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THE FIRST INITIAL BOUNDARY VALUE PROBLEM FOR
HYPERBOLIC SYSTEMS IN INFINITE NONSMOOTH CYLINDERS

N. M. Hung, B. T. Kim and V. Obukhovskii*

Abstract. This paper is concerned with the first initial boundary value problem
for hyperbolic systems in infinite cylinders with the nonsmooth base. Some
results on the regularity of generalized solutions of this problem are given.

1. INTRODUCTION

The theory of general boundary-value problems for partial differential equations
and systems in smooth domains is nearly completely studied (see [1,3,11]). The
boundary value problems for partial differential equations and systems of various
classes in nonsmooth domains attract the attention of many researchers. These prob-
lems for elliptic equations and systems on domains containing conical points have
been investigated in the works [7,8,10]. The first initial boundary value problem for
parabolic systems in cylinders with the nonsmooth base was described in [5]. The
second initial boundary value problem in cylinders with the base containing conical
points has been dealt with for hyperbolic systems in [9] and for Schrodinger systems
in [6], in which the authors considered the existence, uniqueness and smoothness of
the generalized solution of the mentioned problems. Regularity of solutions to the
first initial boundary value problem for hyperbolic systems in nonsmooth cylinders
was considered in [4]. However, the results of the work [4] were obtained only in
the finite cylinders.

In this paper we are concerned with the first initial boundary value problem
for hyperbolic systems in infinite cylinders with the nonsmooth base. The aim of
the paper is to establish some results on the regularity of generalized solutions of
the problem. First, we study the regularity with respect to time variable of the
generalized solutions in the infinite cylinders with nonsmooth base. After that, we
can apply the results for elliptic boundary value problems to deal with the regularity
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with respect to spatial variables of the solutions in infinite cylinders with conical
points.

The paper is organized in the following way. In Section 2 we introduce some
notations and formulate our problem. The regularity with respect to time variable
is presented in Section 3. In the last section we give results on the regularity
with respect to both time and spatial variables of the generalized solutions in a
neighborhood of the conical point.

2. PRELIMINARIES

Let  be a bounded domain in R™ with the boundary 0. Denote Q. =
Q2 x (0,00) and S = 90 x (0, 00).
Let L(x,t, D) be a differential operator of order 2m:
(2.1) L(z,t,D)= Y D*(aag(z,t)D’)
la,|8]=0

where ang = aqg(,t) are s x s matrices of bounded measurable complex functions
in Qoo; anp = (—1)H1Play | a% , are complex conjugate transportation matrices
of a,p3. Suppose that a,g are continuous with respect to = € Q uniformly with
respect to ¢ € [0, oco) if || = |3] = m, and satisfy the inequality

(2.2) D> aap(a, ) > vol¢ P 0|
lal,| B]=m

for all ¢ € R™\{0}, n € C*\{0} and (x,t) € Q,, Where vy = const > 0.
We use the following notation. For each multi-index o = (v, ....ar,) € N™,
[e%
la| = aq + ... + a, and D = ﬁ = uyor ,on IS the generalized
derivative up to order a with respect to « = (21, ..., z,,) ; ue = 0%u/0tF is the
generalized derivative up to order &k with respect to ¢.
In this paper we use the usual functional spaces:

H™(Q) is the space of all functions u(z), x € €, with the norm

!
/
[ullgm (@) = < > /\D“u\%lx)l ?

la|=0q

o

H™(Q) is the completion of COOO(Q) in the norm of the space H™(£2).
H ' (€2) is the space of all functions u(x) satisfying

HuH%{gl(Q) = Z r2BHel=D Doy ?da < oo,
la|<l g
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H™F(e™ Q) is the space of all functions u(x,t), (z,t) € Qs with the
norm

l k
1/2
[wll ok (et 000y = (/ ( Z | D% +Z\utj\2)e_27tdxdt> .

G, lal=0 =1

o
H™F(e™ Q) is the closure in H™F(e™7 Q) of the set consisting of
all infinitely differentiable in Q, functions which belong to H™* (e, Q) and
vanish near S..
Hg“k(e—”t, Qo) is the space of all functions u(z, t) satisfying

1 k
— _
HuHigl,k(e_w’Qw) = /( E 2B+l )\Do‘u\2+ E \utj\2)e M dedt < oo.
Qoo =0 j=1

H(e™", Qo) is the space of all functions u(z, ) with the norm

!

