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CONVERGENCE BEHAVIOR FOR NEWTON-STEFFENSEN’S METHOD

UNDER LIPSCHITZ CONDITION OF SECOND DERIVATIVE

Shaohua Yu, Xiubin Xu*, Jianqiu Li and Yonghui Ling

Abstract. The present paper is concerned with the semilocal as well as the

local convergence problems of Newton-Steffensen’s method to solve nonlinear

operator equations in Banach spaces. Under the assumption that the second

derivative of the operator satisfies Lipschitz condition, the convergence crite-

rion and convergence ball for Newton-Steffensen’s method are established.

1. INTRODUCTION

Let X and Y be real or complex Banach spaces, D ⊂ X be an open subset and

let F : D ⊂ X → Y be a nonlinear operator. Finding solutions of the nonlinear

operator equation

(1.1) F (x) = 0

in Banach spaces is a very general subject which is widely studied in both theoretical

and applied areas of mathematics.

When F is Fréchet differentiable, the most important method to find an approx-

imation of a solution of (1.1) is Newton’s method which takes the following form:

(1.2) xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, 2, . . . .

Usually one’s interest is focused on two types of convergence issues about Newton’s

method: local and semi-local convergence analyses. The first is to determine the

convergence ball based on the information in a neighborhood of the solution of (1.1),

see for example, [16, 19, 17]; The second is the convergence criterion based on the
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information only in a neighborhood of the initial point x0. Among the semilocal

convergence results on Newton’s method, one of the famous results is the well-

known Kantorovich theorem [9, 10] which provides the convergence criterion of

Newton’s method under the very mild condition.

As it is well known, in the case when F has the second continuous Fréchet

derivative on D, there are several kinds of cubic generalizations for Newton’s
method. The most important two are Chebyshev’s method and Halley’s method,

see e.g., [2, 3, 6, 4]. Another more general family of cubic extensions is the family

of Chebyshev–Halley–type methods, which includes Chebyshev’s method and Hal-

ley’s method as well as the convex acceleration of Newton’s method. However, the

disadvantage of this family is that evaluation of the second derivative of the operator

F is required at every step, the operation cost of which may be very large in fact.

To reduce the operation cost but also retain the cubical convergence, the variants of

the above methods have been studied extensively in [5, 7, 21, 22] and references

therein.

Recently, Sharma in [13] proposed the following Newton-Steffensen’s method

which avoids the computation of the second Fréchet derivative. Let f : R → R.
The method is defined as follows:

(1.3)





yn = xn − f(xn)
f ′(xn)

,

xn+1 = xn − f(xn)
g(xn)

, n = 0, 1, . . . ,

where g(xn) =
f(yn)− f(xn)

yn − xn
. The author gave the cubic convergence result for

(1.3) under the assumption that f is sufficiently smooth in the neighborhood of

the solution. Motivated by the works mentioned above, we extend this method to

Banach spaces which is described as follows:

(1.4)

{
yn = xn − F ′(xn)−1F (xn),

xn+1 = xn − [yn, xn; F ]−1F (xn), n = 0, 1, . . . ,

where the divided difference operator is defined by

(1.5) [yn, xn; F ] =
∫ 1

0
F ′(xn + t(yn − xn)) dt.

Our goal in the present paper is to establish the semilocal convergence as well

as the local convergence of Newton-Steffensen’s method (1.4) under the assumption

that F ′′ satisfies Lipschitz condition on some ball. Furthermore, the uniqueness ball
is obtained by using the unified convergence theorem established in [18] for the

class of operators whose second derivatives satisfy Lipschitz condition. In Section
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2, we introduce some preliminary notations and an important majorizing function

with some useful properties. The Kantorovich-type semilocal convergence criterion

is established under Lipschitz condition in Section 3. In Section 4, we analyze the

local convergence of Newton-Steffensen’s method. Finally in Section 5, we apply

the obtained semilocal convergence result to a nonlinear boundary value problem.

From this, we can see that Newton-Steffensen’s method is applicable and converges

rapidly.

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout this paper, we assume that X and Y are two Banach spaces. Let

D ⊂ X be an open subset and let F : D ⊂ X → Y be a nonlinear operator

with continuous twice Fréchet derivative. For x ∈ X and r > 0, we use B(x, r)
and B(x, r) to denote the open ball with radius r and center x and its closure,
respectively. Let x ∈ D be such that F ′(x)−1 exists and B(x, r) ⊂ D.

We say that F ′(x)−1F ′′ satisfies Lipschitz condition on B(x, r) with the positive
constant L if

(2.1) ‖F ′(x)−1[F ′′(x) − F ′′(y)]‖ ≤ L‖x − y‖, x, y ∈ B(x, r).

The lemma below is taken from [20], which is useful in the next two sections.

Lemma 2.1. Suppose that ‖F ′(x)−1F ′′(x)‖ ≤ η and F ′(x)−1F ′′ satisfies Lip-
schitz condition (2.1) on B(x, r), where η is some positive constant. Then for each

x ∈ B(x, r), F ′(x)−1 exists and the following inequalities hold:

‖F ′(x)−1F ′′(x)‖ ≤ L‖x − x‖ + η,(2.2)

‖F ′(x)−1F ′(x)‖ ≤ 1
1 − η‖x− x‖ − L

2 ‖x − x‖2
.(2.3)

Let β, η and L be some fixed positive constants. The majorizing function h
defined below was introduced by Wang in [15]:

(2.4) h(t) = β − t +
η

2
t2 +

L

6
t3, t ≥ 0.

Let {sn} and {tn} denote the corresponding sequences generated by Newton-
Steffensen’s method for the majorizing function h with the initial point t0 = 0, that
is,

(2.5)





sn = tn − h(tn)
h′(tn)

,

tn+1 = tn −
(

h(sn) − h(tn)
sn − tn

)−1

h(tn), n = 0, 1, . . . .
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For simplicity, set

(2.6) 4(L; η) =
2(η + 2

√
η2 + 2L)

3(η +
√

η2 + 2L)2

and

(2.7) r0 =
−η +

√
η2 + 2L

L
.

