,k(|ξ|)f̂(ξ, η), (ξ, η) ∈ Rn × R. Then

(4.5)

Tm,φ,ψ,hf(x, xn+1)

=
∑
k∈Z

(k+1)m∑
i=km+1

∑
j∈Z

(Ψm,j+k ⊗ δ{0}) ∗ σm,2i,h ∗ f(x, xn+1)

=
∑
j∈Z

∑
k∈Z

(k+1)m∑
i=km+1

(Ψm,j+k ⊗ δ{0}) ∗ σm,2i,h ∗ f(x, xn+1)

=
∑
j∈Z

Qm,jf(x, xn+1),
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where δ{0} is the Dirac’s delta at the origin in the xn+1 space, and Qm,jf(x, xn+1) =∑
k∈Z

∑(k+1)m
i=km+1(Ψm,j+k ⊗ δ{0}) ∗ σm,2i,h ∗ f(x, xn+1).

From Lemma 3.1, we have the following estimates:

(4.6)
∣∣∣∣
(k+1)m∑
i=km+1

σ̂m,2i,h(ξ, η)
∣∣∣∣ ≤ Cm;

(4.7)
∣∣∣∣
(k+1)m∑
i=km+1

σ̂m,2i,h(ξ, η)
∣∣∣∣ ≤ Cm|φ(2mk)ξ|−α/m;

(4.8)
∣∣∣∣
(k+1)m∑
i=km+1

σ̂m,2i,h(ξ, η)
∣∣∣∣ ≤ Cm|φ(2m(k+1))ξ|α/m.

First, we compute L2 norm of Qm,jf . By Plancherel’s theorem, Fubini’s theorem and
(4.7), (4.8), we obtain

‖Qm,jf‖2
2 =

∫
Rn+1

∣∣∣∣∑
k∈Z

(k+1)m∑
i=km+1

(Ψm,j+k ⊗ δ{0}) ∗ σm,2i,h ∗ f(x, xn+1)
∣∣∣∣2 dx dxn+1

= (2π)n
∫

Rn+1

∣∣∣∣∑
k∈Z

(k+1)m∑
i=km+1

Ψ̂m,j+k(ξ)σ̂m,2i,h(ξ, η)f̂(ξ, η)
∣∣∣∣2 dξ dη

= (2π)n
∫

Rn+1

∑
k∈Z

Ψ̂m,j+k(ξ)
{ (k+1)m∑
i=km+1

σ̂m,2i,h(ξ, η)
}

×
{ 1∑
t=−1

Ψ̂m,j+k+t(ξ)
(k+t+1)m∑
i=(k+t)m+1

σ̂m,2i,h(ξ, η)
}
|f̂(ξ, η)|2 dξ dη

≤ 3(2π)n
∫

Rn+1

∑
k∈Z

|Ψ̂m,j+k(ξ)|2
∣∣∣∣
(k+1)m∑
i=km+1

σ̂m,2i,h(ξ, η)
∣∣∣∣2|f̂(ξ, η)|2dξ dη

≤ 3(2π)n
∑
k∈Z

∫
R

∫
θ−1
m,k+j+1≤|ξ|≤θ−1

m,k+j−1

∣∣∣∣
(k+1)m∑
i=km+1

σ̂m,2i,h(ξ, η)
∣∣∣∣2|f̂(ξ, η)|2dξ dη.

For j ≤ −2 and θ−1
m,k+j+1 ≤ |ξ| ≤ θ−1

m,k+j−1 we get, using (4.7),

‖Qm,jf‖2 ≤ Cm(2m)jα/(bm)‖f‖2 ≤ Cm2jα/b‖f‖2.

For j ≥ 2 and θ−1
m,k+j+1 ≤ |ξ| ≤ θ−1

m,k+j−1 we get, using (4.8),

‖Qm,jf‖2 ≤ Cm(2m)−jα/(bm)‖f‖2 ≤ Cm2−jα/b‖f‖2.
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For −1 ≤ j ≤ 1 and θ−1
m,k+j+1 ≤ |ξ| ≤ θ−1

m,k+j−1 we get, using (4.6),

‖Qm,jf‖2 ≤ Cm‖f‖2.

