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LIMITING BEHAVIOR FOR RANDOM ELEMENTS WITH HEAVY TAIL

Ping Yan Chen and Tien Chung Hu*

Abstract. We present an accurate description of the limiting behavior for the
partial sums and the weighted sums of independent and identically distributed
random elements with heavy tail. A version of Chover-type law of the iterated
logarithm is deduced.

1. INTRODUCTION

Let (Ω,F , P ) be a probability space and suppose all random variables and
random elements are defined on this space. Suppose that B is a real separable
Banach space with norm ‖ · ‖. A B-valued random element X is defined as a Borel
measurable function from (Ω,F ) into B with Borel σ-algebra. The expected value
of a B-valued random element X is defined by Bochner integral and is denoted by
EX .

Chover [10] proved that

(1.1) lim sup
n→∞

∣∣∣∣∣n−1/α
n∑

k=1

Xk

∣∣∣∣∣
1/ log log n

= e1/α a.s.,

where {X, Xn, n ≥ 1} is a sequence of independent, identically distributed and
symmetric stable random variables with index α, 0 < α < 2, i.e., its characteristic
function is

E exp(itX) = exp(−c|t|α), ∀ t ∈ IR

for some c > 0.
We call (1.1) the Chover-type law of the iterated logarithm. This result has been

generalized by many authors, see [3-8, 16, 18, 19].
Obviously, (1.1) is equivalent to
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(1.2) P{|
n∑

k=1

Xk| > (n log1+δ n)1/α, i.o.} = 0

and

(1.3) P{|
n∑

k=1

Xk| > (n log1−δ n)1/α, i.o.} = 1

for every δ > 0, where the symbol “i.o.” denotes “infinitely often” as n tends
to infinity. Equations (1.2) and (1.3) give a description of upper functions of
{∑n

k=1 Xk, n ≥ 1} to a certain degree. In fact, Khintchine (cf. Theorem 8.11
in Mijnheeer [15]) earlier proved a characterization of {∑n

k=1 Xk, n ≥ 1}’s upper
classes via a more accurate description, i.e.

(1.4) lim sup
n→∞

(f(n))−1/α|
n∑

k=1

Xk| = 0 or ∞ a.s.

according to ∫ ∞

1

dx

f(x)
< ∞ or = ∞

respectively, where f > 0 is a nondecreasing function. By Khintchine’s result, (1.1)
holds immediately.

Since an infinite dimensional Banach space is not local compact, the classical
strong laws of random varaibles can not directly extend to random elements in Ba-
nach setting under same moment conditions. In order to investigate the strong laws
of random elements, we may need to put assumptions on the probability conditions
of random elements or geometrical conditions of the Banach space. Some exam-
ples can be founded in Ledoux and Talagrand [12] such as the strong law of large
numbers and the law of the iterated logarithm. The main purpose of this paper is
to find suitable conditions under which the analogous study of (1.1) and (1.4) for
the sums and the weighted sums of random elements with heavy tail are invested.

In Section 2, we will introduce the concept of regular varying functions and
related properties. Some technical lemmas which will be used to prove our main
results are also given. In Section 3, we will discuss the limiting behavior for the
partial sums and related applications. The limiting behavior for the weighted sums
which do not include the partial sums are given in Section 4.

2. PRELIMINARIES

Throughout the paper, we assume that {Xn, n ≥ 1}, {Xn, n ≥ 0} and {Xi,−∞
< i < ∞} are sequences of independent random elements with same distribution
as X which satisfies

(2.1) 0 < lim inf
x→∞ A(x)P{‖X‖ > x} ≤ lim sup

x→∞
A(x)P{‖X‖ > x} < ∞,
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where A(x) is a regularly varying function with index α, α > 0, i.e.

lim
x→∞

A(tx)
A(x)

= tα, for all t > 0.

We say that X has heavy tail with index α if (2.1) holds.
Let B(x) be the generalized inverse function of A(x), i.e.

B(x) = inf{y : A(y) ≥ x}.
From Bingham et al. [2] B(x) is a regularly varying function with index 1/α and
has the following representation:

B(x) = c(x)x1/α exp{
∫ x

1

b(u)
u

du},

where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ b(x) = 0. Moreover

(2.2) 0 < lim inf
x→∞ xP{‖X‖ > B(x)} ≤ lim sup

x→∞
xP{‖X‖ > B(x)} < ∞.

For example, A(x) = xα and A(x) = xα logx are regular varying functions with
index α. Their corresponding generalized inverse functions are B(x) = x1/α and
B(x) ∼ (αx)1/α(logx)−1/α as x → +∞.

Suppose X has heavy tail with index α, B(x) is defined as above, and I(·)
denotes the indicator function. Then X and B(x) have the following properties.