1/2

”uHHgl(e—vt,Qoo):< ( E r2(ﬁ+|°‘|_l)\D°‘utj\Z)e_htdxdt> .
Qoo |@l+5=0

Let X be a Banach space. Denote by L°°(0, oo; X') the space consisting of all
measurable functions u(x, ) : (0,00) — X, t — u(z, t) satisfying

[l oo (0,00,x) = €55 Sup |u(z, )| x < oo.

We consider the following problem in the infinite cylinder .:

(2.3) (=)™ L(z,t, D)u — uy = f(x,1),
(24) u‘t:() - 07 ut‘t:O == 07
du
2. — =0;7=0,...(im—1

where v is the outer unit normal to S...
The function u(z, t) is called a generalized solution of problem (2.3) — (2.5) in
o
the space H™ (e Q) if u(x,t) € H™ (e Qu), u(z,0) = 0 and for each
T > 0 the equality

(—1)”‘1/< Z (—1)°‘aa5DﬂuDaap)dxdt+/ut@dxdt
|ex,181=0 Ou

(2.6) Qoo
= /f@dxdt
Qoo
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o
holds for all test functions ¢ € H™k(e=7 Q.), where p(z,t) = 0 for t € [T, 00).
By the same argument as in [4, p. 105-106] we can prove the following lemma.

Lemma 2.1. Assume that u(z,t) is a generalized solution of problem (2.3) —
(2.5) in the space H™ (e Qu) and uy, f(x,t) € L>(0, 00; Lo(2)). Then for
almost all ¢ € (0, o0) :

—1)m-t Y —1)%nsD%uD Vdz = | (ug Xdx
en D !KW%;J 1) %005 DD ) d J( + ¥

holds for all functions x = x(x) € ﬁm(ﬂ).

For convenience, in the rest of this paper we use the notation:

(2.8) Buw®n= 3 (- / tos D DTz
oiBi=0

For almost all ¢t € (0, o) the function x —— w(z,t) belongs to ﬁm(ﬂ). On the
other hand, since the principal coefficients a3 are continuous in = € Q uniformly
with respect to ¢ € [0, 00) if |a] = |3] = m and the constant v is independent of
t, by repeating the proof of the Garding inequality [3, p. 44] we have the following
assertion.

Lemma 2.2. Assume that coefficients of the operator L(x,D,t) satisfy condition
(2.2) and a,p are continuous in = € € uniformly with respect to ¢ € [0, co) if
|a] = |B] = m. Then there exist two constants o > 0, Ao > 0 such that

(2.9) (=1)™B(u, u)(t) = o[l Fpm gy — Mollullfq)

o
for all functions u = u(z,t) € H™!(e™, Qo).

3. REGULARITY WITH RESPECT TO TIME VARIABLE

In this section we investigate the regularity with respect to time variable of
generalized solutions of problem (2.3)-(2.5). It is shown that the regularity depends
on the coefficients and the right-hand side of the problem.

Denote by m* the number of multi-indexes which have order not exceeding m
and . = const > 0. For a non-negative integer s we use the notation:

m (25 1) 4/ (mea(2s + 1) + 8u0M3
Vs = .
4110
Let 75 be a number such that ~; > ~o. We have the following assertion.
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Theorem 3.1. Assume that problem (2.3)-(2.5) has exactly one genenalized
solution w(x,t) in the space H™!(e~7%? Q) and the following conditions are
fulfilled:

. 8kaa5

(i) (mj)ue% ok
(II) ft’“ S LOO(O, 00; LQ(Q)), 0<k<h,
(ii)) fur(2,0)=0, 0<k<h-—1.

<p1<lal, |8 <m, 0<k<h+1,

Then for every v > max{~, g}, the function u(x,t) has derivatives with respect

o
to ¢ up to order h belonging to the space H™ (e~ Q). Moreover, the funtion
u(z, t) satisfies the inequality
h
(3.1) HuthH?{m’l(e—’ﬂ,Qw) < CZ HftkH%‘X’(O,oo;LQ(Q))v

where C = const > 0 is independent of » and f.

Proof. We shall use the Galerkin’s approximate method to prove the theorem.

o
Let {1x} C C>(Q) be an orthogonal system in L?(Q2) such that its linear closure
in H™(Q) coincides with ﬁm(ﬂ). For each natural number IV, we consider the

function N
)= (t)u(x)
k=1

where ¢ (¢) are the solutions of the system of ordinary differential equations:

/ Z 1)laqsD%u ND“¢l>dx+/uttwldx——/flﬂzdx

Q lal|8]=0 O
[ =1,2,..., N with the initial conditions
d
(3.3) e (0) = dtcf,j(o) 0.

