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ON DOMINATING SETS FOR NEVANLINNA CLASS (I)

So-Chin Chen

Abstract. In this article we prove that a subset E of the open unit disc U is
a dominating set for the subclass N+ of the Nevanlinna class N if and only
if E is nontangentially dense. When E is a compact subset of U , we also
give a complete characterization of E to be a dominating set for the subclass
N−. Here N− denotes the proper subclass of N that consists of all of the
reciprocal of the singular inner functions.

1. INTRODUCTION

Let U = {z ∈ C | |z| < 1} be the open unit disc on the complex plane, and let
T be the boundary of U . Denote by O(U) the space of holomorphic functions on
U . Define the Hardy spaces Hp, 0 < p < ∞, and Nevanlinna class N as follows:

Hp = {f ∈ O(U) | ‖ f ‖p
p = sup

0≤r<1

1
2π

∫ 2π

0
|f(reiθ)|pdθ < ∞},

and

N = {f ∈ O(U) | ‖ f ‖0 = sup
0≤r<1

exp
{

1
2π

∫ 2π

0

log+|f(reiθ)|dθ

}
< ∞}.

As usual, H∞ denotes the space of bounded holomorphic functions with supre-
mum norm. For instance, see Rudin[8]. Then, we make the following definitions.

Definition 1.1. Let X be a subspace of O(U) such that a number ‖ f ‖X is
associated with each function f in X . A subset E of U is called a dominating set
for X with respect to ‖ · ‖X if every two functions f, g ∈ X with |f(z)| ≤ |g(z)|
for z ∈ E implies ‖ f ‖X≤‖ g ‖X .
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Definition 1.2. A subset E of U is said to be nontangentially dense (n.t.d.) if
almost every point eiθ of T is a nontangential limit of E .

The following result is proved by Brown, Shields, and Zeller[2] for p = ∞, and
by Danikas and Hayman[5] for general p. See also Hayman[7].

Theorem 1.3. A subset E of U is a dominating set for H p, 0 < p ≤ ∞, if
and only if E is nontangentially dense.

In this article we shall investigate the dominating phenomenon of Nevanlinna
class. Let us recall briefly some facts about Nevanlinna class. For details the reader
is referred to Duren[6] and Rudin[8].

Definition 1.4. Let S(z) be a holomorphic function on U . S(z) is called a
singular inner function if

(1.1) S(z) = λexp
{
−

∫ 2π

0

eit + z

eit − z
dµ(t)

}
, z ∈ U,

where |λ| = 1 and µ is a finite positive Borel measure on T which is singular with
respect to Lebesgue measure.

Definition 1.5. A function F (z) is called an outer function for the Nevanlinna
class N if F (z) is of the form

(1.2) F (z) = λexp
{

1
2π

∫ 2π

0

eit + z

eit − z
logφ(t)dt

}
, z ∈ U,

where |λ| = 1, φ(t) ≥ 0 and logφ(t) ∈ L1(T).
Then we have the factorization theorem for the Nevanlinna class N as follows.

For instance, see Duren [6].

Theorem 1.6. A function f �= 0 belongs to the Nevanlinna class N if and only
if f can be expressed in the form

(1.3) f(z) = B(z)[S1(z)/S2(z)]F (z),

where B(z) is a Blaschke product, S1(z) and S2(z) are singular inner functions,
and F (z) is an outer function for the Nevanlinna class.

Definition 1.7. The subclass N + of the Nevanlinna class N is defined by

(1.4) N+ = {f ∈ N | f(z) = B(z)S(z)F (z)},
where B(z) is a Blaschke product, S(z) is a singular inner function, and F (z) is
an outer function for the Nevanlinna class.

That is, f ∈ N+ if f ∈ N and S2(z) ≡ 1 in Theorem 1.6. In a sense, N+

is the natural limit of H p as p → 0. It is clear that Hp � N+ � N . Also, it is
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well-known that every function f ∈ N has nontangential limit almost everywhere
on T. Then, we have

Theorem 1.8. A function f ∈ N belongs to the class N + if and only if

(1.5) lim
r→1−

∫ 2π

0

log+|f(reiθ)|dθ =
∫ 2π

0

log+|f(eiθ)|dθ.

For related results concerning the dominating phenomena for various function
spaces, the reader is referred to Chen[3] and Chen and Lu[4].

2. THE CLASS N+

In this section, following the line developed in Danikas and Hayman[5], we
shall first characterize the dominating sets for the class N +.

Theorem 2.1. A subset E of U is a dominating set for the class N + if and
only if E is nontangentially dense.