Property 1. For any a 	= 0, (2.1) holds true for aX .

Property 2. Let X ′ be an independent copy of X , (2.1) also holds true for
X − X ′.

Property 3. For any p ∈ (0, α), E‖X‖p < ∞.

Property 4. Let p > α, by Feller [11] (see Theorem 1, p.273),

(B(n))−pE‖X‖pI(‖X‖ ≤ B(n)) ≤ cn−1.

Property 5. For any δ > 0,

lim
x→∞

B(x)
x1/α−δ

= ∞ and lim
x→∞

B(x)
x1/α+δ

= 0.

Property 6. For any nondecreasing function f(x) → ∞ as x → ∞, for δ > 0,

lim
x→∞

B(xf(x))
B(x)f1/α−δ(x)

= ∞ and lim
x→∞

B(xf(x))
B(x)f1/α+δ(x)

= 0.
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In the rest of this paper, we denote c as a generic positive number which may
be different at different places.

The following lemma is a version of Lemma 3 of Chow and Lai [9] in the
setting of Banach spaces, and will be used to prove the divergence part of the main
results.

Lemma 2.1. Let {Yn, n ≥ 1} and {Zn, n ≥ 1} be two sequences of random
elements such that {Yk, 1 ≤ k ≤ n} and Zn are independent for each n ≥ 1.
Suppose Yn + Zn → 0 almost surely and Zn → 0 in probability as n → ∞. Then
Yn → 0 almost surely.

The second lemma is interesting in itself and will be used to prove Corollary
3.4.

Lemma 2.2. Let 0 < α < 2 and f > 0 be a nondecreasing function with∫∞
1

dx
xf(x) < ∞. Suppose supn≥1(B(nf(n)))−1‖∑n

k=1 Xk‖ < ∞ a.s. Then for
any 0 < p < α

(2.3) E sup
n≥1

‖(B(nf(n)))−1
n∑

k=1

Xk‖p < ∞.

Proof. From Corollary 6.12 in Ledoux and Talagrand [12], (2.3) is equivalent
to

E sup
n≥1

‖(B(nf(n)))−1Xn‖p < ∞.

From the representation of the regularly varying function (see Bingham et al. [2]),
there exists a function d(u) with d(u) → 0 as u → +∞ (i.e. |d(u)| < δ ∈ (0, α−p)
for µ large enough) such that

A(x) = l(x)xα exp{
∫ x

1

d(u)
u

du},

where limx→∞ l(x) = l ∈ (0,∞). Fix t ≥ 1 and p < α′ = α − δ < α. From
Eq. (2.1) and that B(x) is the inverse function of A(x), for n sufficiently large, we
have

P{‖X‖ > t1/pB(nf(n))} ≤ c{A(t1/pB(nf(n)))}−1

= c(nf(n))−1 · A(B(nf(n)))
A(t1/pB(nf(n)))

≤ c(nf(n))−1t−α/p exp{
∫ t1/pB(nf(n))

B(nf(n))

|d(u)|
u

du}
= c(nf(n))−1t−α/p · tδ/p

= ct−α′/p(nf(n))−1.
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Hence

E supn≥1 ‖(B(nf(n)))−1Xn‖p =
∫ ∞

0
P{sup

n≥1
‖(B(nf(n)))−1Xn‖ > t1/p}dt

≤ 1+
∫ ∞

1
P{sup

n≥1
‖(B(nf(n)))−1Xn‖>t1/p}dt

≤ 1+
∞∑

n=1

∫ ∞

1

P{‖Xn‖>t1/pB(nf(n))}dt

≤ 1+c

∞∑
n=1

1
nf(n)

∫ ∞

1
t−α′/pdt

≤ 1+c

∫ ∞

1

dx

xf(x)

∫ ∞

1
t−α′/pdt < ∞.

The following lemma is a version of the well-known Hoffmann-Jørgensen’s
inequality (see Li et al. [13]), and will be used to prove Theorem 4.1.

Lemma 2.3. Let {Yn, n ≥ 1} be a sequence of independent symmetric random
elements. Then for each j ≥ 1, there exist positive numbers C j and Dj depending
only on j such that for all n ≥ 1 and t > 0

(2.4) P{‖
n∑

k=1

Yk‖ > 2jt} ≤ CjP{ max
1≤k≤n

‖Yk‖ > t} + Dj(P{‖
n∑

k=1

Yk‖ > t})j.

3. MAIN RESULTS CONCERNING WITH THE PARTIAL SUMS

With the preliminaries accounted for, the main result of this section may be
stated and proved.