The following two lemmas respectively describe some properties about h and
the convergence properties of the sequences {sn} and {tn}. The first one is taken
from [18].

Lemma 2.2. Suppose that

(2.8) β ≤ 4(L; η).

Then h is decreasing in [0, r0], while it is increasing in [r0, +∞). Moreover, h has
a unique zero in each interval, denoted by t∗ and t∗∗. They satisfy

(2.9) β < t∗ < r0 < t∗∗

when β < 4(L; η) and t∗ = t∗∗ when β = 4(L; η).

Lemma 2.3. Suppose that (2.8) holds. Let {sn} and {tn} be the sequences
generated by (2.5). Then

(2.10) 0 ≤ tn < sn < tn+1 < t∗ for all n ≥ 0.

Moreover, {sn} and {tn} converge increasingly to the same point t∗.

Proof. To show (2.10) holds for n = 0, we note that 0 = t0 < s0 = β and

t1 = −β/(η
2β + L

6 β2 − 1). Since h′(t) = −1 + ηt+ L
2 t2 < 0 for all t ∈ [0, r0) and

0 < β < r0 due to (2.9), we have

0 <
η

2
β +

L

6
β2 < ηβ +

L

2
β2 < 1.

This implies t1 > β = s0. It remains to show t1 < t∗ for the case n = 0. To this
end, we define a real function as

Φ(t) = 1 − η

2
t − L

6
t2, t ∈ [0, +∞).

It is clear that Φ(t) = −(h(t) − β)/t and that Φ(t) is decreasing in [0, +∞). It
follows from (2.9) that Φ(β) > Φ(t∗). In view of the fact that t∗ is the unique zero
of h in [0, r0], i.e., h(t∗) = 0, from which we obtain β/t∗ = Φ(t∗) < Φ(β). This
is equivalent to
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t∗ >
β

1 − η
2β − L

6 β2
= t1.

Hence (2.10) holds for n = 0.
Now we assume that

0 ≤ tn−1 < sn−1 < tn < t∗ for some n ≥ 1.

From Lemma 2.2, we have h(t) ≥ 0 for each t ∈ [0, t∗] and h(tn)/h′(tn) < 0. The
later implies that sn > tn. Define function

N(t) = t − h(t)
h′(t)

, t ∈ [0, t∗].

Then, N ′(t) = h(t)h′′(t)/h′(t)2 > 0, which implies that N(t) is increasing in
[0, t∗]. Therefore we have

sn = tn − h(tn)
h′(tn)

< t∗ − h(t∗)
h′(t∗)

= t∗.

Since h is convex in [0, t∗], we get h′(tn) < (h(sn) − h(tn))/(sn − tn) and so
sn < tn+1.

Furthermore, it also follows from the convexity of h that

(2.11) t′ −
(

h(t) − h(t′)
t − t′

)−1

h(t′) < t′′ −
(

h(t′′)− h(t)
t′′ − t

)−1

h(t′′)

for all t′, t, t′′ ∈ [0, t∗] and t′ < t < t′′. Indeed, we can obtain that

−h(t′′)
h′(t)

≤ −
(

h(t′′) − h(t)
t′′ − t

)−1

h(t′′) ≤ − h(t′′)
h′(t′′)

,

≤ −
(

h(t) − h(t′)
t − t′

)−1

h(t′) ≤ −h(t′)
h′(t)

,

from which we have

(t′′ − t′) +
h(t′) − h(t′′)

h′(t)
≤ (t′′ − t′) + (T ′′ − T ′) ≤ (t′′ − t′) − h(t′′)

h′(t′′)
+

h(t′)
h′(t′)

,

where

T ′ = −
(

h(t) − h(t′)
t − t′

)−1

h(t′) and T ′′ = −
(

h(t′′)− h(t)
t′′ − t

)−1

h(t′′).

Noting that −1 < h′(t) < 0 for all t ∈ [0, t∗], we have

(t′′ − t′) +
h(t′) − h(t′′)

h′(t)
> (t′′ − t′) + [h(t′′)− h(t′)] ≥ 0.
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Then (2.11) follows. By (2.11), we conclude that

tn+1 = tn −
(

h(sn) − h(tn)
sn − tn

)−1

h(tn) < t∗ −
(

h(t∗) − h(sn)
t∗ − sn

)−1

h(t∗) = t∗.

Therefore, (2.10) holds for all n ≥ 0. The inequalities in (2.10) imply that {sn}
and {tn} converge increasingly to some same point, say τ . Clearly τ ∈ [0, t∗] and
τ is a zero of h in [0, t∗]. Noting that t∗ is the unique zero of h in [0, r0], one has
that τ = t∗. The proof is complete.

3. CONVERGENCE CRITERION

Throughout this section, let x0 ∈ D be the initial point such that the inverse

F ′(x0)−1 exists and let B(x0, r0) ⊂ D, where r0 is defined by (2.7). Moreover, we

assume that ‖F ′(x0)−1F (x0)‖ ≤ β, ‖F ′(x0)−1F ′′(x0)‖ ≤ η and F ′(x0)−1F ′′(x)
satisfies Lipschitz condition on B(x0, r0). For any x ∈ B(x0, r0), it follows from
Lemma 2.1 that F ′(x)−1 exists and

‖F ′(x0)−1F ′′(x)‖ ≤ L‖x − x0‖ + η,(3.1)

‖F ′(x)−1F ′(x0)‖ ≤ 1
1 − η‖x− x0‖ − L

2 ‖x− x0‖2
.(3.2)

Below we list a series of useful lemmas.

Recall that the divided difference operator [y, x; F ] and r0 are respectively de-

fined by (1.5) and (2.7), and F ′(x)−1 exists due to the above assumption. The

following lemma gives the expressions of some desired estimates in the proof of

Lemma 3.5.

