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OPTIMALITY CONDITIONS FOR EFFICIENT SOLUTION TO THE
VECTOR EQUILIBRIUM PROBLEMS WITH CONSTRAINTS

Xun-Hua Gong

Abstract. In this paper, by using the generalization of Ljusternik theorem, the
open mapping theorem of convex process, and the convex sets separation theo-
rem, we give the necessary conditions for the efficient solution to the constrained
vector equilibrium problems without requiring that the ordering cone in the ob-
jective space has a nonempty interior and without requiring that the the convexity
conditions. By the assumption of the convexity, we give the sufficient conditions
for the efficient solution. As applications, we give the necessary conditions and
the sufficient conditions for efficient solution to the constrained vector variational
inequalities and constrained vector optimization problems.

1. INTRODUCTION

Vector equilibrium problems is an important part of non-linear analysis. Vector
variational inequalities, vector optimization, vector Nash equilibrium, and vector com-
plementarity problem are all special cases of the vector equilibrium problem (see [1]).
An important subject of the vector equilibrium problems is to study its optimality con-
dition. Giannessi, Mastroeni, Pellegrini [2] turned the vector variational inequalities
with the constraints into another vector variational inequalities without the constraints.
They gave sufficient conditions for efficient solution and weakly efficient solution to
the vector variational inequalities in finite dimensional spaces. By using the concept
of subdifferential of the function, Morgan and Romaniello [3] investigated the scalar-
ization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational
inequalities in Hilbert space. Yang and Zheng [4] provided the optimality condition
for the approximate solutions of vector variational inequalities in Banach space. Gong
[5] investigated the optimality conditions for weakly efficient solution, Henig solution,

Received July 19, 2011, accepted September 20, 2011.
Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: 49J52, 49J50, 90C29, 90C46.
Key words and phrases: Vector equilibrium problems, Efficient solution, Optimality conditions.
This research was partially supported by the National Natural Science Foundation of China (11061023)
and the Natural Science Foundation of Jiangxi Province (2008GZS0072), P. R. China.

1453



1454 Xun-Hua Gong

superefficient solution, and globally efficient solution to the vector equilibrium prob-
lems with convexity conditions, and showed that the weakly efficient solution, Henig
efficient solution, globally efficient solution, and superefficient solution to the vec-
tor equilibrium problems with constraints are equivalent to solution of corresponding
scalar optimization problems without constraints, respectively. Qiu [6] presented the
necessary and sufficient conditions for globally efficient solution of the vector equilib-
rium problems with constraints under generalized cone-subconvexlikeness and proved
that the Kuhn- Tucker condition for the vector equilibrium problems with constraints is
both necessary and sufficient under the condition of cone-preinvexity. Using nonsmooth
analysis and the scalarization results, Gong [7] provided the necessary conditions for
weakly efficient solutions, Henig efficient solutions, globally efficient solutions, and
superefficient solutions to the vector equilibrium problems.

Since the above investigation relies on the assumption that the ordering cones have
a nonempty interior, they therefore depend on the advantage of the openness of interior
of the ordering cone. In many cases, however, the ordering cone has an empty interior.
For example, for each 1 < p < +∞, the positive cone of the normed linear spaces lp

and Lp(Ω) has an empty interior.
The efficient solution is an important solution to the vector equilibrium problems,

the concept of efficient solution does not require the condition that the ordering cone
has an nonempty interior. Gong and Yao [8, 9] studied the connectedness of the set
of efficient solutions and the lower semicontinuity of the efficient solution mapping
for vector equilibrium problems. So far, there has been no study on the optimality
conditions for efficient solutions to the vector equilibrium problems with the condition
that the ordering cone in the objective space has an empty interior. The difficulty lies
in the fact that we can not use the separation theorem of convex sets directly.

In this paper, by using the concept of Fréchet differentiability of mapping, we study
the optimality conditions for efficient solution of the vector equilibrium problems with
constraints. We use the generalization of Ljusternik theorem, the open mapping theorem
of convex process, and the convex sets separation theorem to give the necessary condi-
tions for the efficient solution of the constrained vector equilibrium problems requiring
neither that the ordering cone in the objective space has a nonempty interior and nor
that the the convexity conditions. By the assumption of the convex, we also give the
sufficient conditions for the efficient solution. As applications, we give the necessary
conditions and the sufficient conditions for efficient solution to the constrained vector
variational inequalities and constrained vector optimization problems.

2. PRELIMINARIES AND DEFINITIONS

Throughout this paper, let X, Y, and Z be real Banach spaces. Let C ⊂ Y and
K ⊂ Z be closed convex pointed cones with intK �= ∅, where intK denotes the
interior of the set K.
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Let Y ∗ and Z∗ be the topological dual spaces of Y and Z, respectively. Let

C∗ = {y∗ ∈ Y ∗ : y∗(y) ≥ 0 for all y ∈ C}
and

K∗ = {z∗ ∈ Z∗ : z∗(z) ≥ 0 for all z ∈ K}
be the dual cones of C and K , respectively. Denote the quasi-interior of C∗ by C#,
i.e.

C# = {y∗ ∈ Y ∗ : y∗(y) > 0 for all y ∈ C\{0}}.

Let S ⊂ X be a nonempty open convex subset, and F : S × S → Y , g : S → Z
be mappings.

We define the constraint set

A = {x ∈ S : g(x) ∈ −K} ,

and consider the vector equilibrium problems with constraints (for short, VEPC): find
x ∈ A such that

F (x, y) /∈ −P\{0} for all y ∈ A,

where P is a convex cone in Y .

Definition 2.1. A vector x ∈ A satisfying

F (x, y) /∈ −C\{0} for all y ∈ A,

is called an efficient solution to the VEPC.
Let L(X, Y ) be the space of all bounded linear mapping from X to Y .
VEPC includes as a special case a vector variational inequality with constraints

(for short, VVIC) involving

F (x, y) = (Tx)(y − x), x, y ∈ S,

where T is a mapping from S to L(X, Y ).