Theorem 3.1 Let 0 < α < 2 and f > 0 be a nondecreasing function. Suppose
{(B(n))−1

∑n
k=1 Xk, n ≥ 1} is bounded in probability, i.e. for every ε > 0, there

exists a constant M such that for every n ≥ 1

P{(B(n))−1‖
n∑

k=1

Xk‖ > M} < ε.

Then

(3.1) lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

Xk‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞
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respectively. In particular

(3.2) lim sup
n→∞

‖(B(n))−1
n∑

k=1

Xk‖1/ log logn = e1/α a.s.

Proof. Assume that
∫∞
1

dx
xf(x) < ∞. By Lemma 2.1 in Chen [6], there exists

a function g(x) such that

g(x) → ∞, g(x) ≤ f(x), lim sup
x→∞

g(2x)/g(x) < ∞, and
∫ ∞

1

dx

xg(x)
< ∞.

Therefore, in order to prove the first part of (3.1), we may further assume that f(x)
satisfies lim supx→∞ f(2x)/f(x) < ∞.

It is easy to show that f(x) → ∞ as x tends to infinity, hence {(B(n))−1
∑n

k=1

Xk, n ≥ 1} is bounded in probability implies that (B(nf(n)))−1
∑n

k=1 Xk → 0
in probability. By standard argument of symmetrization, without loss of generality
to assume that {X, Xn, n ≥ 1} are symmetric (cf. Lemma 7.1 in Ledoux and
Talagrand [12]). We first claim that

(3.3)
∞∑

n=1

n−1P{ max
1≤m≤n

‖
m∑

k=1

Xk‖ > εB(nf(n))} < ∞, ∀ ε > 0.

By Lévy inequality
∞∑

n=1

n−1P{ max
1≤m≤n

‖
m∑

k=1

Xk‖ > εB(nf(n))}

≤ 2
∞∑

n=1

n−1P{‖
n∑

k=1

Xk‖ > εB(nf(n))}

≤ 2
∞∑

n=1

P{‖X‖ > B(nf(n))}

+2
∞∑

n=1

n−1P{‖
n∑

k=1

XkI(‖Xk‖ ≤ B(nf(n)))‖ > εB(nf(n))}

= I1 + I2.

For I1, by (2.2)

I1 ≤ c

∞∑
n=1

1
nf(n)

≤ c

∫ ∞

1

dx

xf(x)
< ∞.

For I2, we first note that by Lemma 7.2 in Ledoux and Talagrand [12]

(B(nf(n)))−1E‖
n∑

k=1

XkI(‖Xk‖ ≤ B(nf(n)))‖ → 0 as n → ∞.
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And from Markov’s inequality, Theorem 2.1 in Acosta [1] and Property 4

I2 ≤
∞∑

n=1

n−1P{|‖
n∑

k=1

XkI(‖Xk‖ ≤ B(nf(n)))‖

−E‖
n∑

k=1

XkI(‖Xk‖ ≤ B(nf(n)))‖| > εB(nf(n))/2}

≤ c

∞∑
n=1

n−1(B(nf(n)))−2E|‖
n∑

k=1

XkI(‖Xk‖ ≤ B(nf(n)))‖

−E‖
n∑

k=1

XkI(‖Xk‖ ≤ B(nf(n)))‖|2

≤ c

∞∑
n=1

(B(nf(n)))−2E‖X‖2I(‖X‖ ≤ B(nf(n)))

≤ c

∞∑
n=1

1
nf(n)

≤ c

∫ ∞

1

dx

xf(x)
< ∞.

Note that for every ε > 0,
∞∑

n=1

n−1P{ max
1≤m≤n

‖
m∑

k=1

Xk‖ > εB(nf(n))}

=
∞∑
i=0

2i+1−1∑
n=2i

n−1P{ max
1≤m≤n

‖
m∑

k=1

Xk‖ > εB(nf(n))}

≥ 1
2

∞∑
i=0

P{ max
1≤m≤2i

‖
m∑

k=1

Xk‖ > εB(2i+1f(2i+1))}

By (3.3) and the Borel-Cantelli Lemma

(B(2i+1f(2i+1)))−1 max
1≤m≤2i

‖
m∑

k=1

Xk‖ → 0 a.s. as i → ∞.

By the assumption lim supx→∞ f(2x)/f(x) < ∞, we have

lim sup
i→∞

B(2i+1f(2i+1))(B(2if(2i)))−1 < ∞.

Hence

(B(2if(2i)))−1 max
1≤m≤2i

‖
m∑

k=1

Xk‖ → 0 a.s. as i → ∞,

which implies

(3.4) lim supn→∞(B(nf(n)))−1‖∑n
k=1 Xk‖ = 0 a.s.



