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SEVERAL ANALYTIC INEQUALITIES IN SOME Q−SPACES

Pengtao Li and Zhichun Zhai*

Abstract. In this paper, we establish separate necessary and sufficient John-
Nirenberg (JN) type inequalities for functions in Qβ

α(Rn) which imply Gagliardo-
Nirenberg (GN) type inequalities in Qα(Rn). Consequently, we obtain Trudinger-
Moser type inequalities and Brezis-Gallouet-Wainger type inequalities in Qα(Rn).

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

This paper studies several analytic inequalities in some Q spaces. We first es-
tablish John-Nirenberg type inequalities in Qβ

α(Rn)(n ≥ 2). Then we get Gagliardo-
Nirenberg, Trudinger-Moser and Brezis-Gallouet-Wainger type inequalities in Qα(Rn).
Here Qβ

α(Rn) is the set of all measurable complex-valued functions f on R
n satis-

fying

(1.1) ‖f‖
Qβ

α(Rn)
= sup

I

(
(l(I))2(α+β−1)−n

∫
I

∫
I

|f(x)−f(y)|2
|x−y|n+2(α−β+1)

dxdy

)1/2

<∞

for α ∈ (−∞, β) and β ∈ (1/2, 1], where the supremum is taken over all cubes I
with edge length l(I) and the edges parallel to the coordinate axes in R

n. Obviously,
Q1

α(Rn) = Qα(Rn) which was introduced by Essen, Janson, Peng and Xiao in [9].
It has been found that Qα(Rn) is a useful and interesting concept, see, for example,
Dafni and Xiao [6, 7], Xiao [19], Cui and Yang [5]. As a generalization of Qα(Rn),
Qβ

α(Rn) is very useful in harmonic analysis and partial differential equations, see
Yang and Yuan [20], Li and Zhai [14, 15] and Zhai [23] in which Q β

α(Rn) was
applied to study the well-posednes and regularity of mild solutions to fractional
Navier-Stokes equations with fractional Laplacian (−�)β .
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JN type inequality is classical in modern analysis and widely applied in theory
of partial differential equations. In [10], John and Nirenberg proved the JN inequal-
ity for BMO(Rn). In this paper, we establish JN type inequalities in Qβ

α(Rn) a
special case of which implies Gagliardo-Nirenberg (GN) type inequalities meaning
the continuous embeddings such as Lr(Rn)∩Qα(Rn) ⊆ Lp(Rn) for −∞ < α < 1
and 1 ≤ r ≤ p < ∞. Moreover, from GN type inequalities in Qα(Rn), we get
Trudinger-Moser and Brezis-Gallouet-Wainger type inequalities. See, for example,
[1, 2, 8, 11, 12] for more information about Trudinger-Moser and Brezis-Gallouet-
Wainger type inequalities. To achieve our main goals, we need the characterization
of Q

β
α(Rn) in terms of the square mean oscillation over cubes.

We recall some facts about mean oscillation over cubes. For any cube I and an
integrable function f on I, we define

(1.2) f(I) =
1
|I |
∫

I
f(x)dx

the mean of f on I, and for 1 ≤ q < ∞,

Φq
f (I) =

1
|I |
∫

I
|f(x)− f(I)|qdx(1.3)

the q−mean oscillation of f on I. Recall the well-known identities

(1.4)
1
|I |
∫

I

|f(x) − a|2dx = Φ2
f(I) + |f(I)− a|2

for any complex number a, and

(1.5)
1

|I |2
∫

I

∫
I

|f(x)− f(y)|2dxdy = 2Φ2
f(I).

Moreover, if I ⊂ J, then we have

(1.6) Φ2
f(I) ≤ |J|

|I |Φ
2
f (J)

and

(1.7) |f(I)− f(J)|2 ≤ |J|
|I |Φ

2
f (J).

Let D0 = D0(Rn) be the set of unit cubes whose vertices have integer coor-
dinates, and let, for any integer k ∈ Z, Dk = Dk(Rn) = {2−kI : I ∈ D0}, then
the cubes in D = ∪∞−∞Dk are called dyadic. Furthermore, if I is any cube, Dk(I),
k ≥ 0, denote the set of the 2kn subcubes of edge length 2−kl(I) obtained by k
successive bipartitions of each edge of I. Moreover, put D(I) = ∪∞

0 Dk(I). For any
cube I and a measurable function f on I, we define
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(1.8)

Ψf,α,β(I) = (l(I))4β−4
∞∑

k=0

∑
J∈Dk(I)

2(2(α−β+1)−n)kΦ2
f (J)

= (l(I))4β−4
∑

J∈D(I)

(
l(J)
l(I)

)n−2(α−β+1)

Φ2
f (J).