Definition 2.2. If F (x, y) = (Tx)(y − x), x, y ∈ S, and if x ∈ A is an efficient
solution to the VEPC, then x ∈ A is called an efficient solution to the VVIC.

Another special case of VEPC is a vector optimization problem with constraints
(for short, VOPC) involving

F (x, y) = f(y) − f(x), x, y ∈ S,
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where f : S → Y be a mapping.

Definition 2.3. If F (x, y) = f(y) − f(x), x, y ∈ S, and if x ∈ A is an efficient
solution to the VEPC, then x ∈ A is called an efficient solution to the VOPC.

Definition 2.4. Let X be a real linear space, and Y be a real topological linear
space. Let S2 be a nonempty subset of X , and let a mapping f : S2 → Y and some
x̄ ∈ S2 be given. If for some h ∈ X the limit

f ′(x̄)(h) = lim
λ→0

1
λ (f (x̄ + λh) − f(x̄))

exists, then f ′(x̄)(h) is called the Gâteaux derivative of f at x̄ in the direction h. If
this limit exists for each direction h, the mapping f is called Gâteaux differentiable at
x̄.

Definition 2.5. Let X and Y be real normed spaces, and let D be a nonempty
open subset of X . Moreover, let a mapping f : D → Y and some x̄ ∈ D be given. If
there exists a continuous linear mapping f ′(x̄) : X → Y with the property

lim
‖h‖→0

‖f(x̄ + h) − f(x̄) − f ′(x̄)(h)‖
‖h‖ = 0,

then f ′(x̄) is called the Fréchet derivative of f at x̄ and f is called Fréchet differentiable
at x̄.

Remark 2.1. By the Lemma 2.18 of ([10]), we can see that, if f is Fréchet
differentiable at x̄, then f is Gâteaux differentiable at x̄ and the Fréchet derivative of
f at x̄ is equal to the Gâteaux derivative of f at x̄ in each direction h.

Definition 2.6. Let X and Y be real linear spaces, C be a pointed convex cone
in Y , and let A be a nonempty convex subset of X . A mapping f : A → Y is called
C− convex, if for all x, y ∈ A and all λ ∈ [0, 1]

λf(x) + (1 − λ)f(y)− f(λx + (1 − λ)y) ∈ C.

Definition 2.7. Let T be a set-valued mapping from X to Y with T (x) �= ∅ for
all x ∈ X is called a convex process from X to Y if

(a) Tx + Ty ⊂ T (x + y) for all x, y ∈ X,

(b) T (λx) = λT (x) for all x ∈ X, λ > 0,

(c ) 0 ∈ T (0).
A convex process T from X to Y is said to be closed if {(x, y) : y ∈ Tx} is closed
in X × Y .

Chen [12] gave the following the generalization of Ljusternik theorem.
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Theorem 2.1. (see [12], p.94) Let X and Y be real Banach spaces, let f : X → Y

be a C1 mapping. If f ′(x̄)(X) = Y , then for any x ∈ X with ‖x‖ small enough, there
exists u ∈ X with ‖u‖ = ◦(‖x‖) such that

f(x̄ + x + u) − f(x̄)− f ′(x̄)(x) = 0.

In a fashion similar to Theorem 2.1, we can get the following Lemma 2.1. To
facilitate readers, we will give a proof of Lemma 2.1 in the appendix.

Lemma 2.1. Let X and Y be real Banach spaces, let S be a nonempty open
convex subset of X , and let f : S → Y be continuous Fréchet differentiable on a
neighborhood of x̄ ∈ S. If f′(x̄)(X) = Y , then for any x ∈ X with ‖x‖ small enough,
there exists u ∈ X with ‖u‖ = ◦(‖x‖) such that

f(x̄ + x + u) − f(x̄)− f ′(x̄)(x) = 0.

Lemma 2.2. (see [11], Theorem 2.2.1) Let X and Y be Banach spaces. Assume
that a closed convex process T : X → 2Y is surjective (in the sense that Im(T ) = Y ).
Then T−1 is Lipschitz: there exists a constant l > 0 such that, for all x1 ∈ T−1(y1)
and for any y2 ∈ Y , we can find a solution x2 ∈ T−1(y2) satisfying:

‖x1 − x2‖ ≤ l ‖ y1 − y2 ‖ .

Remark 2.2. If T satisfying the condition of Lemma 2.2, then T is an open
mapping. In fact, for any open subset D of X , and for any ȳ ∈ T (D), there exists
x̄ ∈ D such that ȳ ∈ T (x̄), that is x̄ ∈ T −1(ȳ). As D is an open set, there a
positive real number r such that U(x̄, r) = {x ∈ X : ‖x − x̄‖ < r} ⊂ D. For any
y ∈ U(ȳ, r/l) = {y ∈ Y : ‖y − ȳ‖ < r/l}, by Lemma 2.2, there exists x ∈ T−1(y)
satisfying:

‖ x − x̄ ‖≤ l ‖ y − ȳ ‖< l(r/l) = r.

Thus, x ∈ U(x̄, r), and hence y ∈ T (U(x̄, r)) ⊂ T (D). This means that U(ȳ, r/l) ⊂
T (D). Thus, ȳ is a interior point of T (D). By the arbitrarily of ȳ ∈ T (D), T (D) is
an open set.

3. OPTIMALITY CONDITION

In this section, we give the necessary conditions and the sufficient conditions for
the efficient solution to the vector equilibrium problems with constraints.

By the proof of the theorem 2.20 in [10] or from the definition, we have the
following lemma.

Lemma 3.1. Let X, Y be real normed spaces, let S be a nonempty open convex
subset of X , and let C be closed convex pointed cones in Y . Assume that f : S → Y
is C− convex and f is Gâteaux differentiable at x̄ ∈ S. Then

f(x)− f(x̄) − f ′(x̄)(x− x̄) ∈ C for all x ∈ S.
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Let x̄ ∈ S be given. Denote the mapping Fx̄ : S → Y by

Fx̄(y) = F (x̄, y), y ∈ S.