224 Ping Yan Chen and Tien Chung Hu

Now assume that
∫∞
1

dx
xf(x)

= ∞. Suppose that

(3.5) lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

Xk‖ = ∞ a.s.

does not hold, then by Kolmogorov 0-1 law, there exists a constant M ∈ [0,∞)
such that

lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

Xk‖ = M a.s.

It is easy to show that

lim sup
n→∞

(B(nf(n)))−1‖Xn‖ ≤ 2M a.s.,

hence by the Borel-Cantelli Lemma,
∞∑

n=1

P{‖Xn‖ > 2MB(nf(n))} < ∞.

But on the other hand by Property 1 and (2.2),
∞∑

n=1

P{‖Xn‖ > 2MB(nf(n))} ≥ c

∞∑
n=1

1
nf(n)

≥ c

∫ ∞

1

dx

xf(x)
= ∞,

which leads to a contradiction. Therefore (3.5) holds and (3.1) is proved.
For every δ > 0, by (3.4)

lim sup
n→∞

(B(n log1+δ n))−1‖
n∑

k=1

Xk‖ = 0 a.s.

By Property 6, we have for any δ′ > 0

lim sup
n→∞

(B(n) log1/α+δ/α+δ′ n)−1‖
n∑

k=1

Xk‖ = 0 a.s.,

which implies

lim sup
n→∞

‖(B(n))−1
n∑

k=1

Xk‖1/ log log n ≤ e1/α+δ/α+δ′ a.s.

Thus we have

lim sup
n→∞

‖(B(n))−1
n∑

k=1

Xk‖1/ log log n ≤ e1/α a.s.
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By (3.5) and Property 6, using similar argument, we also have

lim sup
n→∞

‖(B(n))−1
n∑

k=1

Xk‖1/ log log n ≥ e1/α a.s.

Hence (3.2) holds and prove Theorem 3.1.

Remark 3.1. Assume that B is of Rademacher type p, 1 ≤ p ≤ 2. It is easy
to show that {(B(n))−1

∑n
k=1 Xk, n ≥ 1} is bounded in probability if (2.1) holds

for any 0 < α < p and further assume EX = 0 for 1 < α < p. In particular, all
Banach spaces are of Rademacher type 1, hence when 0 < α < 1, (2.1) always
implies that {(B(n))−1

∑n
k=1 Xk, n ≥ 1} is bounded in probability. See Ledoux

and Talagrand [12] for the details of the Rademacher type Banach space.

The following are corollaries of Theorem 3.1.

Corollary 3.1. Let 0 < α < 2, f > 0 be a nondecreasing function and
{mn, n ≥ 1} an integer subsequence with supn≥1 mn/n < ∞. Suppose that
{(B(n))−1

∑n
k=1 Xk, n ≥ 1} is bounded in probability. Then

(3.6) lim sup
n→∞

(B(nf(n)))−1‖
n+mn∑
k=n

Xk‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞

respectively. In particular

(3.7) lim sup
n→∞

‖(B(n))−1
mn+n∑
k=n

Xk‖1/ log logn = e1/α a.s.

and

(3.8) lim sup
n→∞

‖(B(n))−1
mn+n∑
k=n

Xk‖1/(log logn+log(n/mn)) = e1/α a.s.

Proof. It is enough to prove (3.6), the proofs of (3.7) and (3.8) are similar to the
proof of (3.2). We first prove the convergent part. Assume that

∫∞
1

dx
xf(x) < ∞. By

Lemma 2.1 in Chen [6], without loss of generality, we assume that lim supx→∞ f(2x)
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/f(x) < ∞. Hence supn≥1 mn/n < ∞ implies that supn≥1 B((n + mn)f(n +
mn))(B(nf(n))−1 < ∞. By (3.4)

lim sup
n→∞

(B(nf(n)))−1

∥∥∥∥∥
n+mn∑
k=n

Xk

∥∥∥∥∥
≤ lim sup

n→∞
B((n + mn)f(n + mn))

(B(nf(n)))−1(B((n + mn)f(n + mn)))−1

∥∥∥∥∥
n+mn∑
k=1

Xk

∥∥∥∥∥
+ lim sup

n→∞
(B(nf(n)))−1

∥∥∥∥∥
n−1∑
k=1

Xk

∥∥∥∥∥ = 0 a.s.

Now assume that
∫∞
1

dx
xf(x) = ∞, by Lemma 2.2 in Chen [3], there exists a

nondecreasing function g(x) > 0 such that

lim
x→∞ g(x) = ∞ and

∫ ∞

1

dx

xf(x)g(x)
= ∞.

Suppose that

lim sup
n→∞

(B(nf(n)))−1‖
n+mn∑
k=n

Xk‖ = ∞ a.s.

does not hold. Then By Kolomogorov 0-1 law, there exists a constant M ∈ [0,∞)
such that

lim sup
n→∞

(B(nf(n)))−1‖
n+mn∑
k=n

Xk‖ = M a.s.