Since (3.2) is a linear ordinary differential system with initial condition (3.3), it
has the unique solution c¢f’. Moreover, for each ' > 0 we have &*2¢) /dtsT2 €
L?(0,T). Therefore, from identity (3.2) we have

(=™ %( Z (—1)|a|aa5DﬂuNDoc¢l>dx—i—/ui\scrg@ldx
(3.4) Q lal,|3|=0 Q

—/fﬁ%dx’
Q
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[ =1,2,...,N. Multiplying (3.4) by d**'cl /dt**1, taking the sum with respect
to [ and integrating the obtained equality with respect to ¢ on (0,7'), we get

/ (ufoulos + Z 1)1 (aquD u™) s D3l ) dadt
e ol 1B1=0
:—/ftsmdxdt,
Qr

where Q7 = Q x (0, 7). Adding this equality to its complex conjugate we obtain

a [
/ e (ui\sﬂrl ui\sﬁrl)dxdt
Qr

(3.5) +2Re / Z )™ "’"%(aagDﬂuN)Daug L dxdt
Gy lal,]81=0
= —2Re/ftsut5+1dxdt
Qr

By using the hypothesis (iv) and condition (3.3) we can see easily that Dpui\k’
(z,0) =0with0 < k < s, 0 < |p| < m. Therefore, for the first term of inequality
(3.5) we have

a -
(3.6) / a(ui\!ﬁui\!ﬁ)dxdt = |lul¥si (=, T)H%Q(Q).
Qr

k s!
i — i = (=1)lal+IBly* i
Denoting <8) k!(s k)! and noting that aap ( 1) Agas we obtain

for the second term of inequality (3.5) :

2Re / Z m+|a| (0D u™) Doy dudt
. lal1pl=0
9 (0%a
m—l—oc aB a, N
_2Re/ D |< )at< Sl DA Do ) dudt
o, |B|=0 k=1
ok+lq
m+o< af Da, N
(3.7) —2Re/ Z Z | '( ) s D ul Dl dudt
ahi81=0k=1
0 aq
_QRG/ Z Z m+|a|<> aa O 00p s, DaaNdudt
r lablgl=0k=1
m+|o¢|aa’0<ﬂ B, NPa, N
— Re Z WD Uys Duys daedt

&y lad.|B=0
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T P N
= [ B o

Since Dpui\,i(x, 0)=0, 0<k<s, 0<]|p| <m, by applying the integration by
parts, from (3.7) we obtain

2Re/ Z m+|a|%( a/jDﬂuN)Do‘ui\s]_,_ldxdt
Qp lall8]=0
= ("B )

k\ 0Fa, —
+2Re / e mﬂal(s) S T

lo}18]=0 k=1
3.8 + 0" aqp
(38 _oRe / DI EE |a|<s) O o i, Dol drdi
7 1ohI3l=0=1
dka
_QRG/ Z Z m+|0<|<s> 8taﬂDﬂ ts— k+1DO‘ui¥d$dt
r 1obIBI=0 k=1
a -
—Re / Z m+|a|%DﬂuﬁDau,{\s’dxdt.
Gy lal,|B]=0
Since

2Re / )\ouiguig+1dxdt = Xo||ul (z, T)H%Q(Q),
Qr
from (3.5), (3.6) and (3.8) we obtain

i (2, T)H%z(g + (=1 B(ugt, uit)(T) + Xoflu (2, T) | 22

(
Ok aq —
= —2Re/ Z Z m+|a|< ) aa’ — 22 DBy, DouY e

al61=0 k=1
4 9Re Z Z 1)mtlel 0" aap 1o N DauN dudt
Otk+1 Uys—k ¢
r lollBl=0k=
oka
(3.9) +2Re/ Z Z m+|a|<> at:ﬁDg N DvaNdudt
lal,13=0 k=1
0
—|—Re/ Z m+|°‘| gaﬂDﬂ NDaui\sfdxdt
G lal,|81=0

+ 2Re / AQUys ui\sﬁrldxdt — 2Re ftsut5+1dxdt

Qr
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We have

—2Re/ Z Z m+|“|+1< >8aaaﬁDﬁ N RDautS dx

t=T
lea]=]8]=0 k=1
1<|al,|B]<m

s—1

< erllud (@, T)||3m(qy + Cle1) Z w2, T || Fm ),
k=0

(IT) =Re Z (—1)m+|alag—§ﬁDﬁuﬁD“uﬁdxdt

|a|=|B]|=0
Qr 1<al,|8l<m

T
< [ et

a [
(I11) —2Re/ > Z m+'“'<5> &kfl‘*ﬁD%ﬁ,kDaug!dxdt

(310) Qr 1‘<7L\‘\%\<Omk 1

+ 2R€/ Z Z m+|a| ( > 8@@&3 Dﬁutg it D“uﬁdxdt

la|=[8]=0 k=1
Q1 1<)a),(8l<m

* €2
<oms [ et + 2 [ I iyt
s—1 T
Ce) Y [ Nl oy
k=070
(V) = )\OHuﬁ(Jc,T)H%Q(Q) - 2Re/ftsui\£+1dxdt.