Theorem 3.1. Let X, Y, and Z be real Banach spaces, and let C and K be
closed convex pointed cones in Y and Z, respectively. Let intK �= ∅. Let S be a
nonempty open convex subset of X, x̄ ∈ A, and let F (x̄, x̄) = 0. Let Fx̄(·) : S → Y
be continuous Fréchet differentiable on a neighborhood of x̄, and g(·) : S → Z be
Fréchet differentiable at x̄. Suppose that F ′̄

x(x̄)(X) = Y . If x̄ is an efficient solution
to the VEPC, then there exist y∗ ∈ C∗, z∗ ∈ K∗\{0}, such that

(y∗ ◦ F ′̄
x(x̄) + z∗ ◦ g′(x̄)) (x− x̄) ≥ 0 for all x ∈ S,

and

z∗(g(x̄)) = 0.

If in addition, g′(x̄)(X) = Z, then y∗ �= 0.

Proof. Assume that x̄ ∈ A is an efficient solution to the VEPC. Pick e ∈ intK ,
then V = (e−intK)∩(−e+intK) is a neighborhood of zero in Z. Since g′(x̄)(0) = 0
and g′(x̄)(·) is continuous on X and x̄ ∈ A ⊂ S = intS, there exists a symmetric open
neighborhood U of zero in X with x̄ + U ⊂ S such that

(1) g′(x̄)(x) ∈ V for all x ∈ U.

Define the set

M = {(y, z) ∈ Y × Z : there exists x ∈ S such that y − F ′̄
x(x̄)(x− x̄) ∈ C,

z − (g(x̄) + g′(x̄)(x− x̄)) ∈ intK}.
Since S is a convex set, and F ′̄

x(x̄) and g′(x̄) are linear operators, we can see
that M is a nonempty convex set. We first show that intM �= ∅. For any (y, z) ∈
(F ′̄

x(x̄)(U) + C, e + intK), we have y ∈ F ′̄
x(x̄)(U) + C, and z ∈ e + intK. By

U ⊂ S − x̄, there exists x ∈ S with x − x̄ ∈ U , and c ∈ C such that

y = F ′
x̄(x̄)(x − x̄) + c.

As U is symmetric, we have −(x − x̄) ∈ U. By (1), we have

g′(x̄)(−(x − x̄)) ∈ V ⊂ −e + intK.

Therefore, we have

z − (g(x̄) + g′(x̄)(x− x̄)) ∈ e + intK − g(x̄) + g ′(x̄)(−(x− x̄))
= e + intK + K − e + intK ⊂ intK,
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and

y − F ′
x̄(x̄)(x − x̄) = F ′

x̄(x̄)(x − x̄) + c − F ′
x̄(x̄)(x − x̄) = c ∈ C.

Noting that x ∈ S, we have (y, z) ∈ M. By the arbitrary of (y, z) ∈ (F′̄
x(x̄)(U) +

C, e + intK), we have

(F ′
x̄(x̄)(U) + C, e + intK) ⊂ M.

Define T : X → 2Y by

Tx = F ′
x̄(x̄)(x) + C for all x ∈ X.

It is easy to see that T is a closed convex process. By assumption, T (X) = Y . In
view of Lemma 2.2 and Remark 2.2, we can see that T is an open mapping. Since U

is an open set, T (U) = F ′̄
x(x̄)(U) + C is an open set, and

(2) (F ′
x̄(x̄)(U) + C, e + intK) ⊂ intM.

Next, we show that (0, 0) /∈ intM . If not, (0, 0) ∈ intM, then there exist y and z

such that −y ∈ C\{0},−z ∈ intK and (y, z) ∈ M . Hence, there exists x ∈ S such
that

(3) y − F ′
x̄(x̄)(x − x̄) ∈ C, z − (g(x̄) + g′(x̄)(x− x̄)) ∈ intK.

Noting that −y ∈ C\{0}, C is a pointed cone, and (3), we have

(4) F ′
x̄(x̄)(x− x̄) �= 0.

Since Fx̄(·) is continuous Fréchet differentiable on a neighborhood of x̄, and F ′̄
x(x̄)(X) =

Y, by Lemma 2.1, for each positive integer n large enough, and for (x− x̄)/tn), where
tn → +∞, there exists un ∈ X with ‖un‖ = ◦(‖x− x̄‖/tn) such that

Fx̄(x̄ + ((x− x̄)/tn) + un) − Fx̄(x̄) − F ′
x̄(x̄)((x− x̄)/tn) = 0.

Noting that Fx̄(x̄) = 0, we have

(5) Fx̄(x̄ + ((x− x̄)/tn) + un) − F ′
x̄(x̄)((x− x̄)/tn) = 0.

Set xn = x̄ + ((x − x̄)/tn) + un. We have xn → x̄. By (4), x − x̄ �= 0. Since
‖un‖ = ◦(‖x− x̄‖/tn), we have

tn ‖ un ‖ / ‖ x − x̄‖ → 0,

and hence
tn‖un‖ → 0.
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Thus,

tn(xn − x̄) = tn(x̄ + ((x − x̄)/tn) + un − x̄) = x − x̄ + tnun → x − x̄.

By (4) and (5), we have

(6) tnF (x̄, xn) = tnFx̄(xn) = F ′
x̄(x̄)(x− x̄) �= 0.

This together with (3) yields

y − tnFx̄(xn) ∈ C.

Hence, there exist cn ∈ C such that

Fx̄(xn) = (y − cn)/tn, for n large enough.

Since −y ∈ C\{0}, we obtain

Fx̄(xn) ∈ −C\{0}.
That is

(7) F (x̄, xn) ∈ −C\{0} for n large enough.

By (3),
−z + (g(x̄) + g′(x̄)(x− x̄)) ∈ −intK.

Noting that −z ∈ intK, we get

(8) g(x̄) + g′(x̄)(x − x̄) ∈ z − intk ⊂ −intK.