Lemma 3.4. Let x ∈ B(x0, r0). Define

y := x − F ′(x)−1F (x) and x := x − [y, x; F ]−1F (x).

Then the following formulas hold:

(i) [y, x; F ]−F ′(x0) =
∫ 1

0

∫ 1

0

F ′′(x0 +s[(x−x0)+ t(y−x)])[(x−x0)+ t(y−

x)] dsdt.
(ii) x − y = −F ′(x)−1

∫ 1

0

∫ 1

0
F ′′(x + st(y − x))(y − x)(x − x)t dsdt.

(iii) F (x) =
∫ 1

0

∫ 1

0
F ′′(x + t(y − x) + st(x − y))(x− x)(x− y)t dsdt.

Proof. For (i), we notice that
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[y, x; F ]− F ′(x0)

=
∫ 1

0

[F ′(x + t(y − x))− F ′(x0)] dt

=
∫ 1

0

∫ 1

0

F ′′(x0 + s[(x − x0) + t(y − x)])[(x− x0) + t(y − x)] dsdt.

As for (ii), one has that

x − y = F ′(x)−1F (x) − [y, x; F ]−1F (x)

= F ′(x)−1

[
F ′(x)−

∫ 1

0

F ′(x + t(y − x)) dt
]

(x − x)

= −F ′(x)−1

∫ 1

0

∫ 1

0

F ′′(x + st(y − x))(y − x)(x− x)t dsdt.

Similarly, we obtain

F (x) = F (x) − F (x) − [y, x; F ](x− x)

=
∫ 1

0
F ′(x + t(x − x))(x− x) dt −

∫ 1

0
F ′(x + t(y − x))(x− x) dt

=
∫ 1

0

∫ 1

0

F ′′(x + t(y − x) + st(x − y))(x− x)(x− y)t dsdt.

The proof is complete.

Lemma 3.5. Suppose that (2.8) holds. Then the sequence {xn} generated by
(1.4) with the initial point x0 is well defined and the following estimates hold for

any natural number n ≥ 1:

(i) ‖yn−1 − xn−1‖ ≤ sn−1 − tn−1, ‖xn − xn−1‖ ≤ tn − tn−1, ‖xn − yn−1‖ ≤
tn − sn−1.

(ii)
∥∥[yn−1, xn−1; F ]−1F ′(x0)

∥∥ ≤ −
sn−1 − tn−1

h(sn−1) − h(tn−1)
.

(iii)
∥∥F ′(x0)−1F (xn)

∥∥ ≤ h(tn)

(
‖xn − xn−1‖

tn − tn−1

)2(‖yn−1 − xn−1‖
sn−1 − tn−1

)
.

Proof. For the case n = 1 in (i), it is clear that ‖y0−x0‖ = ‖F ′(x0)−1F (x0)‖ ≤
β = s0 − t0. It follows from (3.1) and Lemma 3.4 that

∥∥F ′(x0)−1([y0, x0; F ] − F ′(x0))
∥∥

=
∥∥∥∥F ′(x0)−1

∫ 1

0

∫ 1

0
F ′′(x0 + st(y0 − x0))(y0 − x0)t ds dt

∥∥∥∥
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≤ L

6
‖y0 − x0‖2 +

1
2
ηβ

≤ L

6
(s0 − t0)2 +

1
2
ηβ

=
h(s0) − h(t0)

s0 − t0
+ 1.

Since h′(t) < 0 in (0, r0), we have (h(s0)−h(t0))/(s0− t0) < 0. Thus, it follows
from Banach lemma that [y0, x0; F ]−1 exists and satisfies

(3.3)
∥∥[y0, x0; F ]−1F ′(x0)

∥∥ ≤ 1

1 −
(

h(s0) − h(t0)
s0 − t0

+ 1
) = − s0 − t0

h(s0) − h(t0)
.

This together with the definitions of {sn} and {tn} given in (2.5) yields that

‖x1 − x0‖ ≤
∥∥[y0, x0; F ]−1F ′(x0)

∥∥ ∥∥F ′(x0)−1F (x0)
∥∥

≤ − s0 − t0
h(s0)− h(t0)

h(t0) = t1 − t0.

By Lemma 3.4, we have

(3.4) x1−y0 =−F ′(x0)−1
∫ 1
0

∫ 1
0 F ′′(x0+st(y0−x0))(y0−x0)(x1−x0)t dsdt.

Combining this with the obtained bound of ‖y0 − x0‖ and ‖x1 − x0‖ gives

‖x1 − y0‖ ≤
∫ 1

0

∫ 1

0
‖F ′(x0)−1F ′′(x0 + st(y0 − x0))‖‖y0 − x0‖‖x1 − x0‖t dsdt

≤
(

L

6
‖y0 − x0‖ +

η

2

)
‖y0 − x0‖‖x1 − x0‖

≤ t1s0

(
L

6
s0 +

η

2

)
‖y0 − x0‖
s0 − t0

‖x1 − x0‖
t1 − t0

= (t1 − s0)
‖y0 − x0‖
s0 − t0

‖x1 − x0‖
t1 − t0

.

This implies that statement (i) holds for n = 1.
Statement (ii) for the case n = 1 is verified by (3.3). Below, we consider the

case n = 1 for (iii). First we have the following expression of F (x1) due to Lemma
3.4:

F (x1) =
∫ 1

0

∫ 1

0
F ′′(x0 + t(y0 − x0) + st(x1 − y0))(x1 − x0)(x1 − y0)t dsdt,

from which we can obtain the estimate
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‖F ′(x0)−1F (x1)‖

≤
(

L

6
‖x0 − y0‖ +

L

6
‖x1 − x0‖ +

η

2

)
‖x1 − x0‖‖x1 − y0‖

≤
(

L

6
s0 +

L

6
t1 +

η

2

)
(t1 − t0)(t1 − s0)

(
‖x1 − x0‖

t1 − t0

)2 (‖y0 − x0‖
s0 − t0

)

= h(t1)
(
‖x1 − x0‖

t1 − t0

)2(‖y0 − x0‖
s0 − t0

)
.