We can prove the following proposition by a similar argument applied by Essen,
Janson, Peng and Xiao for the case β = 1 in [9, Theorem 5.5]. The details are
omitted here.

Proposition 1.1. Let −∞ < α < β and β ∈ (1/2, 1]. Then Qβ
α(Rn) equals

the space of all measurable functions f on R
n such that supI Ψf,α,β(I) is finite,

where I ranges over all cubes in R
n. Moreover, the square root of this supremum

is a norm on Qβ
α(Rn), equivalent to ‖f‖

Qβ
α(Rn)

as defined above.

Using this equivalent characterization of Qβ
α(Rn), we can establish the following

JN type inequalities.

Theorem 1.2. Let −∞ < α < β, β ∈ (1/2, 1] and 0 ≤ p < 2. If there exist
positive constants B, C and c, such that, for all cubes I ⊂ R

n, and any t > 0,

(1.9) (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ(t)
|J| ≤B max

{
1,

(
C

t

)p}
exp(−ct),

then f is a function in Q
β
α(Rn). Here mI(t) is the distribution function of f −f(I)

on the cube I :

(1.10) mI(t) = |{x ∈ I : |f(x)− f(I)| > t}|.

Theorem 1.3. Let −∞ < α < β, β ∈ (1/2, 1] and f ∈ Qβ
α(Rn). Then there

exist positive constants B and b, such that

(1.11)

(l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ(t)
|J|

≤ B max


1,

(‖f‖
Qβ

α

t

)2

 exp

(
−bt

‖f‖
Q

β
α

)

holds for t ≤ ‖f‖
Qβ

α(Rn)
and any cubes I ⊂ R

n, or for t > ‖f‖
Qβ

α(Rn)
and cubes

I ⊂ R
n with (l(I))2β−2 ≥ 1. Moreover, there holds

(1.12) (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ (t)
|J| ≤ B
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for t > ‖f‖
Qβ

α(Rn)
and cubes I ⊂ R

n with (l(I))2β−2 < 1.

For β = 1, the JN inequality in Qα(Rn) was conjectured by Essen-Janson-Peng-
Xiao in [9] and finally a modified version as in Theorems 1.2-1.3 was established
by Yue-Dafni [21].

According to Essen, Janson, Peng and Xiao [9, Theorem 2.3] and Li and Zhai
[14, Theorem 3.2], we know that if −∞ < α and max{α, 1/2} < β ≤ 1, Qβ

α(Rn)
is decreasing in α for a fixed β. Moreover, if α ∈ (−∞, β − 1), then all Qβ

α(Rn)
equal to Qβ

−n
2
+β−1(R

n) := BMOβ(Rn). Thus, when k = 0 and α = −n
2 + β − 1,

(1.11) implies a special JN type inequality, that is, for f ∈ L2(Rn) ∩ BMOβ(Rn)
and t ≤ ‖f‖BMOβ(Rn),

(1.13) |{x ∈ R
n : |f | > t}| ≤

B‖f‖2
L2(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)
.

When t > ‖f‖BMOβ(Rn), we get a weaker form of (1.13).

Proposition 1.4. Let β ∈ (1/2, 1]. If f ∈ BMOβ(Rn) ∩ L2(Rn), then
(i) (1.13) holds for all t ≤ ‖f‖BMOβ(Rn);
(ii)

(1.14) |{x ∈ R
n : f(x) > t}| ≤

B‖f‖2
L2(R2)

‖f‖2
BMOβ(Rn)

holds for all t > ‖f‖BMOβ(Rn).

When β = 1 and t > ‖f‖BMO(Rn), (1.13) also holds and implies the following
GN type inequalities in Qα(Rn) which can also be deduced from [4, Theorem 2]
and [9, Theorem 2.3]: for −∞ < α < 1 and 1 ≤ r ≤ p < ∞,

(1.15) ‖f‖Lp(Rn) ≤ Cnp‖f‖r/p
Lr(Rn)‖f‖

1−r/p
Qα(Rn),

for f ∈ Lr(Rn)∩Qα(Rn). Here, C∗,··· ,∗ denotes a constant which depends only on
the quantities appearing in the subscript indexes.