Since g is Fréchet differentiable at x̄,

(9) g(xn) − g(x̄) − g′(x̄)(xn − x̄) = ω(x̄; xn − x̄),

where ‖ω(x̄; xn− x̄)‖ = ◦(‖xn− x̄‖). By (6) and F (x̄, x̄) = 0, we have xn �= x̄. From
(9) and tn(xn − x̄) → x − x̄, we get

(10) g′(x̄)(tn(xn − x̄)) + tn‖xn − x̄‖(ω(x̄; xn − x̄)/‖xn − x̄‖) = tn(g(xn)− g(x̄)).

As tn(xn − x̄) → x − x̄, {tn‖xn − x̄‖} is a bounded sequence, by ‖ω(x̄; xn − x̄)‖ =
◦(‖xn − x̄‖), we get

‖ω(x̄; xn − x̄)‖/‖xn − x̄‖ → 0.

Taking the limit on the both side of (10), we get

g′(x̄)(x− x̄)) = lim
n→∞ tn(g(xn) − g(x̄)),
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hence,
g(x̄) + g′(x̄)(x− x̄)) = g(x̄) + lim

n→∞ tn(g(xn)− g(x̄)).

By (8), there exists N1, when n ≥ N1, we have

g(x̄) + tn(g(xn) − g(x̄)) ∈ −intK,

and tn > 1 because tn → +∞. Hence

tng(xn) ∈ −(1 − tn)g(x̄) − intK ⊂ −intK.

Therefore,

(11) g(xn) ∈ −intK ⊂ −K.

Since xn → x̄ ∈ A ⊂ S = intS, there exists n0 > N1 large enough such that

(12) xn0 ∈ S.

By (11) and (12), we have xn0 ∈ A. By (7),

F (x̄, xn0) ∈ −C\{0}.

This is a contradicts that x̄ is an efficient solution to the VEPC. Hence, (0, 0) /∈ intM .
By the separation theorem of convex sets (see [10]), there exists (0, 0) �= (y∗, z∗) ∈
(Y × Z)∗ = Y ∗ × Z∗ such that

(13) y∗(y) + z∗(z) > 0 for all (y, z) ∈ intM.

Noting that M is convex set and intM �= ∅, M = intM, we have

(14) y∗(y) + z∗(z) ≥ 0 for all (y, z) ∈ M.

Let (y, z) ∈ M . Then there exists x ∈ S such that

y − F ′
x̄(x̄)(x− x̄) ∈ C, z − (g(x̄) + g′(x̄)(x − x̄)) ∈ intK.

Hence, for every c ∈ C, k ∈ intK, t > 0, t′ > 0, we have (y+tc, z) ∈ M, (y, z+t′k) ∈
M. By (14), we have

y∗(y + tc) + z∗(z) ≥ 0 for all c ∈ C, t > 0.

It implies that y∗ ∈ C∗. Similarly, we can show that z∗ ∈ K∗. We claim that z∗ �= 0.
In fact, if z∗ = 0, from (13), we get

(15) y∗(y) > 0 for all (y, z) ∈ intM.
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Taking U as in (2), by (2), we have

(F ′
x̄(x̄)(x) + c, e + k) ∈ intM, for all x ∈ U, c ∈ C, k ∈ intK.

By (15),
y∗(F ′

x̄(x̄)(0)) > 0.

But, F ′̄
x(x̄)(0) = 0, and y∗(0) = 0, we get a contradiction. Thus, z∗ �= 0. It follows

from

(F ′
x̄(x̄)(x− x̄) + c, g(x̄) + g′(x̄)(x− x̄) + k) ∈ M, for all x ∈ S, c ∈ C, k ∈ intK,

and (14) that

y∗(F ′
x̄(x̄)(x−x̄)+c)+z∗(g(x̄)+g′(x̄)(x−x̄)+k) ≥ 0 for all x ∈ S, c ∈ C, k ∈ intK.

It implies that

(16)
y∗(F ′

x̄(x̄)(x − x̄) + c) + z∗(g(x̄) + g′(x̄)(x− x̄) + k) ≥ 0,

for all x ∈ S, c ∈ C, k ∈ K.

Taking c = 0, we obtain

(17) y∗(F ′
x̄(x̄)(x− x̄)) + z∗(g(x̄) + g′(x̄)(x− x̄) + k) ≥ 0, for all x ∈ S, k ∈ K.

Since x̄ ∈ S, by (17), we get
z∗(g(x̄)) ≥ 0.

By g(x̄) ∈ −K, and z∗ ∈ K∗, we have z∗(g(x̄)) ≤ 0. Thus,

(18) z∗(g(x̄)) = 0.

By (17) and (18), we get

(y∗ ◦ F ′̄
x(x̄) + z∗ ◦ g′(x̄)) (x − x̄) ≥ 0 for all x ∈ S.

If in addition, g′(x̄)(X) = Z, then y∗ �= 0. In fact, if y∗ = 0, then by (16),

z∗(g(x̄) + g′(x̄)(x− x̄) + k) ≥ 0, for all x ∈ S, k ∈ K.

Noting that g(x̄) ∈ −K, we have

(19) z∗(g′(x̄)(x − x̄)) ≥ 0 for all x ∈ S.

Since x̄ ∈ S = intS, there exists some neighborhood W of zero such that W + x̄ ⊂ S.

By (19), we have

(20) z∗(g′(x̄)(x′)) ≥ 0 for all x′ ∈ W.
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This implies that
z∗(g′(x̄)(x)) ≥ 0 for all x ∈ X,

therefore,
z∗(g′(x̄)(x)) = 0 for all x ∈ X.

This together with g ′(x̄)(X) = Z implies that z∗(z) = 0 for all z ∈ Z. This means
that z∗ = 0. This contradicts that z∗ �= 0.