Therefore statement (iii) holds for n = 1.
Assume that statements (i)-(iii) are true for n = k(≥ 1). Blow, we use math-

ematical induction to prove that they also hold for n = k + 1. First, by statement
(i), we have

(3.5) ‖xk − x0‖ ≤
k−1∑

i=0

‖xi+1 − xi‖ ≤
k−1∑

i=0

(ti+1 − ti) = tk < t∗ < r0.

Hence F ′(xk)−1 exists by Lemma 2.1.

Noting that

‖F ′(x0)−1F (xk)‖ ≤ h(tk)

by the inductive hypothesis of (i) and (iii), it follows from Lemma 2.1 and (2.5)

that

(3.6) ‖yk − xk‖ ≤ ‖F ′(xk)−1F ′(x0)‖‖F ′(x0)−1F (xk)‖ ≤ − h(tk)
h′(tk)

= sk − tk .

Hence by (3.1), Lemma 3.4 and the inductive hypothesis of (i), we have

‖F ′(x0)−1([yk, xk; F ]− F ′(x0))‖

=
∥∥∥∥F ′(x0)−1

∫ 1

0

∫ 1

0
F ′′(x0 + s[(xk − x0

+t(yk − xk)])[(xk − x0) + t(yk − xk)] dsdt‖

≤
∫ 1

0

∫ 1

0
[L (s‖xk − x0‖ + st‖yk − xk‖) + η](‖xk − x0‖ + t‖yk − xk‖) dsdt

≤ L

6
(sk − tk)2 +

L

2
t2k +

L

2
tk(sk − tk) + ηtk +

η

2
(sk − tk) =

h(sk) − h(tk)
sk − tk

+ 1.

It follows from Lemma 2.3 and the monotonicity of h that (h(sk) − h(tk))/(sk −
tk) < 0. Thus, we have ‖F ′(x0)−1([yk, xk; F ] − F ′(x0))‖ < 1 and by Banach
lemma [yk, xk; F ]−1F ′(x0) exists and satisfies

(3.7) ‖[yk, xk; F ]−1F ′(x0)‖ ≤ 1

1 −
(

h(sk) − h(tk)
sk − tk

+ 1
) = − sk − tk

h(sk) − h(tk)
.
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Hence statement (ii) holds for n = k + 1.
Combining (3.7) with the inductive hypothesis of (iii), one has that

(3.8)

‖xk+1 − xk‖

≤ ‖[yk, xk; F ]−1F ′(x0)‖‖F ′(x0)−1F (xk)‖

≤ −
(

h(sk) − h(tk)
sk − tk

)−1

h(tk)

(
‖xk − xk−1‖

tk − tk−1

)2(‖yk−1 − xk−1‖
sk−1 − tk−1

)

= (tk+1 − tk)

(
‖xk − xk−1‖

tk − tk−1

)2(
‖yk−1 − xk−1‖
sk−1 − tk−1

)
.

This implies that ‖xk+1 − xk‖ ≤ tk+1 − tk .

On the other hand, by (3.1), (3.6), (3.8) and Lemma 3.4, we conclude that

(3.9)

‖xk+1−yk‖

≤
∫ 1

0

∫ 1

0

‖F ′(xk)−1F ′′(xk+st(yk−xk))‖‖yk−xk‖‖xk+1−xk‖tdsdt

≤ ‖F ′(xk)−1F ′(x0)‖
(

L

2
‖xk−x0‖+

L

6
‖yk−xk‖+

η

2

)
‖yk−xk‖‖xk+1−xk‖

≤ − 1
h′(tk)

(
L

3
tk+

L

6
sk +

η

2

)
(sk−tk)(tk+1−tk)

(
‖yk − xk‖‖xk+1−xk‖

(sk−tk)(tk+1−tk)

)

= (tk+1−sk)
(
‖yk−xk‖‖xk+1−xk‖
(sk−tk)(tk+1−tk)

)
,

which leads to ‖xk+1 − yk‖ ≤ tk+1 − sk. Hence, statement (i) holds for n = k+1.
Next, we will show that (iii) also holds for n = k +1. In fact, by using Lemma

3.4, together with (3.1), (3.6), (3.8) and (3.9), we obtain

‖F ′(x0)−1F (xk+1)‖

≤
∫ 1

0

∫ 1

0
st2 dsdt ·L‖xk+1 − xk‖‖xk+1 − yk‖‖yk − xk‖

+
∫ 1

0

∫ 1

0

[L(t‖xk−x0‖+st2‖xk+1−xk‖)+ηt]‖xk+1−xk‖‖xk+1−yk‖ dsdt

=
(

L

6
‖yk−xk‖+

L

2
‖xk−x0‖+

L

6
‖xk+1−xk‖+

η

2

)
‖xk+1−xk‖‖xk+1−yk‖

≤
(

L

6
tk+1+

L

6
tk+

L

6
sk+

η

2

)
(tk+1−tk)(tk+1−sk)

(
‖xk+1−xk‖

tk+1−tk

)2(‖yk−xk‖
sk−tk

)

= h(tk+1)
(
‖xk+1 − xk‖

tk+1 − tk

)2 (‖yk − xk‖
sk − tk

)
.

Therefore statement (iii) is confirmed for n = k + 1. Hence (i)-(iii) hold for all
n ≥ 0.



Convergence Behavior for Newton-Steffensen’s Method 2587

Furthermore, by statement (i), one has, for any n ≥ 0, ‖xn−x0‖ ≤ tn < t∗ < r0.

Thus, by Lemma 2.1, we know that F ′(xn)−1 exists for each n ≥ 1, i.e. {xn} is
well defined. The proof is complete.