T T T
2
<000 [ 1 oyt 35 [ elcantd® [ ooyt

where C'(g1) > 0 depends on &1, and C(e2) > 0 depends on 2. Using the Cauchy
inequality and Lemma 2.2, from (3.10) we get

g (2, T2y + (1o — 1) s (2, T)Ipm oy

T
<5 [ Il + (mu2s + 1)
T
00 +22) [ ot
. 0
0 [ e Bt
0 o1 s—1 p
Cle) S Il 2y + Clea) S / a2
k=0 k=0

2 (T (m*u(28;1+(5)\0)2+€2)
<5 [ (el + 5 i ey )t
0

(3.11)
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s—1

T
e /O i Iyt + Ce1) 3 Nk (2 D)2y
k=0

s—1 .7
+CE)Y /0 b 2 e
k=0

We find a solution §2 from the equation:

(m*p(2s 4+ 1) + (6X0)? + £2)62
2
where 0 < g7 < pg and g5 > 0. We get

AJO + (m* (25 + 1) + £2)6% — 2(uo — 1) = 0.

Denote by d, the positive solution of this equation, we obtain

= Mo — €1,

2(po—e1) if Ag=0
52— m*pu(2s+1)+e9 ’
F ) (s 4 1) dea) +1/(mFu(2s + 1) +e0)248(po — 1)y
2)\2 if )\07&0
0

Therefore, we have

2 (m'u2s+1)+ (6X0)% +£2)
53 Ho — €1
m*u(2s + 1) + &2 + /(m*u(2s + 1) + 22)2 + 8(po — €1) N2
2(po — €1)
We consider the function of variables £ and e5:
a(er, ea) = o = A28 E D) Heat V (m* p(2s+1) +2)248(po —£1)Af
7 d2(e) 4(po—e1)
with 0 < g1 < pg and g9 > 0 . Rewrite this equation in the form:

m*u(2s+1)+e¢ m*u(2s +1) +e9)2 A2
Vs(e1,€2) = l i (7 ) 5 2) + K .
4(po — €1) 16(po — €1) 2(po — €1)
. 07s . 07s .
It is easy to check that > 0 with Ve, € (0, o) and e > 0 with Vey > 0.
€1 2

Put

1 m*u(2s+1) + \/(m*u(23+1))2+8u0)\3
- 0%(0) 4po '

Take s = h. Since v > v, (see Theorem 3.1), there exist two constants
e1,62: 0 < &1 < po, €2 > 0 such that v = yp,(e1, 2e2). Denote v* = (€1, £2).
We have

v¥s = vs(e1 = 0,62 = 0)
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(3.12) v = yn(e1, 2e2) > Yn(e1,e2) ="
From this fact and inequality (3.11) it follows that

lunia (2, 17 0 + (o — en)llugh (@, T) | Fme)
T
<29 [ (1o Dl + G~ o) )

0
h—1

+ Cilen,22) (Z ¥ (2, ) ey

h—1
Py / i O3yt + [ 1S P
(3.13) = P
T T

<297 [ (s (D10 + (0 — e0) s o ) o )

0 h—1
+Ch 51752 { |:Hutk fI,' T HHm(Q)
T k=0

4 [ 1o O t] + T e o s )

where Cj(e1,£2) > 0 depends on 1 and e,.
Let [ be a non-negative integer and [ < h — 1. We now use the induction to
show that

T

l
S [l oy + [ o, Ot
ke

0

[e=]

(3.14) l

< Cf(e1,e2)e eres Z ”ft’“”L‘X’(O o0 L2())
k=0

where 1, e are the constants as in (3.13), Cs(e1,e2) > 0 depends on 1, €2 and
vi(e1, e2) is the constant as in (3.12).
From (3.5) with s = 0 we have

/aa<ut ul¥ dxdt—i—QRe/ Z m+|a|aa5DﬂuND0‘—u,{dedt
(3.15) @r Qp lehl81=0
= —2Re/fu£vdxdt
Qr

In the same way as while the proof of inequality (3.11), from (3.15) we obtain
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i 12y + proll ™ HHm(Q)