Theorem 3.2. Let X, Y, and Z be real Banach spaces, and let C ⊂ Y be a closed
convex pointed cone, and K ⊂ Z be a closed convex pointed cone with intK �= ∅. Let
S be a nonempty open convex subset of X . Let x̄ ∈ A, and F (x̄, x̄) = 0. Assume
that Fx̄(·) and g(·) are Gâteaux differentiable at x̄, and Fx̄(·) is C− convex on S, and
g(·) is K− convex on S. If there exist y∗ ∈ C� and z∗ ∈ K∗ such that
(21)

(
y∗ ◦ F ′

x̄(x̄) + z∗ ◦ g′(x̄)
)
(x − x̄) ≥ 0 for all x ∈ S,

and
(22) z∗(g(x̄)) = 0,

then x̄ is an efficient solution to the VEPC.

Proof. Since the mappings Fx̄(·) and g(·) are Gâteaux differentiable at x̄ ∈ A,
and Fx̄(·) is C− convex on S, and g(·) is K− convex on S. From Lemma 3.1, we
have

(23) F ′
x̄(x̄)(x− x̄) ∈ Fx̄(x) − Fx̄(x̄) − C=Fx̄(x) − C for all x ∈ S,

(24) g′(x̄)(x − x̄) ∈ g(x)− g(x̄) − K for all x ∈ S.

From y∗ ∈ C�, z∗ ∈ K∗ and (21), (23), and (24), we get

y∗ (Fx̄(x))+z∗ (g(x)−g(x̄)) ≥ (
y∗ ◦ F ′

x̄(x̄)+z∗ ◦ g′(x̄)
)
(x−x̄) ≥ 0 for all x ∈ S.

This together with (22), we get

(25) y∗ (Fx̄(x)) + z∗ (g(x)) ≥ 0 for all x ∈ S.

We will show that x̄ ∈ A is an efficient solution to the VEPC. If not, then there exists
y0 ∈ A such that

F (x̄, y0) ∈ −C\{0}.
From y∗ ∈ C� we have

y∗ (F (x̄, y0)) < 0.

Notice y0 ∈ A, we have g(y0) ∈ −K , therefore, z∗(g(y0)) ≤ 0 because of z∗ ∈ K∗.
Hence,

y∗ (Fx̄(y0)) + z∗ (g(y0)) < 0.

This contradicts (25). Hence, x̄ is an efficient solution to the VEPC.
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4. APPLICATION

In this section, we use the results of Section 3 to get the optimality conditions for
efficient solution to the vector variational inequalities with constraints (for short, VVIC)
and vector optimization problems with constraints (for short, VOPC), respectively.

Theorem 4.1. Let X, Y, and Z be real Banach spaces, and let C ⊂ Y and K ⊂ Z
be closed convex pointed cones, and let intK �= ∅. Let S be a nonempty open convex
subset of X , and let that T : S → L(X, Y ) be a mapping, g(·) : S → Z be Fréchet
differentiable at x̄ ∈ A. Suppose that T (x̄)(X) = Y . If x̄ is an efficient solution to
the VVIC, then there exist y∗ ∈ C∗, z∗ ∈ K∗\{0}, such that

(y∗ ◦ T (x̄) + z∗ ◦ g′(x̄)) (x − x̄) ≥ 0 for all x ∈ S,

and

z∗(g(x̄)) = 0.

If in addition, g′(x̄)(X) = Z, then y∗ �= 0.

Proof. Let x̄ ∈ A be an efficient solution to the VVIC. Let

F (x, y) = (Tx)(y − x), x, y ∈ S.

Then, x̄ is an efficient solution to the VEPC. It is clear that F (x̄, x̄) = 0.
For any u ∈ S,

lim
‖h‖→0

‖Fx̄(u + h) − Fx̄(u)− T (x̄)(h)‖
‖h‖

= lim
‖h‖→0

‖F (x̄, u + h) − F (x̄, u)− T (x̄)(h)‖
‖h‖

= lim
‖h‖→0

‖(T x̄)(u + h − x̄) − (T x̄)(u − x̄) − T (x̄)(h)‖
‖h‖

= lim
‖h‖→0

‖(T x̄)(u− x̄) + (T x̄)(h) − (T x̄)(u− x̄)− T (x̄)(h)‖
‖h‖ = 0.

Since T x̄ ∈ L(X, Y ) and Fréchet derivative is uniquely determined,

F ′
x̄(u) = T x̄ for all u ∈ S.

So F ′̄
x(·) is continuous on a neighborhood of x̄ ∈ S (let L(X, Y ) be equipped with

norm topology), that is Fx̄(·) : S → Y be continuous Fréchet differentiable on a
neighborhood of x̄ ∈ S. Noting that F ′̄

x(x̄) = T (x̄), by assumption, we have that
F ′̄

x(x̄)(X) = Y and g(·) is Fréchet differentiable at x̄ ∈ S. In view of Theorem 3.1,
there exist y∗ ∈ C∗, z∗ ∈ K∗\{0}, such that
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(y∗ ◦ T (x̄) + z∗ ◦ g′(x̄)) (x − x̄) ≥ 0 for all x ∈ S,

and

z∗(g(x̄)) = 0.

If in addition, g′(x̄)(X) = Z, then y∗ �= 0.

Theorem 4.2. Let X, Y, and Z be real Banach spaces, and let C ⊂ Y be
a closed convex pointed cone, and K ⊂ Z be a closed convex pointed cone with
intK �= ∅. Let S be a nonempty open convex subset of X . Let x̄ ∈ A. Assume that
that T : S → L(X, Y ) is a mapping, g(·) is Gâteaux differentiable at x̄, and g(·) is
K− convex on S. If there exist y∗ ∈ C� and z∗ ∈ K∗ such that

(
y∗ ◦ T (x̄) + z∗ ◦ g′(x̄)

)
(x − x̄) ≥ 0 for all x ∈ S,

and
z∗(g(x̄)) = 0,

then x̄ is an efficient solution to the VVIC.

Proof. Let
F (x, y) = (Tx)(y − x), x, y ∈ S.