As an application of (1.15), we establish the Trudinger-Moser type inequality
which implies a generalized JN type inequality.

Theorem 1.5.
(i) There exists a positive constant γn such that for every 0 < ζ < γn

(1.16)
∫

Rn

Φp

(
ζ

( |f(x)|
‖f‖Qα(Rn)

))
dx ≤ Cn,ζ

( ‖f‖Lp(Rn)

‖f‖Qα(Rn)

)p
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holds for all

f ∈ Lp(Rn) ∩ Qα(Rn) with 1 < p < ∞ and −∞ < α < 1.

Here Φp is the function defined by

Φp(t) = et −
∑

j<p,j∈N∪{0}

tj

j!
, t ∈ R.

(ii) There exists a positive constant γn such that

(1.17) |{x ∈ R
n : |f | > t}|≤Cn

‖f‖2
L2(Rn)

‖f‖2
Qα(Rn)

1(
exp

(
tγn

‖f‖Qα(Rn)

)
−1− tγn

‖f‖Qα(Rn)

)
holds for all t > 0 and

f ∈ L2(Rn) ∩ Qα(Rn) with −∞ < α < 1.

In particular, we have

(1.18) |{x ∈ R
n : |f | > t}| ≤ Cn

‖f‖2
L2(Rn)

‖f‖2
Qα(Rn)

exp
(
− tγn

‖f‖Qα(Rn)

)

holds for all t > ‖f‖Qα(Rn) and

f ∈ L2(Rn) ∩ Qα(Rn) with −∞ < α < 1.

We can also get the following Brezis-Gallouet-Wainger type inequalities.

Proposition 1.6. For every 1 < q < ∞ and n/q < s < ∞, we have

(1.19)
‖f‖L∞(Rn)

≤ Cn,p,q,s

(
1+(‖f‖Lp(Rn)+‖f‖Qα(Rn)) log(e+‖(−�)s/2f‖Lq(Rn))

)
holds for all (−�)s/2f ∈ Lq(Rn) satisfying

f ∈ Lp(Rn) ∩ Qα(Rn) when 1 ≤ p < ∞ and −∞ < α < 1.

In the next section, we prove our main results. We verify Theorem 1.2-1.3
for β ∈ (1/2, 1] by applying similar arguments in the proof of Yue and Dafni [21,
Theorems 1-2] for β = 1. We deduce Proposition 1.4 from a special case of Theorem
1.3. Finally, we demonstrate Theorem 1.5 and Proposition 1.6 by applying (1.15)
and the Lp − Lq estimates for e−t(−�)s/2

.
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2. PROOFS OF MAIN RESULTS

2.1. Proof of Theorem 1.2

According to Proposition 1.1, it suffices to prove that Ψf,α,β(I) is bounded
independent of I. More specially, we will prove for any p < q, we have

(2.1) Ψq
f,α,β(I) := (l(I))4β−4

∞∑
k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

Φq
f(J) ≤ BKC,c,q,p,

where B, C, c are the constants appearing in (1.9), and KC,c,q,p is a constant de-
pending only on C, c, p, and q. When q = 2, Ψq

f,α,β(I) = Ψf,α,β(I), so this implies
the theorem.

For a fixed cube I, and any J ∈ Dk(I), let
∫
J |f(x)−f(J)|qdx = q

∫∞
0 tq−1mJ(t)dt.

Using the Monotone Convergence Theorem and the inequality (1.9), we have

Ψq
f,α,β(I) = (l(I))4β−4

∞∑
k=0

2(2(α−β+1)−n)k
∑

J∈Dk(t)

q

|J|
∫ ∞

0

tq−1mJ (t)dt

= q

∫ ∞

0
tq−1


(l(I))4β−4

∞∑
k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ(t)
|J|


 dt

≤ q

∫ ∞

0
tq−1B(1 +

(
C

t

)p

)e−ctdt

= qB

(
c−q

∫ ∞

0

uq−1e−udu + Cpc−(q−p)

∫ ∞

0

uq−p−1e−udu

)
= qB(c−qΓ(q) + Cpc−(q−p)Γ(q − p))

where Γ(y) =
∫∞
0 uy−1e−udu. Since 0 ≤ p < q, Γ(q) and Γ(q−p) are finite. Thus,

we can get the desired inequality by taking KC,c,p,q = q(c−qΓ(q)+Cpc−(q−p)Γ(q−
p)).