Hence, we obtain

(4.9) ‖Qm,jf‖2 ≤ Cm2−|j|α/b‖f‖2.

Next, as for Lp estimate, by using Lemma 3.4, Lemma 3.2 and Lemma 2.5, we have

(4.10) ‖Qm,jf‖p ≤ Cm‖f‖p, for
∣∣∣1
p
− 1

2

∣∣∣ < 1
γ ′
.

Interpolating between (4.9) and (4.10), we can find a number 0 < θ < 1 such that

(4.11) ‖Qm,jf‖p ≤ Cm2−|j|θα/b‖f‖p, for
∣∣∣1
p
− 1

2

∣∣∣ < 1
γ ′
.

Hence, combining (4.5), (4.11), (4.4) and (4.2), we complete the proof of Theorem 1
(i).

Next, we show (ii). We first note that for any Ω ∈ L1(Sn−1), MΩ,φ,ψ,hf(x, xn+1) ≤
2n(2n − 1)−1σ∗hf(x, xn+1), and hence for any m ∈ N

(4.12) MΩ,φ,ψ,hf(x, xn+1) ≤
2n+1

2n − 1
σ̃∗m,hf(x, xn+1),

where σ∗h and σ̃∗
m,h are defined by (3.6) and (3.8), respectively.

Now, by (4.3) and (4.12) we have

MΩ,φ,ψ,hf(x, xn+1)

≤MΩ0,φ,ψ,hf(x, xn+1) +
∑
m∈Λ

AmMΩm,φ,ψ,hf(x, xn+1)(4.13)

≤ 2n+1

2n − 1

[
σ∗0,Ω0,φ,ψ,hf(x, xn+1) +

∑
m∈Λ

Amσ
∗
m,Ωm,φ,ψ,hf(x, xn+1)

]
,

where σ∗m,Ωm,φ,ψ,h
= σ̃∗m,h which is defined by (3.8) for Ω = Ωm. Then, using Lemma

3.2, Minkowski’s inequality and (4.2), we obtain for γ ′ < p ≤ ∞

‖MΩ,φ,ψ,hf‖p ≤ C‖f‖p +
∑
m∈Λ

CAmm‖f‖p ≤ C‖f‖p.

This completes the proof of Theorem 1 (ii).
Finally we show (iii). It suffices to show that

(4.14) ‖T ∗
Ωm,φ,ψ,hf‖Lp(Rn+1) ≤ Cpm‖f‖Lp(Rn+1).
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To show this, since for every 0 < ε < A <∞ there exist k0, k1 ∈ Z with 2mk0 ≤ ε <

2m(k0+1) and 2mk1 ≤ A < 2m(k1+1), we see by Lemma 3.1 that it suffices to show

(4.15) ‖T ∗∗
Ωm,φ,ψ,hf‖Lp(Rn+1) ≤ Cpm‖f‖Lp(Rn+1),

where

(4.16)

T ∗∗
Ωm,φ,ψ,hf(x, xn+1)

= sup
k∈Z

∣∣∣∣
∫
|y|>2mk

f(x− φ(|y|)y′, xn+1 − ψ(|y|))Ωm(y′)
|y|n h(|y|)dy

∣∣∣∣
= sup

k∈Z

∣∣∣∣
∞∑
j=k

∫
2mj<|y|≤2m(j+1)

f(x−φ(|y|)y′, xn+1 − ψ(|y|))Ωm(y′)
|y|n h(|y|)dy

∣∣∣∣
= sup

k∈Z

∣∣∣∣
∞∑
j=k

σ̃m,j,h ∗ f(x, xn+1)
∣∣∣∣ =: sup

k∈Z

|Ik(f)(x, xn+1)|.