It is clear that F (x̄, x̄) = 0. Fx̄(·) = (T x̄)(· − x̄) and g(·) are Gâteaux differentiable
at x̄ ∈ A. For any h ∈ X,

F ′
x̄(x̄)(h) = lim

λ→0

Fx̄(x̄ + λh) − Fx̄(x̄)
λ

= lim
λ→0

(T x̄)(x̄ + λh− x̄)
λ

= lim
λ→0

λ(T x̄)(h)
λ

= (T x̄)(h).

It is clear that Fx̄(·) is C− convex on S, and g(·) is K− convex on S. If there exist
y∗ ∈ C� and z∗ ∈ K∗ such that

(
y∗ ◦ T (x̄) + z∗ ◦ g′(x̄)

)
(x − x̄) ≥ 0 for all x ∈ S,

and
z∗(g(x̄)) = 0,

then (
y∗ ◦ F ′

x̄(x̄) + z∗ ◦ g′(x̄)
)
(x − x̄) ≥ 0 for all x ∈ S.

By Theorem 3.2, x̄ is an efficient solution to the VEPC, hence x̄ is an efficient solution
to the VVIC.
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Theorem 4.3. Let X, Y, and Z be real Banach spaces, let C ⊂ Y and K ⊂ Z

be closed convex pointed cones, and let intK �=∅. Let S be a nonempty open convex
subset of X . Let f : S→Y be continuous Fréchet differentiable on a neighborhood of
x̄ ∈ A, and g(·) : S →Z be Fréchet differentiable at x̄. Suppose that f ′(x̄)(X)=Y .
If x̄ is an efficient solution to the VOPC, then there exist y ∗∈C∗, z∗∈K∗\{0}, such
that

(y∗ ◦ f ′(x̄) + z∗ ◦ g′(x̄)) (x − x̄) ≥ 0 for all x ∈ S

and

z∗(g(x̄)) = 0.

If in addition, g ′(x̄)(X) = Z, then y∗ �= 0.

Proof. Let x̄ ∈ A be an efficient solution to the VOPC. Let

F (x, y) = f(y)− f(x), x, y ∈ S.

Then, x̄ is an efficient solution to the VEPC. It is clear that F (x̄, x̄) = 0. Since f is
continuous Fréchet differentiable on a neighborhood U of x̄ ∈ S, for any u ∈ U ,

lim
‖h‖→0

‖Fx̄(u + h) − Fx̄(u)− f ′(u)(h)‖
‖h‖

= lim
‖h‖→0

‖F (x̄, u + h) − F (x̄, u)− f ′(u)(h)‖
‖h‖

= lim
‖h‖→0

‖f(u + h) − f(x̄)− (f(u)− f(x̄)) − f ′(u)(h)‖
‖h‖

= lim
‖h‖→0

‖f(u + h) − f(u)− f ′(u)(h)‖
‖h‖ = 0.

Thus F ′̄
x(u) = f ′(u) for all u ∈ U . In particular, F ′̄

x(x̄) = f ′(x̄). Fx̄(·) is continuous
Fréchet differentiable on a neighborhood of x̄ ∈ S. By assumption and using Theorem
3.1, we can see that there exist y∗ ∈ C∗, z∗ ∈ K∗\{0}, such that

(y∗ ◦ F ′̄
x(x̄) + z∗ ◦ g′(x̄)) (x− x̄) ≥ 0 for all x ∈ S,

and

z∗(g(x̄)) = 0.

That is

(y∗ ◦ f ′(x̄) + z∗ ◦ g′(x̄)) (x − x̄) ≥ 0 for all x ∈ S

and

z∗(g(x̄)) = 0.
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If in addition, g′(x̄)(X) = Z, then y∗ �= 0.

Theorem 4.4. Let X, Y, and Z be real Banach spaces, and let C ⊂ Y be a closed
convex pointed cone, and K ⊂ Z be a closed convex pointed cone with intK �= ∅. Let
S be a nonempty open convex subset of X . Let x̄ ∈ A, Assume that f(·) and g(·) are
Gâteaux differentiable at x̄, and f(·) is C− convex on S, and g(·) is K− convex on
S. If there exist y∗ ∈ C� and z∗ ∈ K∗ such that(

y∗ ◦ f ′(x̄) + z∗ ◦ g′(x̄)
)
(x − x̄) ≥ 0 for all x ∈ S,

and
z∗(g(x̄)) = 0,

then x̄ is an efficient solution to the VOPC.

Proof. Let
F (x, y) = f(y)− f(x), x, y ∈ S.

It is clear that F (x̄, x̄) = 0. It is easy to see that the Gâteaux derivative of Fx̄(·) at
x̄ ∈ A in the direction h is f ′(x̄)(h). We can see that Fx̄(·) = f(·) − f(x̄) and g(·)
are Gâteaux differentiable at x̄, and Fx̄(·) is C− convex on S, and g(·) is K− convex
on S. If there exist y∗ ∈ C� and z∗ ∈ K∗ such that(

y∗ ◦ f ′(x̄) + z∗ ◦ g′(x̄)
)
(x− x̄) ≥ 0 for all x ∈ S,

and
z∗(g(x̄)) = 0,

then (
y∗ ◦ F ′

x̄(x̄) + z∗ ◦ g′(x̄)
)
(x − x̄) ≥ 0 for all x ∈ S.

Then by Theorem 3.2, then x̄ is an efficient solution to the VEPC, hence x̄ is an
efficient solution to the VOPC.

5. APPENDIX

Lemma A. Let X and Y be Banach spaces, S be a nonempty open convex subset of
X , and let f : S → Y be a mapping, x̄ ∈ S, h ∈ X with L = {x̄+th : 0 ≤ t ≤ 1} ⊂ S.
Suppose that f is continuous Fréchet differentiable on L, then

f(x̄ + h) − f(x̄) =
∫ 1

0
f ′(x̄ + th)(h)dt.