2.2. Proof of Theorem 1.3

Assume that f is a nontrivial element of Qβ
α(Rn). Then γ = supI(Ψf,α,β(I))1/2 <

∞. For all cubes I we have

(2.2)
(l(I))2β−2 1

|I |
∫

I

|f(x)− f(I)|dx

≤ ((l(I))4β−4Φ2
f(I))1/2 ≤ (Ψf,α,β(I))1/2 ≤ γ.

For a cube I and each J ∈ Dk(I), we have by the Chebyshev inequality, for t > 0,

mJ (t) ≤ t−2

∫
J
|f(x)− f(J)|2dx.
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Thus we get

(2.3) (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ(t)
|J| ≤ t−2Ψf,α,β(I) ≤ t−2γ2.

Thus, if t ≤ γ, then (1.11) holds with B = e and b = 1.
To consider the case of t > γ, we need the Calderón-Zygmund decomposition,

see Calderón and Zygmund [3], and Neri [17].

Lemma 2.1. Assume that f is a nonnegative function in L 1(Rn) and ξ is a
positive constant. There is a decomposition R

n = P ∪ Ω, P ∩ Ω = ∅, such that
(a) Ω = ∪∞

k=1Ik, where Ik is a collection of cubes whose interiors are disjoint;

(b) f(x) ≤ ξ for a.e. x ∈ P ;
(c) ξ < 1

|I|
∫
I f(x)dx ≤ 2nξ, for all I in the collection {Ik}.

(d) ξ|�| ≤ ∫� f(x)dx ≤ 2nξ|�|, if � is any union of cubes I from {I k}.

In the following we fix a cube I. For ξ = t(l(I))2−2β with any t > 0, we apply
the Calderón-Zygmund decomposition to |f(x) − f(J)| on a subcube J ∈ Dk(I).
Set Ω = ΩJ(t), P = J\ΩJ (t).

From Cauchy-Schwarz inequality and (d) of Lemma 2.1, we get

(2.4) (t(l(I))2−2β)2|�| ≤
∫
�
|f(x)− f(J)|2dx

for any union � of the cubes K in the decomposition of ΩJ (t). Inequality (2.4)
with � = ΩJ(t) gives us a variant of inequality (2.3):

(2.5)
(l(I))4β−4

∞∑
k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

|ΩJ(t)|
|J|

≤ Ψf,α,β(I)
(t(l(I))2−2β)2

≤
(

γ

(t(l(I))2−2β)

)2

for all t > 0.
When t ≥ γ, we can strengthen the estimate (c) in Lemma 2.1 as follows:

(2.6) t(l(I))2−2β <
1
|K|

∫
K
|f(x) − f(J)|dx ≤ (2nγ + t)(l(I))2−2β

for all cubes K in the decomposition of ΩJ(t). In fact, note that K is such a cube,
then K �= J. Otherwise, (2.2) implies

1
|J|
∫

J
|f(x)− f(J)|dx ≤ γ(l(I))2−2β ≤ t(l(I))2−2β.
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This contradicts (c). It follows from the proof of the Calderón-Zygmund decom-
position (see, Stein [18] ) that K must have a “parent” cube K ∗ ⊂ J satisfying
K ∈ D1(K∗), l(K∗) = 2l(K) and

|f(K∗) − f(J)| ≤ |K∗|−1

∫
K∗

|f(x)− f(J)|dx ≤ t(l(I))2−2β.

Then (2.2) implies

t(l(I))2−2β <
1
|K|

∫
K
|f(x)− f(J)|dx

≤ 1
|K|

∫
K
|f(x) − f(K∗)|dx + |f(K∗) − f(J)|

≤ 2n

|K∗|
∫

K∗
|f(x)− f(K∗)|dx + t(l(I))2−2β

≤ (2nγ + t)(l(I))2−2β.

There holds ΩJ(t′) ⊂ ΩJ(t) for 0 < t < t′. In fact, for any cube K ∈
ΩJ(t′)\ΩJ(t), we get K ⊂ J\ΩJ(t). So, property (b) tells us

t(l(I))2−2β ≥ 1
|K|

∫
K
|f(x)− f(J)|dx > t′(l(I))2−2β.