< (m*p+ (0X0)? /H'UJN”H"L(Q dt + 52/”ut 172t

4 / 113
0

(3.16)
2 (m*u + (5)\0)2)52
< 2 [ (1 oy + T N g Y
0
T
+0 [ 1130
0
. * 5Xo)?)62
Choosing 6% such that (mp +; o)) = g, We get
21 if A\ = 0,
62 = e
—m* 4/ (m*p)? + 8N
fA 0.
2)\3 1 0 7é
Put

INn(t) = HUN(UCJ)H%?(Q) "’MOHUN(x’t)”%{m(Q)'
From (3.16) we obtain

243

. m *ut+/(m u+8u0)\2/
2Mo

T
m*p 4/ (m ) + 8uoA} [T
() < PR [y 57 [ 71
0

dt+CT”f”LO°(0 o0, L2())? C =const.

From this estimate and from the Gronwall- Bellman inequality, we obtain

(2, T) |32y + molle™ (@, T) | ey

“tu+ /(i + Buoh2
SCoexp{<m w4/ (m* e+ 8o g T

2
i )T A1 000220

where Cy = const > 0, i.e.,

(317)  lur (2, D) 2 + pollu™ (@, Tl Fpme) < Coe™ 1110 (0 0052252

Since
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m*u 4 e+ /(m*u+ €2)2 + 8(po — €1) A2
2(po — €1)?

290(e1, €2) = > 20,

we have

(3.18) Nl (2, )12y +hollu™ (@, T) () < Coe™ ™ 4D flIE (0, 00s2(00)

From this inequality and by the arbitrariness of 7', we obtain

(3.19) /Hu @, 1) | Fpm(eydt < _62T’YO(61’62)Hf”%w(o,oo;LQ(Q))'

From (3.18), (3.19) it follows that
T

o (2, )y + [ 1 G Oyt < GO gy

Therefore, inequality (3.14) holds for [ = 0.
Assume that (3.14) holds for all j <1—1. From inequality (3.13) with s = j+1
we have

(e, T 0 + (0 = e0) s (. T) o
T
<2502 [ (e DI o + (0 = ) afon o Dl )
0

J
+ Cjy1(e1,€2) (Z! up (z,T) HHm(Q)
k=0

: T
J
+ 30 [ 1 Ot + Tl s e o sz

where C1(e1,e2) > 0 depends on €1, €2. From this inequality and by using the
induction on j we obtain

g (, T)H%Q(Q) + (1o — e1)[lugfsa (=, T)H%{m(sz)
T
< 27j41(e1,€2) / (Hugﬁ(xvt)”%g(ﬁ) + (po — 61)”“%1(%75)”%%(9))6[75
0
J
+ Cjy1(e1, €2) (C}k(&?l, gg)eTi(E1e2) Z | fix H%‘”(O,OO;LQ(Q))
k=0

+ T'|| fsnr H%OO(O,OO;LQ(Q))>7
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By the Gronwall- Bellman inequality we get
lugisz (2, T)7 ) + (20 = €)|ufsn (2, T) [ Frmq
Jj+1

< Cjaa(e1,22)eT 0 E2) N 12 o 0 mecz2 (@)
k=0

where Cj j11(e1,e2) > 0 depends on ¢1, €2. Hence

J+1

2567

Ciiii1(er,e .
Yo (o, T By < S EL ) oPpsterea) Sz 0

— €
Ho 1 o

In the same way as in the proof of inequality (3.19) we have

T
lugsr (2, ) [Fpm ey dt
0

C. ,+1(€1 52) )j+1
J5J ) 2T’Y]'+1(61,62 f 2
>~ € k|| 7 oo . .
2(po — €1)7j+1(e1, €2) %H et 0eitzie)

From these inequalities and by the induction hypothesis, we get
Jj+1 T
> [l T By + [ s ) o]
k=0 0
j+1
< C7py(e1,2) TSN P Flf? o 0.00n2 ()
k=0
Therefore, (3.14) holds for all j < and the proof of (3.14) is completed.
Now we return to inequality (3.13). By using (3.14), from (3.13) we have

i (2, T) 13 0y + (0 = ) [ (2, T) [y
T
<29 [ (ks (O ey + (0 — e0) o ) o )

(3.20) 0 h—1

+Ch(51752)<ch L(e1, 80) X m-1(ere2) ZHftkH%oo(o,oo;m(Q))

k=0
+ Tl for 0 0esz2(@) )
Put

T (T) = Nl (2, )17 ) + (1o — €0)llugh (2, D)1 ym
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h—1