Proof. Denote the topological dual space of Y by Y ∗. For x̄ ∈ S, h ∈ X with
L = {x̄ + th : 0 ≤ t ≤ 1} ⊂ S, and y∗ ∈ Y ∗ , we define the following real-valued
function

g(t) = y∗ ◦ f(x̄ + th), t ∈ [0, 1].
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It is easy to know that for each t ∈ [0, 1], we have

g′(t) = lim
�t→0

g(t + �t) − g(t)
�t

= lim
�t→0

y∗f(x̄ + (t + �t)h) − y∗f(x̄ + th)
�t

= y∗ ◦ f ′(x̄ + th)(h).

According to Newton-Leibniz formula, we have

y∗(f(x̄ + h) − f(x̄)) = g(1)− g(0) =
∫ 1

0
g′(t)dt

=
∫ 1

0
y∗(f ′(x̄ + th)(h))dt = y∗(

∫ 1

0
f ′(x̄ + th)(h)dt).

By the arbitrariness of y∗ ∈ Y ∗ , it follows that

f(x̄ + h) − f(x̄) =
∫ 1

0

f ′(x̄ + th)(h)dt.

The proof is complited.

The proof of Lemma 2.1. Set

X0 = {x ∈ X : f ′(x̄)(x) = 0}.
Since f ′(x̄) is continuous, X0 is a closed linear subspace of X . Taking into account
the quotient space X/X0, it is easy to known that X/X0 is a linear space. When
ẋ ∈ X/X0 , that is ẋ = x + X0, we define the norm ‖ẋ‖ = inf

x∈ẋ
‖x‖ in the quotient

space X/X0. It is clear that X/X0 is a Banach space since is X0 closed. If x, x′ ∈ ẋ,
then f ′(x̄)(x) = f ′(x̄)(x′). Now we define A : X/X0 → Y by

Aẋ = f ′(x̄)(x), for all ẋ ∈ X/X0 and x ∈ ẋ.

It is clear that A is well defined and A is a linear operator from the linearity of f ′(x̄).
For arbitrary ẋ ∈ X/X0,

‖Aẋ‖ = ‖f ′(x̄)(x)‖ ≤ ‖f ′(x̄)‖‖x‖ for all x ∈ ẋ.

Therefore,

‖Aẋ‖ ≤ ‖f ′(x̄)‖ · inf
x∈ẋ

‖x‖ = ‖f ′(x̄)‖ · ‖ẋ‖ for all ẋ ∈ X/X0.

Hence, A is a bounded linear operator. The zero element of X/X0 is 0̇ = X0. When
ẋ �= 0̇ , it is obvious that Aẋ �= 0. Hence A is injective. On the other hand, the
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assumption that f ′(x̄)(X) = Y implies that A(X/X0) = Y . From the Banach’s
inverse operator theorem, A has a bounded inverse operator denoted by A−1 since
X/X0 and Y are both Banach spaces.

By assumption, f is continuous Fréchet differentiable on a neighborhood of x̄ ∈ S,
then there exists a positive number r such that U(x̄, r) = x̄ + U(0, r) ⊂ S, where
U(0, r) = {x ∈ X : ‖x−0‖ < r}, and f : S → Y is continuous Fréchet differentiable
on U(x̄, r). Thus, there exists 0 < σ < r/2 such that

(26) sup
‖z−x̄‖<σ

‖f ′(z)− f ′(x̄)‖ < 1/(4‖A−1‖).

Take x with ‖x‖ < σ/2 . Since f is Fréchet differentiable at x̄,

(27) f(x̄ + x) − f(x̄) − f ′(x̄)(x) = ω(x̄; x),

where, lim
‖x‖→0

‖ω(x̄;x)‖
‖x‖ = 0 . We can pick ‖x‖ < σ/2 small enough such that

(28) ‖ω(x̄; x)‖ < σ/8‖A−1‖.
For this x, we use iteration method to solve the following equation

(29) f(x̄ + x + z) − f(x̄) − f ′(x̄)(x) = 0.

Let ż0 = 0̇, and

(30) ż1 = ż0 − A−1[f(x̄ + x + z0) − f(x̄) − f ′(x̄)(x)],

where z0 = 0. If f(x̄ + x + z0) − f(x̄) − f ′(x̄)(x) = 0 , then z = z0 = 0 is a
solution of (29). Obviously, z0 = ◦(‖x‖). Otherwise, ż1 �= 0̇ . Since ‖ż1‖ = inf

z∈ż1

‖z‖
and ‖ż1‖ < 2‖ż1‖, by the definition of infimum, there exists some z1 ∈ ż1 such that
inf
z∈ż1

‖z‖ ≤ ‖z1‖ < 2‖ż1‖. This together with (27), (28), and (30), we get

(31) ‖z1‖ < 2‖A−1‖‖f(x̄ + x) − f(x̄) − f ′(x̄)(x)‖ = 2‖A−1‖‖ω(x̄; x)‖ < σ/4.

Thus, x̄ + x + z1 ∈ U(x̄, σ). Let

(32) ż2 = ż1 − A−1[f(x̄ + x + z1) − f(x̄) − f ′(x̄)(x)].

If f(x̄ + x + z1) − f(x̄) − f ′(x̄)(x) = 0, then z1 is a solution of the equation (29).
Since lim

‖x‖→0

‖ω(x̄;x)‖
‖x‖ = 0 , By (31), we have lim

‖x‖→0

‖z1‖
‖x‖ = 0, thus, ‖z1‖ = ◦(‖x‖).

Otherwise, ż2 − ż1 �= 0̇. Set ẏ1 = A−1[f(x̄ + x + z1) − f(x̄) − f ′(x̄)(x)] . By (32),
ż2 = ż1 − ẏ1 = z1 − y1 + X0, where y1 ∈ ẏ1. Noting that

(33) ż2 − ż1 = −y1 + X0,
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‖ż2−ż1‖ = inf
x′∈X0

‖−y1+x′‖, and inf
x′∈X0

‖−y1+x′‖ = ‖ż2−ż1‖ < 2‖ż2−ż1‖. By the

definition of infimum, there exists some x0 ∈ X0 such that ‖−y1 +x0‖ < 2‖ż2− ż1‖.
We have ‖z1 − y1 + x0 − z1‖ < 2‖ż2 − ż1‖. By (33), z1 − y1 + x0 ∈ ż2. Let
z2 = z1 − y1 + x0, then z2 ∈ ż2. Thus,

(34) ‖z2 − z1‖ < 2‖ż2 − ż1‖.