Hence by Property 6

lim sup
n→∞

(B(nf(n)g(n)))−1‖
n+mn∑
k=n

Xk‖ = 0 a.s.

Let {X ′, X ′
n, n ≥ 1} be an independent copy of {X, Xn, n ≥ 1}, then we also have

lim sup
n→∞

(B(nf(n)g(n)))−1‖
n+mn∑
k=n

X ′
k‖ = 0 a.s.

Hence

lim sup
n→∞

(B(nf(n)g(n)))−1‖
n+mn∑
k=n

(Xk − X ′
k)‖ = 0 a.s.
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By Lemma 2.1, we obtain

lim sup
n→∞

(B(nf(n)g(n)))−1‖Xn − X ′
n)‖ = 0 a.s.

Therefore, from the Borel-Cantelli Lemma, we have
∞∑

n=1

P{‖Xn − X ′
n‖ > B(nf(n)g(n))} < ∞.

But on the other hand by Property 2 and (2.2)
∞∑

n=1

P{‖Xn − X ′
n‖>B(nf(n)g(n))}≥c

∞∑
n=1

1
nf(n)g(n)

≥c

∫ ∞

1

dx

xf(x)g(x)
= ∞,

which leads to a contradiction. This completes the proof.

We only state Corollaries 3.2 and 3.3 without proofs. The proofs of the con-
vergence parts is due to the method of Abel’s summation, and the proofs of the
divergence parts are similar to the proof of Corollary 3.1.

Corollary 3.2. Let 0 < α < 2 and f > 0 be a nondecreasing function. Set
β = (1 − β)−1 for |β| < 1. Suppose {(B(n))−1

∑n−1
k=0 Xk, n ≥ 1} is bounded in

probability. Then

(3.9) lim sup
β→1−

(B(βf(β)))−1‖
∞∑

k=0

βkXk‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞

respectively. In particular

(3.10) lim sup
β→1−

‖(B(β))−1
∞∑

k=0

βkXk‖1/ log logβ = e1/α a.s.

Corollary 3.3. Let 0 < α < 2, f > 0 be a nondecreasing function and
{ank, 1 ≤ k ≤ n, n ≥ 1} be an array of real constants such that

(a) supn≥1(
∑n−1

k=1 |ank − an,k−1| + |ann|) < ∞ if 1 ≤ α < 2 and supn≥1

max1≤k≤n |ank| < ∞ if 0 < α < 1,
(b) there exist two strictly increasing sequences {n(k), k ≥ 1} and {m(k), k ≥

1} such that
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(3.11) sup
k≥1

(n(k + 1)− n(k)) < ∞ and lim inf
k≥1

|an(k),m(k)| > 0.

Suppose {(B(n))−1
∑n

k=1 Xk, n ≥ 1} is bounded in probability. Then

(3.12) lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

ankXk‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞

respectively. In particular

(3.13) lim sup
n→∞

‖(B(n))−1
n∑

k=1

ankXk‖1/ log log n = e1/α a.s.

Corollary 3.4. Let 0 < α < 2, f > 0 be a nondecreasing function and
{ai,−∞ < i < ∞} be a sequence of real constants with

0 	=
∞∑

i=−∞
|ai|θ < ∞,

where θ = 1 if 1 < α < 2 and 0 < θ < α if 0 < α ≤ 1. Suppose that
{(B(n))−1

∑n
k=1 Xk, n ≥ 1} is bounded in probability. Then

(3.14) lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

∞∑
i=−∞

aiXk−i‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞

respectively. In particular

(3.15) lim sup
n→∞

‖(B(n))−1
n∑

k=1

∞∑
i=−∞

aiXk−i‖1/ log log n = e1/α a.s.

Proof. We only prove the convergence parts and the divegence part is similar
to Theorem 3.1. Suppose

∫∞
1

dx
xf(x) < ∞. Set

Ymn = (B(nf(n)))−1
n∑

k=1

m∑
i=−m

aiXk−i,

ãm = 0, ãi =
m∑

j=i+1

aj, i = 0, · · · , m− 1,
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˜̃a−m = 0, ˜̃ai =
i−1∑

j=−m

aj, i = −m + 1,−m + 2, · · · , 0,

X̃k =
m∑

i=1

ãiXk−i,
˜̃
Xk =

0∑
i=−m

˜̃aiXk−i.