Recall that the sequences {sn} and {tn} are defined by (2.5). We are now
ready to prove a semilocal convergence theorem for Newton-Steffensen’s method

(1.4) under Lipschitz condition.

Theorem 3.1. Suppose that (2.8) holds. Then the sequence {xn} generated
by (1.4) with the initial point x0 is well defined and converges to a solution

x∗ ∈ B(x0, t∗) of equation (1.1) with Q-cubic rate and x∗ is unique in B(x0, r0).
Moreover, the following error bounds

(3.10) ‖x∗ − xn‖ ≤ (t∗ − tn)
(
‖x∗ − xm‖

t∗ − tm

)3n−m

for all n ≥ m ≥ 0

are valid, where t∗ is defined in Lemma 2.2.

Proof. The uniqueness ball can be obtained by Proposition 2.2 (iii) and Theorem

3.2 in [18]. Moreover, it follows from Lemma 3.5 that {xn} is well defined. In
addition, from Lemma 2.3 and Lemma 3.5 (i), we can see that {xn} is a Cauchy
sequence, so it converges to a limit, say x∗. Below, we show that x∗ is a solution
of equation (1.1). It follows from Lemma 3.5 (iii) that

‖F ′(x0)−1F (xn)‖ ≤ h(tn) for all n ≥ 0.

Letting n → ∞ in the above relation gives that the limit x∗ is a solution of equation
(1.1). Moreover, Lemma 3.5 (i) gives

(3.11) ‖x∗ − xn‖ ≤ t∗ − tn.

Next, we verify that estimate (3.10) is true. It is clear that

(3.12) xn+1 − x∗ =
(
[yn, xn; F ]−1F ′(x0)

) (
F ′(x0)−1[yn, xn; F ](xn+1 − x∗)

)
.

Then we have

‖x∗ − yn‖ =
∥∥∥∥F ′(xn)−1

[∫ 1

0
F ′(xn)(x∗ − xn) dt + F (xn)− F (x∗)

]∥∥∥∥

=
∥∥∥∥F ′(xn)−1

∫ 1

0

∫ 1

0
F ′′(xn + st(x∗ − xn))(x∗ − xn)2t dsdt

∥∥∥∥

≤ ‖F ′(xn)−1F ′(x0)‖∥∥∥∥
∫ 1

0

∫ 1

0
F ′(x0)−1F ′′(xn + st(x∗ − xn))(x∗ − xn)2t dsdt

∥∥∥∥ .

This together with (3.1), (3.2) and (3.11) gives the following estimate:
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(3.13)

‖x∗ − yn‖ ≤ − 1
h′(tn)

(
L

6
t∗ +

L

3
tn +

η

2

)
(t∗ − tn)2

(
‖x∗ − xn‖

t∗ − tn

)2

= (t∗ − sn)
(
‖x∗ − xn‖

t∗ − tn

)2

.

In order to estimate ‖xn+1 − x∗‖, we firstly notice that

F ′(x0)−1[yn, xn; F ](xn+1 − x∗)

= F ′(x0)−1

[
F (x∗) − F (xn) −

∫ 1

0

F ′(xn + t(yn − xn))(x∗ − xn) dt
]

= F ′(x0)−1

∫ 1

0

∫ 1

0
F ′′(xn + t(yn − xn)

+st(x∗ − yn))(x∗ − yn)(x∗ − xn)t dsdt.

Thus by (3.1), (3.2), (3.11) and (3.13), one has that

(3.14)

‖F ′(x0)−1[yn, xn; F ](xn+1 − x∗)‖

≤
(

L

6
t∗ +

L

6
sn +

L

6
tn +

η

2

)
(t∗ − tn)(t∗ − sn)

(
‖x∗ − xn‖

t∗ − tn

)3

=
h(sn) − h(tn)

sn − tn
(tn+1 − t∗)

(
‖x∗ − xn‖

t∗ − tn

)3

.

Combining (3.7) with (3.14), one gets from (3.12) that

‖xn+1 − x∗‖ ≤ (t∗ − tn+1)
(
‖x∗ − xn‖

t∗ − tn

)3

.

Therefore the error estimate (3.10) follows. Also, from the previous inequality, we

know that the convergence rate of {xn} to x∗ is Q-cubic. The proof is complete.

4. CONVERGENCE BALL

Now we begin to study the local convergence properties for Newton-Steffensen’s

method (1.4). Recall that r0 is defined by (2.7). Throughout this section, suppose

x∗ ∈ D such that F (x∗) = 0, B(x∗, r0) ⊂ D and the inverse F ′(x∗)−1 exists.

Moreover, we also assume that ‖F ′(x∗)−1F ′′(x∗)‖ ≤ η and F ′(x∗)−1F ′′(x) sat-
isfies Lipschitz condition on B(x∗, r0). For each x ∈ B(x∗, r0), it follows from
Lemma 2.1 that

‖F ′(x∗)−1F ′′(x)‖ ≤ L‖x− x∗‖ + η,(4.1)

‖F ′(x)−1F ′(x∗)‖ ≤ 1
1 − η‖x− x∗‖ − L

2 ‖x − x∗‖2
.(4.2)
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Let

(4.3) r1 := (−9η +
√

81η2 + 120L)/(10L).

Define the function G as follows:

(4.4) G(t) =
η
2 t + L

3 t2

1 − ηt − L
2 t2

, t ∈ (0, r1).

It is clear that r1 ∈ (0, r0) and G(r1) = 1. Moreover, G increases in (0, r1).

Theorem 4.2. For any x0 ∈ B(x∗, r1), the sequence {xn} generated by (1.4)
converges to x∗ and satisfies that

(4.5) ‖xn − x∗‖ ≤ q3n−1‖x0 − x∗‖, n = 0, 1, . . . ,

where

(4.6) q = G(t0) < 1, t0 = ‖x0 − x∗‖.