This is a contradiction.
Letting t′ = t + 2n+1γ for t ≥ γ, we claim that

(2.7) |ΩJ(t′)| ≤ 2−n|ΩJ(t)|.
To prove this, take a cube K in the decomposition for ΩJ(t). Then (2.6) implies
that

1
|K|

∫
K

|f(x)− f(J)|dx ≤ (2nγ + t)(l(I))2−2β < t′(l(I))2−2β.

Thus, K is not a cube in the decomposition of ΩJ(t′), and was further subdivided.
Set �′ = K∩ΩJ(t′). If �′ �= ∅, it must be a union of cubes from the decomposition
of ΩJ (t′). Thus, according to (d) of Lemma 2.1, (2.2) and (2.6),

t′(l(I))2−2β ≤ |�′|−1

∫
�′

|f(x)− f(J)|dx

≤ |�′|−1

∫
�′

|f(x)− f(K)|dx + |f(K)− f(J)|

≤ |�′|−1|K| 1
|K|

∫
�′

|f(x)− f(K)|dx +
1
|K|

∫
K
|f(x) − f(J)|dx

≤ |�′|−1|K|γ(l(K))2−2β + (2nγ + t)(l(I))2−2β

≤ |�′|−1|K|γ(l(I))2−2β + (2nγ + t)(l(I))2−2β
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since 2 − 2β > 0 and K ⊂ I. Replacing t′ by t + 2n+1γ, dividing by (l(I))2−2β,

subtracting t and dividing by γ, we have

(2n+1 − 2n) ≤ |�′|−1|K| and |K ∩ ΩJ (t′)| = |�′| ≤ 2−n|K|
for any cube K in the decomposition of ΩJ(t). Summing over all such K, and
noting that ΩJ (t′) = ΩJ(t) ∩ ΩJ (t′), we prove (2.7).

For each J ∈ Dk(I), property (b) of the decomposition for |f − f(J)| implies
that

(2.8) mJ(t(l(I))2−2β) = |{x ∈ J : |f(x)− f(J)| > t(l(I))2−2β}| ≤ |ΩJ(t)|.
For t > γ, let j be the integer part of t−γ

2n+1γ and s = (1 + j2n+1)γ. Then
γ ≤ s ≤ t. Thus one obtains from (2.8) that

(l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ (t)
|J|

= (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ ((l(I))2−2βt(l(I))2β−2)
|J|

≤ (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ ((l(I))2−2βs(l(I))2β−2)
|J|

≤ (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

|ΩJ((1 + j2n+1)γ(l(I))2β−2)|
|J|

≤ (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

|ΩJ(γ(l(I))2β−2 + j2n+1γ)|
|J|

≤ 2−n(l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

|ΩJ(γ(l(I))2β−2 + (j − 1)2n+1γ)|
|J|

if (l(I))2β−2 ≥ 1, by using (2.7) for

t = ((l(I))2β−2 + (j − 1)2n+1)γ and t′ = ((l(I))2β−2 + j2n+1)γ.

Iterating the previous estimate j times and using (2.5) with t = γ(l(I))2β−2, one
has

(l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ (t)
|J|

≤ 2−nj(l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

|ΩJ(γ(l(I))2β−2)|
|J|
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≤ 2−njγ2γ−2

≤ 2
−n

(
t − γ

2n+1γ
− 1

)

= 2
−

n

2n+1
(t/γ)

2
n

2n+1
+ n

.

Taking B = 2n/2n+1+n and b = n
2n+1 ln 2, we get (1.11) when (l(I))2β−2 ≥ 1.

If (l(I))2β−2 < 1, using (2.8) and (2.4), one has

(l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

mJ(t)
|J|

≤ (l(I))4β−4
∞∑

k=0

2(2(α−β+1)−n)k
∑

J∈Dk(I)

|ΩJ(t(l(I))2β−2)|
|J|

≤ γ2t−2 ≤ 1

which yields (1.12).

2.3. Proof of Proposition 1.4

Taking k = 0 and α = −n
2 + β − 1 in (1.11), we get that

(l(I))4β−4mI(t)
|I | ≤ B

‖f‖2
BMOβ(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)

holds for t ≤ ‖f‖BMOβ(Rn) and any cube I. Thus for t ≤ ‖f‖BMOβ(Rn) and any
cube I, we have

(l(I))4β−4mI(t)
|I |

∫
I

|f(x)− f(I)|2dx

≤ B
‖f‖2

BMOβ(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)∫
I
|f(x)− f(I)|2dx

≤ B
‖f‖2

BMOβ(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)∫
I
|f(x)|2dx

≤ B
‖f‖2

BMOβ(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)∫
Rn

|f(x)|2dx.
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This tells us

(2.9)

mI(t)
(l(I))4β−4

|I |
∫

I

|f(x)− f(I)|2dx

≤ B
‖f‖2

BMOβ(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)∫
Rn

|f(x)|2dx.