Then

(3.16)
Ymn =

(
m∑

i=−m

ai

)
(B(nf(n)))−1)

n∑
k=1

Xk

+(B(nf(n)))−1(X̃0 − X̃n + ˜̃
Xn+1 − ˜̃

X1)

and

(3.17)

(B(nf(n)))−1
n∑

k=1

∞∑
i=−∞

aiXk−i

= Ymn + (B(nf(n)))−1
n∑

k=1

∑
|i|>m

aiXk−i.

For every i, by Property 1 and (2.2) for all ε > 0

∞∑
n=1

P{‖Xn−i‖ > εB(nf(n))} ≤ c
∞∑

n=1

1
nf(n)

≤ c

∫ ∞

1

dx

xf(x)
< ∞,

hence by Borel-Cantelli Lemma

lim
n→∞(B(nf(n)))−1‖Xn−i‖ = 0 a.s.

Thus we have
lim

n→∞(B(nf(n)))−1‖X̃n‖ = 0 a.s.

and
lim

n→∞(B(nf(n)))−1‖ ˜̃Xn+1‖ = 0 a.s.

And it is obvious that

lim
n→∞(B(nf(n)))−1‖X̃0‖ = lim

n→∞(B(nf(n)))−1‖ ˜̃X1‖ = 0 a.s.

Hence

(3.18) lim
n→∞(B(nf(n)))−1‖X̃0 − X̃n + ˜̃

Xn+1 − ˜̃
X1‖ = 0 a.s.

By (3.16)-(3.18) and Theorem 3.1
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(3.19)

lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

∞∑
i=−∞

aiXk−i‖

= lim sup
n→∞

‖Ymn +
∑
|i|>m

ai(B(nf(n)))−1
n∑

k=1

Xk−i‖

≤ lim sup
n→∞

|
m∑

i=−m

ai|‖(B(nf(n)))−1
n∑

k=1

Xk‖

+ lim sup
n→∞

∑
|i|>m

|ai|‖(B(nf(n)))−1
n∑

k=1

Xk−i‖

≤
∑
|i|>m

|ai| sup
n≥1

(B(nf(n)))−1‖
n∑

k=1

Xk−i‖ a.s.

Using Theorem 3.1, supn≥1(B(nf(n)))−1‖∑n
k=1 Xk‖ < ∞ almost surely, and

note that {Xi,−∞ < i < ∞} is stationary, by Lemma 2.2

E(
∞∑

i=−∞
|ai| sup

n≥1
(B(nf(n)))−1‖

n∑
k=1

Xk−i‖)θ

≤
∞∑

i=−∞
|ai|θE(sup

n≥1
(B(nf(n)))−1‖

n∑
k=1

Xk−i‖)θ

=
∞∑

i=−∞
|ai|θE(sup

n≥1
(B(nf(n)))−1‖

n∑
k=1

Xk‖)θ

< ∞.

Hence ∞∑
i=−∞

|ai| sup
n≥1

(B(nf(n)))−1‖
n∑

k=1

Xk−i‖ < ∞ a.s.

Let m → ∞ in (3.19), we have

lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

∞∑
i=−∞

aiXk−i‖ = 0 a.s.

Remark 3.2. Theorem 3.1 and Corollaries 3.1-3.4 extend and generalize the
results of [3-8, 10, 16, 18, 19] respectively.

4. MAIN RESULTS ABOUT THE WEIGHTED SUMS

In this section, the analogous studies of (1.1) and (1.4) are investigated for the
weighted sums which do not include the partial sums. Meanwhile the index α

maybe greater than or equal to 2.
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Theorem 4.1 Let α > 0, 0 < δ < min{1, 2/α}, f > 0 be a nondecreasing
function and {ank, 1 ≤ k ≤ kn, n ≥ 1} be an array of real constants such that

kn ≤ Mn, ∀ n ≥ 1,

sup
n≥1

max
1≤k≤kn

|ank| < ∞ and
kn∑

k=1

a2
nk = O(nδ),

where the constant M > 0 does not dependent on n and there exist two strictly
increasing sequences {n(k), k ≥ 1} and {m(k), k ≥ 1} such that (3.11) holds.
Suppose {(B(n))−1

∑kn
k=1 ankXk, n ≥ 1} is bounded in probability. Then

(4.1) lim sup
n→∞

(B(nf(n))−1‖
kn∑

k=1

ankXk‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞

respectively. In particular

(4.2) lim sup
n→∞

‖(B(n))−1
kn∑

k=1

ankXk‖1/ log log n = e1/α a.s.

Proof. We only prove the convergence part of (4.1), the proof in the rest part
is similar to Theorem 3.1 and Corollary 3.1. Suppose

∫∞
1

dx
xf(x)

< ∞. Then by
Lemma 2.1 in Chen [6], we assume that lim supx→∞ f(2x)/f(x) < ∞. Hence by
the same argument as Li et al. [13], we assume that kn = n. So it is enough to
prove that

(4.3) lim
n→∞(B(nf(n)))−1‖

n∑
k=1

ankXk‖ = 0 a.s.