Proof. For n = 0, 1, . . ., we write tn = ‖xn − x∗‖. It is sufficient to show
that

(4.7) tn+1 ≤ tn and ‖xn+1 − x∗‖ ≤ (G(tn)/tn)2‖xn − x∗‖3, n = 0, 1, . . . .

In fact, by noticing the monotonicity of G/t, we have

‖xn+1 − x∗‖ ≤ (G(tn)/tn)2 ‖xn − x∗‖3 ≤ (G(t0)/t0)
2 ‖xn − x∗‖3

=
(

q

t0

)2

‖xn − x∗‖3, n = 0, 1, . . . .

From this we can easily establish (4.5) by mathematical induction.

Now we prove (4.7) by mathematical induction. First we get the following

expression of xn+1 − x∗:

(4.8)

xn+1 − x∗

= [yn, xn; F ]−1

[∫ 1

0
F ′(xn+t(yn−xn))(xn−x∗)dt −(F (xn)−F (x∗))

]

= [yn, xn; F ]−1

∫ 1

0

[
F ′(xn+t(yn−xn))−F ′(x∗+t(xn−x∗))

]
dt(xn−x∗).

Similarly, we also have

(4.9)

yn − x∗ = xn − F ′(xn)−1F ′(xn)− x∗

= F ′(xn)−1
[
F (x∗)− F (xn) + F ′(xn)(xn − x∗)

]

= F ′(xn)−1

∫ 1

0

[
F ′(xn + t(x∗ − xn)) − F ′(xn)

]
(x∗ − xn)dt.
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On the other hand, we notice that

(4.10)

F ′(x∗)−1([yn, xn; F ]− F ′(x∗))

= F ′(x∗)−1

∫ 1

0

∫ 1

0
F ′′(x∗ + s(1 − t)(xn − x∗) + st(yn − x∗))

[(1− t)(xn − x∗) + t(yn − x∗)] dsdt.

For the case n = 0, by (4.1) and (4.2), we get that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖ ‖
∫ 1

0

∫ 1

0
F ′(x∗)−1F ′′(x0 + st(x∗ − x0))t dsdt

∥∥∥∥ ‖x∗ − x0‖2

≤ 1
1 − η‖x∗ − x0‖ − L

2 ‖x∗ − x0‖2

∫ 1

0

∫ 1

0
[L(‖x0 + st(x∗ − x0) − x∗‖) + η] dsdt‖x∗ − x0‖2

=
1

1 − ηt0 − L
2 t20

∫ 1

0

∫ 1

0
(L(1− st)t0 + η) dsdt‖x∗ − x0‖2

=
η
2 + L

3 t0

1 − ηt0 − L
2 t20

‖x∗ − x0‖2

= (G(t0)/t0) ‖x∗ − x0‖2.

It follows from (4.6) that

(4.11) ‖y0 − x∗‖ ≤ ‖x∗ − x0‖.

Combining Lemma 2.2 with (4.1) and (4.11), we obtain that

‖F ′(x∗)−1([y0, x0; F ] − F ′(x∗))‖

≤
∫ 1

0

∫ 1

0
[L (s(1 − t)‖x0 − x∗‖ + st‖y0 − x∗‖) + η]

[(1− t)‖x0 − x∗‖ + t‖y0 − x∗‖] dsdt

≤
∫ 1

0

∫ 1

0
[L (s(1 − t)t0 + stt0) + η] [(1− t)t0 + tt0] dsdt

= ηt0 +
L

2
t20 < 1.

It follows from Banach lemma that

‖[y0, x0; F ]−1F ′(x∗)‖ ≤ 1
1 − ηt0 − L

2 t20
.
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This together with (4.8) and (4.11) yields that

(4.12)

‖x1 − x∗‖

≤ ‖[y0, x0; F ]−1F ′(x∗)‖
∥∥∥∥F ′(x∗)−1

∫ 1

0

∫ 1

0
F ′′ (x∗+(1− t)(x0−x∗)+st(y0−x∗)) t dsdt

∥∥∥∥

‖y0 − x∗‖‖x0 − x∗‖

≤ 1
1−ηt0 − L

2 t20

∫ 1

0

∫ 1

0
[L ((1−t)t0+stt0)+η] t dsdtG(t0)‖x∗−x0‖3

=
1

1 − ηt0 − L
2 t20

1
t0

(
η

2
t0 +

L

3
t20

)
G(t0)‖x∗ − x0‖3

= (G(t0)/t0)
2 ‖x∗ − x0‖3 = q2t0 ≤ t0.

Hence the inequalities in (4.7) hold for n = 0.
Now assume that the inequalities in (4.7) hold for up to some n ≥ 1. Thus

tn+1 ≤ tn < r1 < r0. By (4.1) and (4.2), we have

(4.13)

‖yn+1 − x∗‖

≤ ‖F ′(xn+1)−1F ′(x∗)‖
∥∥∥∥
∫ 1

0

∫ 1

0
F ′(x∗)−1F ′′(xn+1 + st(x∗ − xn+1))t dsdt

∥∥∥∥ ‖x∗ − xn+1‖2

≤ 1
1 − η‖x∗ − xn+1‖ − L

2 ‖x∗ − xn+1‖2

∫ 1

0

∫ 1

0
[L(‖xn+1 + st(x∗ − xn+1) − x∗‖) + η] dsdt

‖x∗ − xn+1‖2

=
1

1 − ηtn+1 − L
2 t2n+1

∫ 1

0

∫ 1

0
(L(1− st)tn+1 + η) dsdt‖x∗ − xn+1‖2

=

η

2
+

L

3
tn+1

1 − ηtn+1 −
L

2
t2n+1

‖x∗ − xn+1‖2

= (G(tn+1)/tn+1)‖x∗ − xn+1‖2.