We take a radial function ϕ ∈ S(Rn) such that ϕ(ξ) = 1 when |ξ| ≤ 2−m/b and
ϕ(ξ) = 0 when |ξ| ≥ 2m/b, where b = ‖φ(t)/(tφ′(t)‖∞. We also assume ‖ϕ‖∞ = 1.
Let ϕk(ξ) = ϕ

(
φ(2mk)ξ

)
and Φ̂k(ξ) = ϕk(ξ). Then it is easily seen that

(4.17) |Φk(x)| ≤
C0

φ(2mk)n
(
1 + |x|/φ(2mk)

)n+1

for some C0 > 0. Let δ be the Dirac delta function in Rn+1 and as before, δ(0) be the
1-dimensional Dirac delta function in xn+1. Now

Ik(f) =
(
δ − Φk ⊗ δ(0)

)
∗

∞∑
j=k

σ̃m,j ∗ f + Φk ⊗ δ(0) ∗ TΩm,φ,ψ,hf

− Φk ⊗ δ(0) ∗
k−1∑
j=−∞

σ̃m,j ∗ f =: Ik,1(f) + Ik,2(f) + Ik,3(f).

Clearly, by using (4.17) we see that

|Ik,2(f)| ≤ CMRn ⊗ idR(TΩm,φ,ψ,hf).

Hence, by the Lp boundedness of the Hardy-Littlewood maximal function and the fact
‖TΩm,φ,ψ,hf‖p ≤ Cpm‖f‖p for p with |1/p−1/2| < min{1/2, 1/γ ′} in (i), we obtain

(4.18) ‖ sup
k∈Z

|Ik,2(f)‖p ≤ Cpm‖f‖p

when |1/p− 1/2| < min{1/2, 1/γ ′}.
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Next

sup
k∈Z

|Ik,3(f)| = sup
k∈Z

∣∣∣ ∞∑
j=1

σ̃m,k−j,h ∗ (Φk ⊗ δ(0)) ∗ f
∣∣∣

≤
∞∑
j=1

(
sup
k∈Z

∣∣σ̃m,k−j,h ∗ (Φk ⊗ δ(0)) ∗ f
∣∣) =:

∞∑
j=1

Gj(f).

Since we see by using (4.17)

Gj(f) ≤ sup
k∈Z

|σ̃m,k−j,h| ∗ (MRn ⊗ idR)f,

we have by Lemma 3.3

(4.19) ‖Gj(f)‖p ≤ Cm‖(MRn ⊗ idR)f‖p ≤ Cm‖f‖p

for p > γ′. On the other hand, it holds

Gj(f) ≤
(∑
k∈Z

|σ̃m,k−j,h ∗ (Φk ⊗ δ(0)) ∗ f |2
)1/2

.

So, by Plancherel’s theorem, Lemma 3.1, the support property of Φk and Lemma 2.1,
we see that

(4.20)

‖Gj(f)‖2 = C
∥∥∥(∑

k∈Z

|̂̃σm,k−j,h(ξ, η)Φ̂k(ξ)f̂(ξ, η)|2
)1/2∥∥∥

2

≤ Cm
∥∥∥( ∑

φ(2mk)|ξ|≤2m/b

|φ(2m(k−j+1))ξ|2α/m
)1/2

f̂(ξ, η)
∥∥∥
2

≤ Cm2−α(j−1)/b
∥∥∥( ∑

φ(2mk)|ξ|≤2m/b

|φ(2mk)ξ|2α/m
)1/2

f̂(ξ, η)
∥∥∥
2

≤ Cm2−α(j−1)/b‖f‖2.

For any fixed p > γ′, we take p0 > p when p > 2 and γ ′ < p0 < p when p < 2, and
interpolate between (4.19) for p0 and (4.20), and get for some β > 0

(4.21) ‖Gj(f)‖p ≤ Cm2−βj‖f‖p,

which leads to

(4.22)
∥∥∥sup
k∈Z

Ik,3(f)
∥∥∥
p
≤ Cm‖f‖p

for p > γ′.
As for Ik,1(f), we have
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sup
k∈Z

|Ik,1(f)| = sup
k∈Z

∣∣∣(δ − Φk ⊗ δ(0)) ∗
∞∑
j=0

σ̃m,k+j,h ∗ f
∣∣∣

≤
∞∑
j=0

sup
k∈Z

∣∣(δ − Φk ⊗ δ(0)) ∗ σ̃m,k+j,h ∗ f
∣∣ =: Hj(f).

As before, we get

(4.23) ‖Hj(f)‖p ≤ Cm‖f‖p
for p > γ′. On the other hand, it holds

Hj(f) ≤
(∑
k∈Z

|σ̃m,k+j,h ∗ (δ − Φk ⊗ δ(0)) ∗ f |2
)1/2

.