¢(T) = Ch(e1, e2) <C/§—1(€1, gg)e? T E2) N f 1 00 (0,00 22())
k=0

T —

From inequality (3.20) we have

T
I (T) < 27*/Jév(t)dt+¢(T)-
0
Applying the Gronwall- Bellman inequality, from inequality (3.19) we obtain

T
(3.21) JN(T) < / 2T/ (1) dt.
0

Since vp—1(e1,€2) < (g1, e2) = 7%, it follows from (3.21) that

h

TN (T) < Croanlen, 22)€® ™Y || fiell T oo (0.0022(2))-
k=0

This implies that
lughes (2, T + lugh (2, T oy
h

< Chyn(€1,2)€ Y 1 finll T (0001220
k=0

(3.22)

From (3.12) we have v > ~*. Therefore, by multiplying e=277 to the both sides
of inequality (3.22) and integrating it with respect to 7' from 0 to oo, we obtain

h

(323) H’LL%H%{mJ(e—»yt’Qoo) < C Z HftkH%OO(O’OO;LQ(Q))7
k=0

where C' = const > 0 is independent of N and f.

We now return to inequality (3.17). Since 5 > 7o, by multiplying the both
sides of inequality (3.17) on =277 and integrating with respect to 7' € (0, cc), we
have Vi )

a1 oty S O om0 00i2200)
where C' = const. Therefore, there exist a subsequence which converges weakly
to a function v in H™!(e™t Q). It is easy to check that v is a generalized
solution of problem (2.3)-(2.5) in the space H™! (e~ Q). Since this problem
has exactly one generalized solution in the space H™!(e=%%, Q), we have v = w.
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th’
choose a subsequence which converges weakly to a function vy, in H™!(e=7, Q).
By passing in (3.23) to the limit for a weakly convergent subsequence, we obtain

From (3.23) it follows that {uN} is bounded in H™1!(e=7 Q). We can

h
HuthH%{ml(e—vt,Qoo) < CZ HftkH%oo(o,oo;Lg(Q))v
k=0
where C' = const > 0 is independent of « and f. The proof of Theorem 3.1 is
completed. =

4. REGULARITY WITH RESPECT TO BOTH OF TIME AND SPATIAL VARIABLES

Let 2 be a bounded domain in R™ with the boundary 9. We suppose that 92
is a infinitely differentiable surface everywhere except the coordinate origin, in a
neighborhood of which the domain §2 coincides with the cone K = {z : z/|z| € G},
where G is a smooth domain on the unit sphere S 1.

Suppose that w = (w1, ..., w,—1) is & local coordinate system on the unit sphere
S™=1and Ly(0,t, D) is the principal part of the operator L(x, ¢, D) at the coordinate
origin. Then we can write Ly(0, ¢, D) in the form

Lo(0,t, D) = r~2"Q(w,t,7Dy, Dy,)

where Q(w, t, rD,, D,,) is the linear operator with smooth coefficients, D, = i9/0,
and D,, = 9/0w;.....0w,_1. Consider the spectral problem:

(4.1) Q(w,t, N\, Dy)v(w) =0,w € G,
(4.2) Dgv(w) =0,w € 0G, |a| =0,1,...,m— 1.

It is well known (see [2]; p. 39) that for every ¢ € [0, co) its spectrum is discrete.
We consider the Dirichlet problem for an elliptic system with the parameter ¢:
(4.3) (=1)™"1Lo(0,t, D) = F(x,t),z € Q.

The function u(x,t) is called a generalized solution of the Dirichlet problem

for system (4.3) in the space H™(Q) if u(x,t) € Iifm(ﬂ) for almost all ¢ € [0, c0)
and the identity

(—1ym-! / S (1) ans(0, ) DPulz, t) Do) = — / F(z, )p(@)dz
qQ lallsl=1 Q

0
holds for all test functions p(z) € H™(Q), t € [0, 00).

From Lemma 2.1 of Section 2 of this paper and by using the similar arguments
as in the proof of Lemma 3.2 in [4] we obtain the following result.
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Lemma 4.1. Suppose F(x,t) € Hj (e, Q) for almost all € [0, o) and
u(z, t) is a generalized solution of Dirichlet problem for system (4.3) in the space
H™(Q) such that u(z,t) = 0 outside Uy. Then u(z,t) € Hgm”’o(e—”t, Q) and

2 2 2
”1L”;f§"“*“°(e—vt¢2q» = (7<’“LHIJETT*‘lp(e—vtAI«» - ”lﬁHIJEO(e-WtJLx)>’
where C' = const > 0 is independent of » and F.