It follows from the monotonicity of G and (4.6) that

‖yn+1 − x∗‖ ≤ G(tn+1)tn+1 ≤ G(t0)tn+1 ≤ tn+1.
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Thus (4.10) can be further reduced to

(4.14)

‖F ′(x∗)−1([yn+1, xn+1; F ]− F ′(x∗))‖

≤
∫ 1

0

∫ 1

0
[L (s(1 − t)tn+1 + sttn+1) + η] [(1 − t)tn+1 + ttn+1] dsdt

= ηtn+1 +
L

2
t2n+1 < 1.

Using Banach lemma again, one has that

‖[yn+1, xn+1; F ]−1F ′(x∗)‖ ≤ 1
1 − ηtn+1 − L

2 t2n+1

.

This together with (4.1), (4.2), (4.8) and (4.13) yields that

‖xn+2 − x∗‖

≤ ‖[yn+1, xn+1; F ]−1F ′(x∗)‖
∥∥∥∥F ′(x∗)−1

∫ 1

0

∫ 1

0

F ′′(x∗ + (1 − t)(xn+1 − x∗)

+ st(yn+1 − x∗)t dsdt‖ ‖yn+1 − x∗‖‖xn+1 − x∗‖

≤ 1
1 − ηtn+1 − L

2 t2n+1∫ 1

0

∫ 1

0
[L ((1 − t)tn+1 + sttn+1) + η] t dsdtG(tn+1)‖x∗ − xn+1‖3

=
1

1 − ηtn+1 − L
2 t2n+1

1
tn+1

(
η

2
tn+1 +

L

3
t2n+1

)
G(tn+1)‖x∗ − xn+1‖3

= (G(tn+1)/tn+1)
2 ‖x∗ − xn+1‖3.

This together with the monotonicity of G yields that

‖xn+2 − x∗‖ ≤ G(t0)2tn+1 ≤ tn+1.

Thus the inequalities in (4.7) hold for n + 1 and hence they hold for each n. The
proof is complete.

5. NUMERICAL EXAMPLE

In this section, we give numerical examples to illustrate the application of con-

vergence results of Newton-Steffensen’s method in high dimensions. To this end,

we apply our semilocal convergence result to an example which also appears in

[1, 12]. Consider the following nonlinear boundary value problem of second order:

(5.1)

{
x′′ + x3 + µx2 = 0, µ ∈ R,

x(0) = x(1) = 0.
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To solve this problem by finite differences, we divide interval [0, 1] into n

subintervals and let h = 1/n. We denote the points of subdivision by ti = ih
and x(ti) = xi, i = 0, 1, . . . , n. Notice that x0 and xn are given by the boundary

conditions, i.e., x0 = 0 = xn. We first approximate the second derivative x′′(t) in
the differential equation by

x′′(t) ≈ x(t + h) − 2x(t) + x(t − h)
h2

,

x′′(ti) ≈
xi+1 − 2xi + xi−1

h2
, i = 1, 2, . . .n − 1.

By substituting this expression into the differential equation, we have the following

system of nonlinear equations:

(5.2)





2x1 − h2x3
1 − h2µx2

1 − x2 = 0,

−xi−1 + 2xi − h2x3
i − h2µx2

i − xi+1 = 0, i = 2, 3, . . .n − 2,

−xn−2 + 2xn−1 − h2x3
n−1 − h2µx2

n−1 = 0.

Therefore, an operator F : Rn−1 → Rn−1 can be defined by F (x) = Hx −
h2g(x)− h2µf(x), where

x = (x1, x2, . . . , xn−1)T , g(x)=(x3
1, x

3
2, . . . , x

3
n−1)

T , f(x)=(x2
1, x

2
2, . . . , x

2
n−1)

T

and

H =




2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2




.

Thus,

F ′(x) = H − 3h2




x2
1 0 · · · 0
0 x2

2 · · · 0
...

...
. . .

...

0 0 · · · x2
n−1




− 2h2µ




x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn−1




.

Then, we apply Newton-Steffensen’s method (1.4) to find a solution x∗ of the

equation
F (x) = 0.

Let x ∈ Rn−1, and choose the norm ‖x‖ = max1≤i≤n−1 |xi|. Then the induced
norm for an (n − 1)× (n − 1) matrix A is



2594 Shaohua Yu, Xiubin Xu, Jianqiu Li and Yonghui Ling

‖A‖ = max
1≤i≤n−1

n−1∑

j=1

|aij |.

It is known (see [11]) that F has a divided difference at the points v, w ∈ Rn−1,

which is defined by the matrix whose entries are

[v, w; F ]ij

=
1

vj − wj
(Fi(v1, . . . , vj , wj+1, . . . , wn−1) − Fi(v1, . . . , vj−1, wj, . . . , wn−1)).

Therefore

[v, w; F ] = H − h2




v3
1−w3

1+µ(v2
1−w2

1)
v1−w1

0 · · · 0

0
v3
2−w3

2+µ(v2
2−w2

2)
v2−w2

· · · 0

...
...

. . .
...

0 0 · · ·
v3

n−1−w3
n−1+µ(v2

n−1−w2
n−1)

vn−1−wn−1




.

In this case, we have [v, w; F ] =
∫ 1
0 F ′(v + t(w − v)) d t. Note that

F ′′(x)u1u2 = −2h2(u1
1u

1
2(3x1 + µ), . . . , un−1

1 un−1
2 (3xn−1 + µ))T ,

(F ′′(x) − F ′′(y))u1u2 = −6h2(u1
1u

1
2(x1 − y1), . . . , un−1

1 un−1
2 (xn−1 − yn−1))T ,

where ui = (u1
i , . . . , u

n−1
i ) ∈ Rn−1 for each i = 1, 2. Hence

(5.3) ‖F ′′(x)‖ = 2h2 max
1≤i≤n−1

{|3xi + µ|} and ‖F ′′(x)− F ′′(y)‖ = 6h2‖x− y‖.

Thus, one has that

‖F ′(x0)−1(F ′′(x)−F ′′(y))‖≤‖F ′(x0)−1‖‖F ′′(x)−F ′′(y)‖≤6h2‖F ′(x0)−1‖‖x−y‖.