So, by Plancherel’s theorem, Lemma 3.1, the support property of Φk and Lemma 2.1,
we see that

(4.24)

‖Hj(f)‖2 = C
∥∥∥(∑

k∈Z

|̂̃σm,k+j,h(ξ, η)(1− Φ̂k(ξ)
)
f̂(ξ, η)|2

)1/2∥∥∥
2

≤ Cm
∥∥∥( ∑

φ(2mk)|ξ|≥2−m/b

1
|φ(2m(k+j))ξ|2α/m

)1/2
f̂(ξ, η)

∥∥∥
2

≤ Cm2−αj/b
∥∥∥( ∑

φ(2mk)|ξ|≥2−m/b

1
|φ(2mk)ξ|2α/m

)1/2
f̂(ξ, η)

∥∥∥
2

≤ Cm2−αj/b‖f‖2.

Thus, as in the estimate for Ik,3, we obtain

(4.25)
∥∥∥sup
k∈Z

Ik,1(f)
∥∥∥
p
≤ Cm‖f‖p

for p > γ′. Combining (4.18), (4.22), (4.25) and (4.16), we obtain the desired estimate
(4.15), i.e.,

‖T ∗∗
Ωm,φ,ψ,hf‖Lp(Rn+1) ≤ Cpm‖f‖Lp(Rn+1),

for p satisfying p > γ′ and |1/2 − 1/p| < min{1/2, 1/γ ′}, i.e., γ′ < p < 1/(1/2 −
min{1/2, 1/γ ′}). This completes the proof of Theorem 1 (iii).

5. PROOF OF THEOREM 1 IN THE CASE OF Ω ∈ ∪1<q<∞B
(0,0)
q (Sn−1)

Let q > 1. Then if Ω ∈ B
(0,0)
q (Sn−1) and satisfies the cancelation condition, it

can be written as Ω =
∑∞

	=1 λ	Ω̆	, where λ	 ∈ C and Ω̆	 is a q-block supported on a
cap B	 = B(x	, τ	) ∩ Sn−1 on Sn−1 and

(5.1)
∞∑
	=1

|λ	|
{
1 + log

(
|B	|−1

)}
< 2‖Ω‖

B
(0,0)
q (Sn−1)

<∞.



Singular Integrals Associated to Submanifolds 1581

To each block Ω̆	, we define

Ω	(y′) = Ω̆	(y′) −
1

|Sn−1|

∫
Sn−1

Ω̆	(x′) dσ(x′).

Let Λ = {� ∈ N; |B	| ≤ 1/2} and set

(5.2) Ω0 = Ω −
∑
	∈Λ

λ	Ω	.

Then there exists a positive constant C such that the followings hold for all � ∈ Λ:∫
Sn−1

Ω	(x′) dσ(x′) = 0,(5.3)

‖Ω	‖Lq(Sn−1) ≤ C|B	|−1/q′ ,(5.4)

‖Ω	‖L1(Sn−1) ≤ 2,(5.5)

Ω = Ω0 +
∑
	∈Λ

λ	Ω	.(5.6)

Moreover, from (5.1) and the definition of Ω	 it follows that

‖Ω0‖Lq(Sn−1) ≤ C
∑
	∈N\Λ

2−1/q′|λ	| ≤ C‖Ω‖
B

(0,0)
q (Sn−1)

,(5.7)

∫
Sn−1

Ω0(x′) dσ(x′) = 0.(5.8)

For � ∈ Λ, define a family of measures σ(	) = {σ	,t,h; 0 < t < ∞} on Rn+1, as in
Definition 3, by∫

Rn+1

f dσ	,t,h =
∫
t/2<|y|<t

f
(
φ(|y|)y′, ψ(|y|)

)
h(|y|)Ω	(y′)

|y|n dy.

We only discuss the case of increasing φ in the proof of Theorem 1 in the case of
Ω ∈ ∪1<q<∞B

(0,0)
q (Sn−1), since decreasing case can be proved in the same way.

For k ∈ Z and � ∈ Λ ∪ 0, we set ω	 = 2θ� , θ	 = [log2 |B	|−1/q′ ] + 1, where [·]
denotes the greatest integer function.