According to the definition of BMOβ(Rn), see Li and Zhai [14], we have

f ∈ BMOβ(Rn) ⇐⇒ ‖f‖2
BMOβ(Rn) = sup

I

(l(I))4β−4

|I |
∫

I
|f(x)− f(I)|2dx < ∞.

Thus, we get

mI(t)‖f‖2
BMOβ(Rn)

≤ B
‖f‖2

BMOβ(Rn)

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)∫
Rn

|f(x)|2dx,

for t ≤ ‖f‖BMOβ(Rn). Then, taking an increasing sequence of cubes covering R
n,

we obtain

(2.10) |{x ∈ R
n : |f(x)| > t}| ≤ B

t2
exp

(
−bt

‖f‖BMOβ(Rn)

)∫
Rn

|f(x)|2dx

for t ≤ ‖f‖BMOβ(Rn), since f(I) −→ 0 as l(I) −→ ∞. Finally, we get (1.13). Sim-

ilarly, we can prove (1.14) since exp
(

−bt
‖f‖

BMOβ(Rn)

)
≤ 1 for t > ‖f‖BMOβ(Rn).

2.4. Proof of Theorem 1.5

(i) According to (1.15), we have∫
Rn

Φp

(
ζ

|f(x)|
‖f‖Qα(Rn)

)
dx =

∫
Rn

∑
j≥p,j∈N

ζj

j!

( |f(x)|
‖f‖Qα(Rn)

)j

dx

≤
∑

j≥p,j∈N

ζj

j!

‖f‖j
Lj(Rn)

‖f‖j
Qα(Rn)

≤
∑

j≥p,j∈N

ζj

j!

(
Cnj‖f‖p/j

Lp(Rn)
‖f‖1−p/j

Qα(Rn)

)j

‖f‖j
Qα(Rn)

≤
∑

j≥p,j∈N

aj(ζCn)j

( ‖f‖Lp(Rn)

‖f‖Qα(Rn)

)p
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with aj = jj

j! . Since limj−→∞
aj

aj+1
= e−1, the power series of the above right hand

side converges provided ζCn < e−1 i.e. ζ < γn := (Cne)−1.

(ii) According to (i) with p = 2, we have
∫

Rn

(
exp

(
γn

|f(x)|
‖f‖Qα(Rn)

)
− 1− γn

|f(x)|
‖f‖Qα(Rn)

)
dx ≤ Cn

‖f‖2
L2(Rn)

‖f‖2
Qα(Rn)

.

On the other hand, since the distribution function m(t) = |{x ∈ R
n : |f(x)| > t}|

is non-increasing, we have∫
Rn

(
exp

(
γn

|f(x)|
‖f‖Qα(Rn)

)
− 1 − γn

|f(x)|
‖f‖Qα(Rn)

)
dx

=
∞∑

j=2

γj
n

j!

‖f‖j
Lj(Rn)

‖f‖j
Qα(Rn)

=
∞∑

j=2

γj
n

j!
j

‖f‖j
Qα(Rn)

∫ ∞

0
m(s)sj−1ds

≥ m(t)
∞∑

j=2

γj
n

j!
j

‖f‖j
Qα(Rn)

∫ t

0
sj−1ds

= m(t)
∞∑

j=2

1
j!

(
γnt

‖f‖Qα(Rn)

)j

= m(t)

(
exp

(
γnt

‖f‖j
Qα(Rn)

)
− 1 − γnt

‖f‖Qα(Rn)

)

for all t > 0. Thus, we have

m(t) ≤ Cn

‖f‖2
L2(Rn)

‖f‖2
Qα(Rn)

1(
exp

(
γnt

‖f‖j
Qα(Rn)

)
− 1 − γnt

‖f‖Qα(Rn)

) .