The following result due to Bonsall[1] will be needed for proving Theorem 2.1.

Theorem 2.2. Let E be a subset of U . Then (i) and (ii) are equivalent:

(i) E is nontangentially dense.
(ii) sup

z∈E
h(z) = sup

z∈U
h(z), for every real-valued bounded harmonic function h(z)

on U .

Proof of Theorem 2.1. First, suppose E is nontangentially dense. Let f and g
be two functions in N + satisfying |f(z)| ≤ |g(z)| for all z ∈ E . Since both f and
g have nontangential limits almost everywhere on T, it follows from the hypothesis
of E that |f(eiθ)| ≤ |g(eiθ)| for almost everywhere eiθ ∈ T. Therefore, by Theorem
1.8, we obtain

‖ f ‖0 = exp
{

1
2π

∫ 2π

0
log+|f(eiθ)|dθ

}
≤ exp

{
1
2π

∫ 2π

0
log+|g(eiθ)|dθ

}
= ‖ g ‖0 .

This proves that E is a dominating set for the class N +.
On the other hand, suppose now that E is not nontangentially dense. Thus,

according to Theorem 2.2, there exists a real-valued bounded harmonic function
u(z) on U such that

sup
z∈E

u(z) = α < β = sup
z∈U

u(z).

After a linear transformation, if necessary, we may assume that α = 0, β = 1.
Hence,
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u(z) ≤ 0 for z ∈ E, sup
z∈U

u(z) = 1, inf
z∈U

u(z) = −γ,

for some γ > 0.
Now, let v(z) be a harmonic conjugate of u(z) on U . Thus, h(z) = u(z) +

iv(z) is a holomorphic function on U . It follows that H(z) = eh(z) is a bounded
holomorphic function on U . Therefore, if g ∈ N+, not identically zero, then
gm(z) = g(z)emh(z) is also in the class N + for every real number m > 0. Since
u(z) ≤ 0 for z ∈ E , we have

|gm(z)| = |g(z)|emu(z) ≤ |g(z)|, for z ∈ E,

and, by Theorem 1.8,

‖ gm ‖0=exp
{

1
2π

∫ 2π

0
log+|gm(eiθ)|dθ

}
=exp

{
1
2π

∫ 2π

0
log+(|g(eiθ)|emu(eiθ))dθ

}
.

Clearly, |g(eiθ)| > 0 almost everywhere on T and u(eiθ) > 0 on a set of positive
measure on T, since supz∈Uu(z) = 1. Hence, there exist a set Σ ⊂ T of positive
measure δ and positive constants η and ε such that

u(eiθ) ≥ η > 0, |g(eiθ)| > ε > 0, for eiθ ∈ Σ.

It follows that

lim
m→∞ ‖ gm ‖0 ≥ lim

m→∞ exp
{

1
2π

∫
Σ

log+(|g(eiθ)|emu(eiθ))dθ

}

≥ lim
m→∞ exp

{
1
2π

∫
Σ

log+(εemη)dθ

}
= ∞.

This shows that ‖ gm ‖0>‖ g ‖0 for sufficiently large m. It contradicts the fact that
E is a dominating set for the class N+. The proof of the theorem is thus completed.

The next result shows that a nontangentially dense subset, in general, is not
sufficient to dominate the Nevanlinna class N .

Theorem 2.3. There exist a nontangentially dense subset E of U and two
functions f , g in the Nevanlinna class N such that |f(z)| ≤ |g(z)| for z ∈ E , but
‖ f ‖0>‖ g ‖0.

Proof. Let g(z) ≡ 2 and f(z) = exp{ 1+z
1−z}. Observe that f(z) is the reciprocal

of the singular inner function s(z) generated by the unit point measure at 1. Hence,
f ∈ N \ N+. A direct calculation shows ‖ g ‖0= 2 and ‖ f ‖0= e. Thus,
‖ f ‖0>‖ g ‖0.

Observe also that |f(eiθ)| = 1 for θ �= 2kπ, k ∈ Z. Now, a direct calculation
shows that the set

C = {z ∈ U | |f(z)| = |g(z)|}
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forms a circle centered at ( ln2
1+ln2 , 0) with radius 1

1+ln2 . Clearly, it shows that C is a
smaller circle in U tangent to T at 1. Thus, the crescent region E in U bounded by
C and T is nontangentially dense such that |f(z)| < |g(z)| for z ∈ E . This proves
the theorem.

One should observe that the crucial fact in the proof of Theorem 2.3 is that the
singular inner function s(z) appears in the denominator of the dominated side. If
the singular inner function s(z) appears in the denominator of the dominating side,
we can still prove the following theorem, a slight generalization of Theorem 2.1.