From Lemma 3.1, we have the following estimates:

(5.9)
∣∣∣∣
(k+1)θ�∑
i=kθ�+1

σ̂	,2i,h(ξ, η)
∣∣∣∣ ≤ Cθ	;
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(5.10)
∣∣∣∣
(k+1)θ�∑
i=kθ�+1

σ̂	,2i,h(ξ, η)
∣∣∣∣ ≤ Cθ	|φ(ωk	 )ξ|−α/θ� ;

(5.11)
∣∣∣∣
(k+1)θ�∑
i=kθ�+1

σ̂	,2i,h(ξ, η)
∣∣∣∣ ≤ Cθ	|φ(ωk+1

	 )ξ|α/θ� .

Moreover, we can use Lemmas 3.3 and 3.4, taking m = θ	. Now, we begin to
prove Theorem 1 in the case of Ω ∈ ∪1<q<∞B

(0,0)
q (Sn−1). By (5.6), we have

(5.12) |TΩ,φ,ψ,hf(x, xn+1)| ≤
∑
	∈Λ∪0

|λ	| |T	,φ,ψ,hf(x, xn+1)|,

where

T	,φ,ψ,hf(x, xn+1) =
∑
k∈Z

∫
ωk

� ≤|y|≤ωk+1
�

Ω	(u′)
|u|n h(|u|)f(x−φ(|u|)u′, xn+1−ψ(|u|))du.

So, we have only to show the boundedness of T	,φ,ψ,hf .

T	,φ,ψ,hf(x, xn+1)

=
∑
k∈Z

∫
ωk

� ≤|y|≤ωk+1
�

Ω	(u′)
|u|n h(|u|)f(x− φ(|u|)u′, xn+1 − ψ(|u|))du

=
∑
k∈Z

(k+1)θ�∑
j=kθ�+1

∫
2j−1≤|y|≤2j

Ω	(u′)
|u|n h(|u|)f(x− φ(|u|)u′, xn+1 − ψ(|u|))du

=
∑
k∈Z

(k+1)θ�∑
j=kθ�+1

σ	,2j ,h ∗ f(x, xn+1).

Since ∆γ ⊆ ∆2 for γ ≥ 2, we may assume that 1 < γ ≤ 2 and |1/p− 1/2| < 1
γ′ .

For � ∈ Z, let θ	,j = φ(ωj	 ). From Lemma 2.1, we easily see that {θ	,j, j ∈ Z} is a
lacunary sequence with θ	,j+1/θ	,j ≥ ω

1/b
	 > 1. Let {Ψ̂	,j, j ∈ Z} be a smooth partition

of unity in (0,∞), defined in Lemma 2.5, and set (̂T	,jf)(ξ, η) = Ψ̂	,j(|ξ|)f̂(ξ, η),
(ξ, η) ∈ Rn × R. Then

(5.13)

T	,φ,ψ,hf(x, xn+1) =
∑
k∈Z

(k+1)θ�∑
i=kθ�+1

∑
j∈Z

(Ψ	,j+k ⊗ δ{0}) ∗ σ	,2i,h ∗ f(x, xn+1)

=
∑
j∈Z

∑
k∈Z

(k+1)θ�∑
i=kθ�+1

(Ψ	,j+k ⊗ δ{0}) ∗ σ	,2i,h ∗ f(x, xn+1)

=
∑
j∈Z

Q	,jf(x, xn+1),



Singular Integrals Associated to Submanifolds 1583

where δ{0} is the Dirac’s delta at the origin in the xn+1 space, and Q	,jf(x, xn+1) =∑
k∈Z

∑(k+1)θ�
i=kθ�+1(Ψ	,j+k ⊗ δ{0}) ∗ σ	,2i,h ∗ f(x, xn+1).