By Lemma A, we have

f(x̄ + x + z1) − f(x̄ + x) =
∫ 1

0
f ′(x̄ + x + tz1)(z1)dt.

This together with (34), (30), (32), (26), and ‖x‖ + ‖z1‖ < σ, we get

‖z2 − z1‖ < 2‖ż2 − ż1‖ = 2‖ż1 − ż0 − A−1[f(x̄ + x + z1) − f(x̄ + x + z0)]‖
≤ 2‖A−1‖ · ‖f(x̄ + x + z1) − f(x̄ + x + z0) − A(ż1)‖
= 2‖A−1‖ · ‖

∫ 1

0
f ′(x̄ + x + tz1)(z1)dt − f ′(x̄)(z1)‖

= 2‖A−1‖ · ‖
∫ 1

0
f ′(x̄ + x + tz1)(z1)dt −

∫ 1

0
f ′(x̄)(z1)dt‖

= 2‖A−1‖ ·
∫ 1

0
‖f ′(x̄ + x + tz1)− f ′(x̄)‖‖(z1)‖dt

= 2‖A−1‖ ·
∫ 1

0
sup

‖z−x̄‖<σ
‖f ′(z) − f ′(x̄)‖‖(z1)‖dt

= 2‖A−1‖ · 1
4‖A−1‖‖z1‖ = ‖z1‖/2.

By (31), we have ‖z2‖ < (1 + 1/2)‖z1‖ < (3/2) · σ/4 < σ/2. This together with
‖x‖ < σ/2, we get

‖x + tz2‖ ≤ ‖x‖ + ‖z2‖ < σ/2 + σ/2 = σ for all t ∈ [0, 1].

Thus, x̄ + x + z2 ∈ U(x̄, σ). Since ‖z1‖ = ◦(‖x‖) and ‖z2‖ ≤ 3‖z1‖/2, we also have
‖z2‖ = ◦(‖x‖) . Let

ż3 = ż2 − A−1[f(x̄ + x + z2) − f(x̄) − f ′(x̄)(x)].

So we can obtain the conclusion that or we can get the solution of (29) through finite
iterations or else we can get a sequence {żn} by induction with

(35) żn = ˙zn−1 − A−1[f(x̄ + x + zn−1) − f(x̄) − f ′(x̄)(x)],
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where zn−1 ∈ ˙zn−1 with x̄ + x + zn−1 ∈ U(x̄, σ) and

(36) ‖zn − zn−1‖ < 2‖żn − ˙zn−1‖ and ‖zn‖ < σ/2.

By (35), and ‖x + tzk−1 + (1 − t)zk−2‖ < σ, we have

(37)

‖zk − zk−1‖ < 2‖żk − ˙zk−1‖
= 2‖ ˙zk−1 − ˙zk−2 − A−1[f(x̄ + x + zk−1)− f(x̄ + x + zk−2)]‖
≤ 2‖A−1‖ · ‖f(x̄ + x + zk−1) − f(x̄ + x + zk−2) − A( ˙zk−1 − ˙zk−2)‖
≤ 2‖A−1‖ · ‖f(x̄ + x + zk−1) − f(x̄ + x + zk−2) − f ′(x̄)(zk−1 − zk−2)‖
= 2‖A−1‖·‖

∫ 1

0

f ′(x̄ + x + zk−1 + t(zk−1 − zk−2))(zk−1 − zk−2)dt

−
∫ 1

0
f ′(x̄)(zk−1 − zk−2)dt‖

= 2‖A−1‖ · ‖
∫ 1

0
[f ′(x̄+x+zk−2+t(zk−1−zk−2))−f ′(x̄)](zk−1−zk−2)dt‖

≤ 2‖A−1‖ ·
∫ 1

0

sup
‖z−x̄‖<σ

‖f ′(z) − f ′(x̄)‖‖(zk−1 − zk−2)‖dt

≤ 2‖A−1‖ · 1
4‖A−1‖‖zk−1 − zk−2‖ = ‖zk−1 − zk−2‖/2, for all k ≥ 3.

and

(38) ‖zk−1‖ < (1 +
1
2

+ · · · + 1
2k−2

)‖z1‖, for all k ≥ 3.

For any n > 1 , noting that z0 = 0, we have

‖zn − zn−1‖ <
1
2
‖zn−1 − zn−2‖ < · · · <

1
2n−1

‖z1‖.

Thus,
lim

n→∞ ‖zn − zn−1‖ = 0.

For any natural number p, we have

‖zn+p − zn‖ ≤ ‖zn+p − zn+p−1‖ + ‖zn+p−1 − zn+p−2‖+ · · · + ‖zn+1 − zn‖

≤
(

1
2p−1

+
1

2p−2
+ · · · + 1

)
‖zn+1 − zn‖ < 2‖zn+1 − zn‖.

We can see that {zn} is a Cauchy sequence in X . Since X is complete, there exists
some z such that zn → z (n → ∞). By the definition of norm in the quotient space
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X/X0, it is clear that żn → ż, where z ∈ ż . Taking limit on both side of (35), by the
continuity of A−1 and f , we have

ż = ż − A−1[f(x̄ + x + z) − f(x̄)− f ′(x̄)(x)].

So
A−1[f(x̄ + x + z)− f(x̄)− f ′(x̄)(x)] = 0̇.

Since A is injective, so is A−1. Hence

f(x̄ + x + z) − f(x̄) − f ′(x̄)(x) = 0.

Furthermore, the conclusion ‖z‖ = ◦(‖x‖) follows immediately from the fact that
‖zn‖ ≤ 2‖z1‖ = ◦(‖x‖).
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