We surround the origin by a neighborhood U, of a diameter sufficiently small
so that the intersection of 2 and Uj coincides with the cone K. From Theorem 3.1
with A = 1 and by using the similar arguments as in the proof of Lemma 3.1 in [4],
we have the following assertion.

Lemma 4.2. Assume that problem (2.3)-(2.5) has exactly one generalized so-
lution u(z,t) in the space H™!(e=%* Q). and the following conditions are
fulfilled:

. o*a
() swp |2 <1<l |5 <m, 0k <2,
(,t) EQoo ot
(II) ft’“ S LOO(O, 00, LQ(Q)), 0<k<1,
(iii) f(z,0) = 0.

In addition, assume that u(z, t) = 0 outside U. Then for every v > max{v1, 5}
the generalized solution u(z, t) belongs to H 2™?(e=7, Q) and

(A1) MulZamegn gy < CUF 0 0zat) + il 0,00ia(e)
where C' = const > 0 does not depend on « and f.

Theorem 4.3. Assume that problem (2.3)-(2.5) has exactly one genenalized
solution w(z,t) in the space H™! (e~ ), and the following conditions are
fulfilled:

k
(i) sup |5 Gap| <1 <ol 1B <m, 0<k <2m+1+1,
(2,t) €00 ot
(i) fo € L°(0,00; La(2)), 0 < k <1+ 2m,

(i) fu(2,0)=0, 0<k <I+2m-—1.

In addition, suppose that the strip
m— 2 <Im\<2m+1— -
2 2

does not contain the points of the spectrum of problem (2.7) — (2.8) for every
t € [0,00). Then for every v > max{~y2m+i,7;} the generalized solution u(z, t)
belongs to the space Hgm“(e—vt, Q) and the following inequality holds
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2m+l1

ul? <C Y ful?

u HgnL+l(e_»Yt’Qoo) =~ tk Loo(()’oo;LQ(Q))v
k=0

where C' = const > 0 is independent of v and f.

Proof.

Case 1. We prove that the Theorem is true for a generalized solution w(z, t)
of problem (2.3)-(2.5) in the space H™! (e, Q) satisfying u(x,t) = 0 outside
Uy. First, we consider the case [ = 0 and rewrite system (2.3) in the form

(4.5) (=1)"™"1Lo(0,t, D)u = F(x,t),

where F(z,t) = uy + f + (=1)""Y[Lo(0,t, D) — L(x,t, D)]u. From Lemma 4.2
and Theorem 3.1 it follows that F'(z,t) € an’(il(e—w, Qo). Therefore, F(z,t) €
HY () for almost all ¢ € [0,00). On the other hand, for every ¢ € [0, c0) the
strip m — (n/2) < ImXA < m+ 1 — (n/2) does not contain any points of the
spectrum of problem (4.2)-(4.3). So from the results of the work [8] it follows that
for almost all ¢ € [0, oo) the function u(x, t) belongs to the space H2™,(2) and

lullZrzm oy < CluellE, ) + 11 Z2e) )
me1(62) ) )

where C' = const > 0 is independent of » and f. Using similar arguments we can
show that ) ) )
el zmay < C(llustll? 0 + 1F122()

where C' = const > 0 is independent of  and f. Multiplying by e~*7* the both

sides of this inequality and integrating with respect to ¢ from 0 to oo, we obtain
Hqugmo(e_zw,Qoo) < C(HuttH%Q(Qw) + Hf”%‘x’(O,oo;Lg(Q))>7

where C' = const > 0 is independent of « and f. This inequality and Theorem 3.1

imply

(46)  NulZamoy 2y S C (1m0 oeszatay + 1l Eeocira@:

where C' = const > 0 is independent of « and f.
We claim that the following inequality is valid:

2m
2
(4.7) fezgs ”ifé"L’O(e—Qvt,Qoo) <CY el 0,00y
k=0

where C' = const > 0 is independent of « and f.
Indeed, differentiating system (2.3) with respect to ¢ and putting v = wuys, We
have
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(48) (—1)m_1L((L', t, D)’U = vy + fts + (_1)m Z <Z> Ltkuts—k,

k=1

where L m Da(@ (o Dﬂ) ok aa aka
v= > otk Z o Pt o
o], |Bl=1 o] =1
Put
s s -
F1 = Ut — fts - (—1)m Z <k> Ltkuts—k + ( - 1)m l(LQ(O, t, D) - L(TI,', t, D))’U
k=1

Therefore, we have the system:
(4.9) (=)™ 'Lo(0,t, D)v = Fi(x,1).