Note that {(B(n))−1
∑n

k=1 ankXk, n ≥ 1} is bounded in probability implies that
(B(nf(n)))−1

∑n
k=1 ankXk → 0 in probability, hence by standard argument of

symmetrization, without loss of generality to assume that {X, Xn, n ≥ 1} are sym-
metric.

Choose an integer j ≥ 2 with j(min{1, 2/α} − δ′) > 1 for some δ′, δ < δ′ <
min{1, 2/α}. Set M0 = supn≥1 max1≤k≤n |ank|. Then (4.3) holds if we can show
that for every ε > 0

(4.4) lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=1

ankXk‖ ≤ 2j · 2M0ε a.s.

By (2.2)
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∞∑
n=1

P{‖Xn‖ > εB(nf(n))} ≤ c

∞∑
n=1

1
nf(n)

≤ c

∫ ∞

1

dx

xf(x)
< ∞.

Then by the Borel-Cantelli Lemma,
∑n

k=1 ankXkI(‖Xk‖ > εB(nf(n))) is bounded
almost surely. Therefore

lim
n→∞(B(nf(n)))−1‖

n∑
k=1

ankXkI(‖Xk‖ > εB(nf(n)))‖ = 0 a.s.

Thus to prove (4.4), it is enough to prove that

(4.5)
lim sup

n→∞
(B(nf(n)))−1

∥∥∥∥∥
n∑

k=1

ankXkI(‖Xk‖ ≤ εB(nf(n)))

∥∥∥∥∥
≤ 2j · 2M0ε a.s.

By the Borel-Cantelli Lemma, it is enough to prove that

(4.6)
∞∑

n=1

P

{∥∥∥∥ n∑
k=1

ankXkI(
∥∥Xk

∥∥≤εB(nf(n)))
∥∥∥∥>2j ·2M0εB(nf(n))

}
<∞.

In view of Lemma 2.3, (4.6) follows from

(4.7)

∞∑
n=1

P

{
max

1≤k≤n
‖ankXkI(‖Xk‖ ≤ εB(nf(n)))‖

> 2M0εB(nf(n))
}

< ∞

and

(4.8)

∞∑
n=1

(
P

{∥∥∥∥ n∑
k=1

ankXkI(‖Xk‖ ≤ εB(nf(n)))
∥∥∥∥

> 2M0εB(nf(n))
})j

< ∞.

Since max1≤k≤n ‖ankXkI(‖Xk‖ ≤ εB(nf(n)))‖ ≤ M0εB(nf(n))), for every
n ≥ 1, we know that

P{ max
1≤k≤n

‖ankXkI(‖Xk‖ ≤ εB(nf(n)))‖ > 2M0εB(nf(n))} = 0,

so (4.7) holds true. By Lemma 7.2 in Ledoux and Talagrand [12]

lim
n→∞(B(nf(n)))−1E‖ankXkI(‖Xk‖ ≤ εB(nf(n)))‖ = 0.
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Hence by Markov’s inequality, Theorem 2.1 in de Acosta [1], when n large enough,

P{‖
n∑

k=1

ankXkI(‖Xk‖ ≤ εB(nf(n)))‖ > 2M0εB(nf(n))}

≤ P{|‖
n∑

k=1

ankXkI(‖Xk‖ ≤ εB(nf(n)))‖

−E‖
n∑

k=1

ankXkI(‖Xk‖ ≤ εB(nf(n)))‖| > M0εB(nf(n))}

≤ c(B(nf(n)))−2E‖X‖2I(‖X‖ ≤ εB(nf(n)))
n∑

k=1

|ank|2

≤ cnδ(B(nf(n)))−2E‖X‖2I(‖X‖ ≤ εB(nf(n))).

When 0 < α < 2, by Property 4

nδ(B(nf(n)))−2E‖X‖2I(‖X‖ ≤ εB(nf(n))) ≤ cnδ−1 ≤ cnδ′−1.

When α = 2, let p = 2(1 + δ − δ′)−1, hence p > 2. By Jensen’s inequality and
Property 4

nδ(B(nf(n)))−2E‖X‖2I(‖X‖ ≤ εB(nf(n)))

≤ nδ((B(nf(n)))−pE‖X‖pI(‖X‖ ≤ εB(nf(n))))2/p

≤ cnδ′−1.

When α > 2, by Property 3, E‖X‖2 < ∞, hence by Property 5

nδ(B(nf(n)))−2E‖X‖2I(‖X‖ ≤ εB(nf(n))) ≤ cnδ′−2/α.