This means that F ′(x0)−1F ′′(x) satisfies Lipschitz condition (2.1) with the Lips-
chitz constant

(5.4) L = 6h2‖F ′(x0)−1‖.

Moreover, we set

(5.5) β :=‖F ′(x0)−1‖‖F (x0)‖ and η :=‖F ′(x0)−1‖‖F ′′(x0)‖.

We study the problem in two conditions: µ = 0 and µ 6= 0. All our tests
were done in Matlab. The stopping tolerance for the iterations is ‖F (xk)‖ ≤ eps,

where eps ≈ 2.2204e − 16 is the machine precision in Matlab. For n = 10, the
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convergence performances of Newton-Steffensen’s method with µ = 0 and µ 6= 0
are illustrated in Table 1 (shown at the end of subsection 5.2) from which we can

see that Newton-Steffensen’s method converges to the root very effectively.

5.1. When µ = 0

Problem (5.1) becomes

(5.6)

{
x′′ + x3 = 0,

x(0) = x(1) = 0.

Now we apply Newton-Steffensen’s method to approximate the solution of F (x) =
0. Since a solution of F (x) = 0 would vanish at the end points of [0, 1] and be
positive in the interior of [0, 1], a reasonable choice of initial approximation seems
to be k sin ωπt, where k and ω are some constants. Below we consider two cases:

convergence criterion (2.8) holds or not.

Case I. Let n = 10, k = 9, ω = 1. This approximation gives us the following
initial point:

x0 =




2.781152949374527
5.290067270632259
7.281152949374527
8.559508646656381
9.000000000000000
8.559508646656383
7.281152949374527
5.290067270632259
2.781152949374528




.

With the notations in (5.4) and (5.5), we get

L = 0.465586357135854, β = 3.208079306744555, η = 4.190277214222688

and

β ≥ 4(L; η) = 0.118289602834299.

Hence convergence criterion (2.8) doesn’t hold in this case. We obtain x∗ after
eight iterations:

x∗ =




6.554680420487635
10.293218733270551
3.126055577275099
−4.346592715592183
−10.998044973982024
−4.346592715592183
3.126055577275099
10.293218733270551
6.554680420487635




.
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If x∗ is interpolated by polynomials of order eight, then the approximation x̄∗ to the

solution of (5.6) can be shown in Figure 1.

Fig. 1. x∗ and the related approximation x̄∗ for Case I.

Case II. Let n = 10, k = 10, ω = 8. This approximation gives us the following
initial point:

x0 =




5.877852522924733
−9.510565162951536
9.510565162951535
−5.877852522924728
−0.000000000000005
5.877852522924735
−9.510565162951538
9.510565162951533
−5.877852522924725




.

We obtain x∗ after five iterations:

x∗ =




17.656977750521808
−19.735003321788422
19.735003321788422
−17.656977750521808
0.000000000000000
17.656977750521808
−19.735003321788422
19.735003321788422
−17.656977750521808




.

Moreover, we have

L = 0.200444924940861, β = 28.035067577717861, η = 1.906344520232991
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and

β > 4(L; η) = 0.257649074900776.

Hence convergence criterion (2.8) doesn’t hold in this case. If x∗ is interpolated by

polynomials of order eight, then the approximation x̄∗ to the solution of (5.6) can
be shown in Figure 2.

Fig. 2. x∗ and the related approximation x̄∗ for Case II

5.2. When µ 6= 0

We consider, for example, µ = 1. Then, as in the previous example, we can
choose k sin ωπt as an initial approximation, where k and ω are some constants.

We consider the following cases in the same way as in the last subsection:

Case III. Let n = 10, k = 3, ω = 1. Then the initial point is:

x0 =




0.927050983124842
1.763355756877419
2.427050983124842
2.853169548885461
3.000000000000000
2.853169548885461
2.427050983124842
1.763355756877420
0.927050983124843




.

With the notations in (5.4) and (5.5), we get

L = 0.529992660987916, β = 0.165443680845126, η = 1.766642203293053

and
β ≤ 4(L; η) = 0.268752756830446.

Hence Theorem (3.1) is applicable. We obtain x∗ after three iterations:
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x∗ =




0.832478544048846
1.652257635647339
2.399631279496108
2.951246325683993
3.158713551155907
2.951246325683993
2.399631279496108
1.652257635647339
0.832478544048846




.

If x∗ is interpolated by polynomials of order eight, then the approximation x̄∗ to the

solution of (5.1) can be shown in Figure 3.

Fig. 3. x∗ and the related approximation x̄∗ for Case III.

Case IV. Let n = 10, k = 0.5, ω = 15. Then the initial point is:

x0 =




−0.500000000000000
0.000000000000000
0.500000000000000
−0.000000000000000
−0.500000000000000
0.000000000000002
0.500000000000000
−0.000000000000001
−0.500000000000000




.

We obtain x∗ = 0 after three iterations. Moreover, we have

L = 0.779137639293556, β = 0.515755101109577, η = 0.649281366077963

and
β ≤ 4(L; η) = 0.546034010164211.

That is, (2.8) holds. Hence Theorem 3.1 is applicable.
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Table 1: Values of ‖xk − x∗‖

k Case I Case II Case III Case IV

0 1.9998e + 1 1.1779e + 1 1.5871e− 1 5.0000e− 1
1 1.2554e + 1 7.3840e + 0 2.3358e− 4 2.8561e− 4
2 9.3105e + 0 8.0944e− 1 2.8928e− 12 1.9628e− 13
3 7.6714e + 0 3.0813e− 3 0.0000 0.0000
4 7.2214e + 0 1.8769e− 1 0.0000 0.0000
5 4.2121e− 1 0.0000 0.0000 0.0000
6 1.5713e− 3 0.0000 0.0000 0.0000
7 8.0344e− 11 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000
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