Using the induction hypothesis and the similar arguments as in the proof of (4.6),
we obtain the inequality

2m

(410) s l1F2m0(, 200 gy = 10l 2moqe 2 gy < C D Il Toe 0 0050y

where C' = const > 0. It follows that inequality (4.7) is true and so the claim is

proved.
Since
2m—1
HuH?{gm(e-w,gw) < Z Hutk!@gm,o(e_w,gw) + Hth"LH?;[gp(e—?’vt,Qoo)’
k=0

from inequality (4.10) and Theorem 3.1, we have

2m
lelFrzm(e-210.000) < C D IferllEo0 0 0052000

k=0

where C' = const > 0 is independent of » and f. Hence the Theorem is proved for

[=0.

Suppose that the conclusion of the Theorem is true for all s <17 — 1, that is
2m+s

2
(1)l SC S ety 5 11
k=0

where C' = const > 0 is independent of » and f. We need to show that the
conclusion of the Theorem holds for all s <.
First, we prove the following inequality:

2m+l
2
(4.12) HutsHHzm+z S(e=t O S C Z [0 (0,00:25(92))
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fors =1,1—1,.....,0, where C = const > 0 is independent of « and f. Since
fiw € L™(0,00; Lo(Q2)) for k <14 2m, fu(x,0) =0 for k <1+ 2m —1, from
Theorem 3.1 it follows that > € Hy%(e=2"%, Q). Using this fact and by the
similar arguments as in the proof of inequality (4.7) we obtain inequality (4.12) for
s = [. Let us assume that inequality (4.12) is true for s = 1,1 —1,..,5 + 1. Set
v = uy;. From identity (4.8) it follows that

(4.13) (-1)™ 'Ly =F,

where

i,
F =F(z,t)=vy + fis + (1" Z <é> Lyrugi—r,

k=1
m m
8kaa5 da da
_ E B E «
], 18]=1 ler|=1

By virtue of the induction hypothesis with respect to /, we have

J

Z <?€> Likug—x € Hé_j(e_wt, Qo).

k=1
On the other hand, in view of the induction assumption with respect to s,

Vi € Hé_j(e_’yt, Qoo)
Therefore, F(x,t) € Hy 7 (e72", Q). From this fact and the relation
Hy 7 (e, Qo) € H (e, Q)

it follows that F(z,t) € H /(21 Q).

By repeating arguments that are analogous to those which were used in the
proof of this theorem with [ = 0, we obtain v € H27"10(c=2v ). The
application of Lemma 4.1 yields u,; = v € H2™ (=27 Q) and

2m+l1

2
(19 olamsopzmgy S C O IilEeociza):
k=0

where C' = const > 0 is independent of « and f.
Since vspace-0.1cm

Hut]'H?'{QWL‘H—J'( 7t Qo)
(4.15) o
< Hutj+1 ”?f&"‘*l_j_l(e—vf,ﬁoo) + Hut]’Hi[gm-&-l—j,o(e_,yt’goo)v

by the induction hypothesis with respect to s, it follows that
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2m+1
s |13 : <C Y Ifwl
tJ H02"L+l_](e_’yt7900) = t LOO(O’OO;LQ(Q))7
k=0

where C' = const > 0 is independent of « and f. Hence we obtain the conclusion
of the theorem for j = 0.

Case 2. We now prove the theorem for the general case. Take a function

uo = wou, Where py € C*(Up) and ¢ = 1 in a neighborhood of the coordinate
origin. The function g satisfies the system

(_1)m_1L(x7 tv D)UO - (u())tt = @Of + Ll(fI,', tv D)“’v

where L; is a linear differential operator having order less than 2m. The coefficients
of this operator depend on the choice of the function ¢, and are equal to 0 outside
Uy. Using this fact and by the similar arguments as in the proof of the case 1 we
have

2m+l1

2

(416) ”@Ou”?;[gnl+l(e—fyt7goo) < C Z HftkHLoo(O,OO;LQ(Q))7

k=0
where C' = const > 0 is independent of « and f.

The function ¢1u = (1 —¢p)u is equal to 0 in a neighborhood of the coordinate
origin. We now apply this function to the theorem on the smoothness of a solution of
the elliptic problem in a smooth domain to conclude that w;u € HZ™ (e77, Q)
and

2m+l1
2
(4.17) lerulizmsseian < € 2 Miliogmam
k=0

where C' = const > 0 is independent of « and f. Since u = pgu + @1u, it follows
from the inequalities (4.16) and (4.17) that

2m+l
7 <C Y Il
H02m+l(e_ryf,7900) = tk L>°(0,00;L2(2))?
k=0

where C' = const > 0 is independent of w and f. The proof of the theorem is
completed. =
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