First, we compute L2 norm of Q	,jf . By Plancherel’s theorem, Fubini’s theorem
and (5.10), (5.11), we obtain

‖Q	,jf‖2
2 =

∫
Rn+1

∣∣∣∣∑
k∈Z

(k+1)θ�∑
i=kθ�+1

(Ψ	,j+k ⊗ δ{0}) ∗ σ	,2i,h ∗ f(x, xn+1)
∣∣∣∣2 dx dxn+1

= (2π)n
∫

Rn+1

∣∣∣∣∑
k∈Z

(k+1)θ�∑
i=kθ�+1

Ψ̂	,j+k(ξ)σ̂	,2i,h(ξ, η)f̂(ξ, η)
∣∣∣∣2 dξ dη

= (2π)n
∫

Rn+1

∑
k∈Z

Ψ̂	,j+k(ξ)
{ (k+1)θ�∑
i=kθ�+1

σ̂	,2i,h(ξ, η)
}

×
{ 1∑
m=−1

Ψ̂	,j+k+m(ξ)
(k+m+1)θ�∑
i=(k+m)θ�+1

σ̂	,2i,h(ξ, η)
}
|f̂(ξ, η)|2 dξ dη

≤ 3(2π)n
∫

Rn+1

∑
k∈Z

|Ψ̂	,j+k(ξ)|2
∣∣∣∣
(k+1)θ�∑
i=kθ�+1

σ̂	,2i,h(ξ, η)
∣∣∣∣2|f̂(ξ, η)|2 dξ dη

≤ 3(2π)n
∑
k∈Z

∫
R

∫
θ−1
�,k+j+1≤|ξ|≤θ−1

�,k+j−1

∣∣∣∣
(k+1)θ�∑
i=kθ�+1

σ̂	,2i,h(ξ, η)
∣∣∣∣2|f̂(ξ, η)|2dξ dη.

For j ≤ −2 and θ−1
	,k+j+1 ≤ |ξ| ≤ θ−1

	,k+j−1 we get, using (5.10),

‖Q	,jf‖2 ≤ Cθ	ω
jα/(bθ�)
	 ‖f‖2 ≤ C(log |B	|−1)2jα/b‖f‖2,

For j ≥ 2 and θ−1
	,k+j+1 ≤ |ξ| ≤ θ−1

	,k+j−1 we get, using (5.11),

‖Q	,jf‖2 ≤ Cθ	ω
−jα/(bθ�)
	 ‖f‖2 ≤ C(log |B	|−1)2−jα/b‖f‖2.

For −1 ≤ j ≤ 1 and θ−1
	,k+j+1 ≤ |ξ| ≤ θ−1

	,k+j−1 we get, using (5.9),

‖Q	,jf‖2 ≤ Cθ	 ≤ C(log |B	|−1)‖f‖2.

Hence, we obtain

(5.14) ‖Q	,jf‖2 ≤ C(log |B	|−1)2−|j|α/b‖f‖2.

Next, as for Lp estimate, by using Lemma 3.4, Lemma 3.2 and Lemma 2.5, we have

(5.15) ‖Q	,jf‖p ≤ C(log |B	|−1)‖f‖p, for
∣∣∣1
p
− 1

2

∣∣∣ < 1
γ ′
.
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Interpolating between (5.14) and (5.15), we can find a number 0 < θ < 1 such that

(5.16) ‖Q	,jf‖p ≤ C(log |B	|−1)2−|j|θα/b‖f‖p, for
∣∣∣1
p
− 1

2

∣∣∣ < 1
γ ′
.

Hence, combining (5.12), (5.13) and (5.16), we complete the proof of Theorem 1 (i)
in the case of Ω ∈ ∪1<q<∞B

(0,0)
q (Sn−1).

We can prove Theorem 1 (ii) and (iii) in the case of Ω ∈ ∪1<q<∞B
(0,0)
q (Sn−1)

in the same way as those of the proofs of Theorem 1 (ii) and (iii) in the case of
Ω ∈ L(logL)(Sn−1), respectively. So, we omit the details.

6. APPENDIX

We state the claim in Remark 2 as a lemma.

Lemma 6.1. Let Φ(t) = logα(1 + t) (0 < α ≤ 1/n) and

(6.1) Tf(x) := p. v.
∫

y1
|y|n+1

f
(
x− Φ(|y|)y′

)
dy.

Then T is non-bounded on any Lp(Rn) for 1 < p <∞.