Hence we always have

P

{∥∥∥∥∥
n∑

k=1

ankXkI(‖Xk‖≤εB(nf(n)))

∥∥∥∥∥>2M0εB(nf(n))

}
≤cnδ′−min{1, 2/α}.

Since j(min{1, 2/α}− δ′) > 1, (4.8) follows at once. Hence (4.5) holds true.

By Theorem 4.1, we have the following corollaries.

Corollary 4.1. Let α > 0, 0 < γ < 1, 2γ − 1 < 2/α and f > 0 be a nonde-
creasing function. Suppose that {(B(n))−1

∑n
k=0 Cγ−1

n−kXk, n ≥ 1} is bounded in
probability, where for any β > −1, C β

0 = 1 and Cβ
j = (β + 1) · · · (β + j)/j! for

every j ≥ 1. Then
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(4.9) lim sup
n→∞

(B(nf(n)))−1‖
n∑

k=0

Cγ−1
n−kXk‖ = 0 or ∞ a.s.

according to ∫ ∞

1

dx

xf(x)
< ∞ or = ∞

respectively. In particular

(4.10) lim sup
n→∞

‖(B(n))−1
n∑

k=0

Cγ−1
n−kXk‖1/ log log n = e1/α a.s.

Proof. Let ank = Cγ−1
n−k for 0 ≤ k ≤ n and n ≥ 1. Note that for γ > −1

lim
n→∞ n−γCγ

n = Γ−1(γ + 1),

where Γ(·) is a gamma function. Hence it is easy to show that {ank, 0 ≤ k ≤
n, n ≥ 1} satisfies the conditions of Theorem 4.1. So by Theorem 4.1, we have
Corollary 4.1 at once.

Corollary 4.2. Let 0 < α < 4, 0 < q < 1 and f > 0 be a nondecreasing
function. Suppose that {(B(n))−1

√
n
∑n

k=0 Ck
nqk(1−q)n−kXk, n ≥ 1} is bounded

in probability. Then

(4.5) lim sup
n→∞

(B(nf(n)))−1
√

n‖
n∑

k=0

Ck
nqk(1− q)n−kXk‖ = 0 or ∞ a.s.

according as ∫ ∞

1

dx

xf(x)
< ∞ or = ∞.

In particular

(4.6) lim sup
n→∞

∥∥∥∥∥(B(n))−1√n

n∑
k=0

Ck
nqk(1− q)n−kXk

∥∥∥∥∥
1/ log logn

= e1/α a.s.

Proof. Let ank =
√

nCk
nqk(1 − q)n−k for 0 ≤ k ≤ n and n ≥ 1. By Lemma

1 in Maejima [14] and the Stirling’s formula, it is easy to show that {ank, 0 ≤ k ≤
n, n ≥ 1} satisfies the conditions of Theorem 4.1. So by Theorem 4.1, we complete
the proof.

Corollary 4.3. Let 0 < α < 4 and f > 0 be a nondecreasing function. Suppose
that {(B(n))−1√ne−n

∑∞
k=0

nk

k! Xk, n ≥ 1} is bounded in probability. Then

(4.7) lim sup
n→∞

(B(nf(n)))−1√ne−n

∥∥∥∥∥
∞∑

k=0

nk

k!
Xk

∥∥∥∥∥ = 0 or ∞ a.s.
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according as ∫ ∞

1

dx

xf(x)
< ∞ or = ∞.

In particular

(4.8) lim sup
n→∞

∥∥∥∥∥B−1(n)
√

ne−n
∞∑

k=0

nk

k!
Xk

∥∥∥∥∥
1/ log log n

= e1/α a.s.

Proof. Let t ∈ (0, min{1, α}). By Theorem 16 of Chapter 7 in Petrov [17],
there exists a constant M > 1 such that

∑
k≥Mn+1(

√
ne−n nk

k! )
t < cn−1. Hence

for some t′ ∈ (0, t), by Morkov inequality, cr-inequality and Properties 3 and 5, for
every ε > 0

P

{∥∥∥∥√ne−n
∑

k≥Mn+1

nk

k!
Xk

∥∥∥∥∥ ≥ εB(nf(n))

}
≤ cn−(1+t′/α)

By the Borel-Cantelli Lemma

lim
n→∞(B(nf(n)))−1√ne−n

∥∥∥∥∥ ∑
k≥Mn+1

nk

k!
Xk

∥∥∥∥∥ = 0 a.s.

Let ank =
√

ne−n nk

k! for 0 ≤ k ≤ Mn and n ≥ 1. It is easy to show that
{ank, 0 ≤ k ≤ Mn, n ≥ 1} satisfies the conditions of Theorem 4.1. So we
complete the proof.
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