2.5. Proof of Proposition 1.6

We will use some facts about the factional heat equations

∂tv(t, x) + (−�)s/2v(t, x) = 0 for (t, x) ∈ (0,∞)× R
n

with initial data v(0, x) = g(x) for x ∈ R
n. The fractional heat equations have

been studied by Miao-Yuan-Zhang [16], Zhai [22, 24] and references therein. Here

F ((−�)s/2v(t, x))(ξ) = |ξ|sFv(t, ξ)
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and vg(t, x) = e−t(�)s/2
g(x) = Ks

t (x) ∗ g(x) with Ks
t (·) = F−1(e−t|·|s) where F

and F−1 denote the Fourier transformation and its inverse. We need the Lp −→
Lq estimates for the semigroup {e−t(−�)s/2}t≥0. For the proof, see, for example,
Kozono-Wadade [13, Lemma 3.4] or Miao-Yuan-Zhang [16, Lemma 3.1].

Lemma 2.2. For every 0 < s < ∞, there exists a constant Cn,s depending
only on n and s such that

‖e−t(−�)s/2
g‖Lq(Rn) ≤ Cn,st

−n
s

(
1
p
− 1

q

)
‖g‖Lp(Rn).

holds for all g ∈ Lp(Rn), t > 0 and 1 ≤ p ≤ q ≤ ∞.

For any g(x) in the Schwartz class of rapidly decreasing functions S(Rn), define
vg(t, x) = e−(�)s/2

g(x) as the solution of fractional heat equation

∂tv(t, x) + (−�)s/2v(t, x) = 0

with initial data g. Fix f ∈ L2(Rn) ∩ Qβ
α(Rn) with (−�)s/2f ∈ Lq. Then∫ t

0
〈−(−�)s/2f(x), v(s, x)〉ds =

∫ t

0
〈f(x),−(−�)s/2v(s, x)〉ds

=
∫ t

0
〈f(x), ∂sv(s, x)〉dt

= 〈f(x), v(t, x)〉− 〈f(x), g(x)〉.
Thus

|〈f, g〉| ≤ |〈f(x), v(t, x)〉|+
∫ t

0
|〈(−�)s/2f(x), v(s, x)〉|ds = I1 + I2

for all t > 0. Here 〈·, ·〉 denote the inner-product in L2. Thus Hölder inequality,
Lemma 2.2 and (1.15) imply that

I1 ≤ ‖f‖Lq1(Rn)‖v(t, ·)‖
Lq′1(Rn)

= ‖f‖Lq1(Rn)‖e−t(−�)s/2
g‖

Lq′1(Rn)

≤ Cn,sq1t
− n

sq1 (‖f‖Lp(Rn) + ‖f‖
Qβ

α(Rn)
)‖g‖L1(Rn)

for all t > 0 and p ≤ q1 < ∞. Similarly, we have

I2 ≤
∫ t

0
‖(−�)s/2f‖Lq(Rn)‖v(s, ·)‖Lq′(Rn)ds

= ‖(−�)s/2f‖Lq(Rn)

∫ t

0
‖e−t(−�)s/2

g‖Lq′(Rn)ds

≤ Cn,s,q‖(−�)s/2f‖Lq(Rn)‖g‖L1(Rn)

∫ t

0
s
− n

sq ds

≤ Cn,s,qt
1− n

sq ‖(−�)s/2f‖Lq(Rn)‖g‖L1(Rn)
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for all t > 0. Combing the duality argument and these two estimates, we have

‖f‖L∞(Rn) = sup
‖g‖L1(Rn)≤1,g∈S

|〈f, g〉|

≤ Cn,s,q

(
q1t

− n
sq1

(‖f‖Lp(Rn) + ‖f‖Qα(Rn)

)
+ t

1− n
sq ‖(−�)s/2f‖Lq(Rn)

)
for all t > 0 and p ≤ q1 < ∞. Take

q1 = log(1/t), t =

(
ep + ‖(−�)s/2f‖

(
1− n

sq

)−1

Lq(Rn)

)−1

.

Then t−n/(sq1) = (t1/ log t)n/s = en/s and

t
1− n

sq ‖(−�)s/2f‖Lq(Rn)

=

(
ep + ‖(−�)s/2f‖

(
1− n

sq

)−1

Lq(Rn)

)−(1− n
sq

)

‖(−�)s/2f‖Lq(Rn) ≤ 1.

Since we can find constant Cn,s,p,q such that q1 ≤ Cn,s,p,q log
(
e + ‖(−�)s/2f‖Lq(Rn)

)
,

(1.19) holds.
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