Proof. Set
f(x) =

χ{x∈Rn; x1<0, |x̃|<−x1}
(1 + |x|)n ,

where x̃ = (x2, . . . , xn). Then f ∈ Lp(Rn) for any p > 1. Let x ∈ Rn with x1 > 0 and
|x̃| < x1/3. Note first that, if y1 ≤ 0, we have x1 − y1|y|−1 logα(1 + |y|) > 0, and so
f
(
x−y|y|−1 logα(1+|y|)

)
= 0. Also, if |y| < ex

1/α
1 −1, f

(
x−y|y|−1 logα(1+|y|)

)
=

0. Next, for y ∈ Rn with y1 > 1, |ỹ| < y1/3 and |y| > e(3x1)
1/α , we have

y1
|y| =

y1√
y2
1 + |ỹ|2

>
3√
10
,

2x1 <
2
3

logα(1 + |y|) < 3√
10

logα(1 + |y|) < y1
|y| logα(1 + |y|),

and hence

(6.2)
x1 −

y1
|y| logα(1 + |y|) < 0,

y1
|y| logα(1 + |y|)− x1 >

1
2
y1
|y| logα(1 + |y|).

From these we obtain

(6.3)

∣∣∣x̃− ỹ

|y| logα(1+|y|)
∣∣∣ ≤ |x̃|+ |ỹ|

|y| logα(1+|y|)≤x1

3
+

1
3
y1
|y| logα(1 + |y|)

<
1
2
y1
|y| logα(1 + |y|) < y1

|y| logα(1 + |y|)− x1.
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We also have

(6.4)

∣∣∣x− y

|y| logα(1 + |y|)
∣∣∣ ≤ |x|+ logα(1 + |y|)

≤
√

10
3
x1 + logα(1 + |y|) < 2 logα(1 + |y|).

Thus, using (6.2), (6.3), (6.4) and the definition of f , we have for 0 < ε < 1∫
|y|>ε

y1
|y|n+1

f
(
x−Φ(|y|)y′

)
dy =

∫{
|y|>max{ε, ex

1/α
1 −1}

} y1
|y|n+1

f
(
x−Φ(|y|)y′

)
dy

>

∫
{y1>1,|y|>e(3x1)1/α

, |ỹ|<y1/3}

3√
10

dy

|y|n
(
1 + 2 logα(1 + |y|)

)n = +∞.

This implies that T is not bounded on any Lp(Rn).

Remark 5. For Φ(t) = logα(1+t) (α > 0) we have Φ(t)/
(
tΦ′(t)

)
= (1+t) log(1+t)

αt
�∈ L∞(0,∞), and Φ(2t) ≤ 2αΦ(t), t > 0, since log(1 + 2t) < log(1 + t)2 =
2 log(1 + t).
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14. L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math.,
104 (1960), 93-140.

15. W. Kim, S. Wainger, J. Wright and S. Ziesler, Singular integrals and maximal functions
associated to surfaces of revolution, Bull. London Math. Soc., 28 (1996), 291-296.

16. M.-Y. Lee and C.-C. Lin, Weighted Lp boundedness of Marcinkiewicz integral, Integral
Equations Operator Theory, 49(2) (2004), 211-220.

17. W. Li and K. Yabuta, Some remarks on Marcinkiewicz integrals along submanifolds,
submitted.

18. S. Lu, Applications of some block spaces to singular integrals, Front. Math. China,
2(1) (2007), 61-72.

19. S. Lu, Y. Ding and D. Yan, Singular Integrals and Related Topics, World Scientific,
Singapore, 2007.

20. S. Lu, Y. Pan and D. Yang, Rough singular integrals associated to surfaces of revolution,
Proc. Amer. Math. Soc., 129 (2001), 2931-2940.

21. S. Lu, M. Taibleson and G. Weiss, Spaces Generated by Blocks, Publishing House of
Beijing Normal University, Beijing, 1989.

22. E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals,
Proc. Inter. Cong. Math., (Berkeley, 1986), 196-221.

23. E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull.
Amer. Math. Soc., 84 (1978), 1239-1295.

24. X. Ye and X. Zhu, A note on certain block spaces on the unit sphere, Acta Math. Sinica
(E.S.), 22 (2006), 1843-1846.

Wenjuan Li
School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems
Ministry of Education
Beijing 100875
P. R. China
E-mail: facingworld@163.com



Singular Integrals Associated to Submanifolds 1587
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