Theorem 2.4. Let E be a subset of U . The following two statements are
equivalent:

(1) E is a nontangentially dense subset of U .
(2) If f ∈ N+ and g ∈ N satisfy |f(z)| ≤ |g(z)| for z ∈ E , then ‖ f ‖0≤‖ g ‖0.

Proof. Following from Theorem 2.1, we have (2) ⇒ (1). To show (1) ⇒ (2),
by Theorem 2.1 again, we may assume that g ∈ N \N+. Write g = h/s where h ∈
N+ and s is a singular inner function. It follows that |f(eiθ)| ≤ |g(eiθ)| = |h(eiθ)|
almost everywhere on T. Hence, by Theorem 1.8, we obtain ‖ f ‖0≤‖ h ‖0≤‖ g ‖0.
This proves the theorem.

3. THE CLASS N−

In this section we shall discuss the dominating phenomenon for the class N −

which is defined to be the subclass of N that consists of the reciprocal of the singular
inner functions. N− is also a proper and important subclass of the Nevanlinna class
N . First, we have the following lemma.

Lemma 3.1. If S is a singular inner function generated by a finite positive
singular Borel measure µ, then

(1) S ◦ ϕ is also a singular inner function for every ϕ ∈ Aut(U).
(2)

1
2π

∫ 2π

0
log+

∣∣∣∣ 1
S(reiθ)

∣∣∣∣dθ = µ(T), for all 0 ≤ r < 1.

In particular, ‖ 1
S ‖0= eµ(T) = | 1

S(0) |.

Proof. To prove (1), it is trivial if ϕ is a rotation. If ϕ(z) = A−z
1−Az

for some
A ∈ U , then S ◦ ϕ is generated by the singular Borel measure µϕ defined by

µϕ(E) =
∫

ϕ(E)

1 − |A|2
|1− Aeiθ|2 dµ(θ),
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where E is a measurable subset of T. (2) follows from a direct calculation.
Next, we recall the definition of holomorphic hull of a compact subset K of U .

Definition 3.2. Let K be a compact subset of U . The holomorphic hull K̂U

of K is defined to be the set

K̂U = {z ∈ U | |f(z)| ≤ supK |f |, for all f ∈ O(U)}.

For one complex variable, K̂U is still a compact subset of U that contains all of
the bounded components of C \K . For several complex variables, the compactness
of K̂Ω is equivalent to the concept of domain of holomorphy of Ω.

Now, we prove the following theorem which completely characterize the nec-
essary and sufficient conditions for a compact subset E of U to be the dominating
set for the class N−.

Theorem 3.3. Let E be a compact subset of U . Then the following two
statements are equivalent:

(1) 0 ∈ ÊU .
(2) E is a dominating set for the class N −. That is, if Sj(z), j = 1, 2, are two

singular inner functions, generated by finite positive singular Borel measure
µj respectively, such that 1/|S1(z)| ≤ 1/|S2(z)| for z ∈ E , then ‖ 1/S1 ‖0

≤‖ 1/S2 ‖0, i.e., µ1(T) = log| 1
S1(0) | ≤ log| 1

S2(0) | = µ2(T).

To prove Theorem 3.3 we shall need the lemma.

Lemma 3.4. Let 0 < η � 1 be a sufficiently small positive number, and
let µ = η

πδ(1), where δ(1) is the unit point mass measure at e i0 = 1. Then, for
|z| ≤ r < 1, ∣∣∣∣P [µ](z) − 1

2π

∫ η

−η

1 − |z|2
|eit − z|2dt

∣∣∣∣ ≤ η2

π(1− r)4
.

Here P [µ](z) denotes the Poisson integral generated by µ.

Proof. A straightforward calculation shows, for |z| ≤ r < 1,∣∣∣∣P [µ](z) − 1
2π

∫ η
−η

1−|z|2
|eit−z|2 dt

∣∣∣∣ =
∣∣∣∣ ηπ

1 − |z|2
|1 − z|2 − 1

2π

∫ η

−η

1 − |z|2
|eit − z|2 dt

∣∣∣∣
=

1
2π

· 1 − |z|2
|1− z|2

∣∣∣∣
∫ η

−η

(
1 −

∣∣∣∣ 1 − z

eit − z

∣∣∣∣
2)

dt

∣∣∣∣
≤ 1

2π(1− r)4

∫ η

−η
|z(1− e−it) + z(1 − eit)|dt

≤ 2
π(1− r)4

∫ η

0
tdt =

η2

π(1− r)4
.
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Here we have used |1 − eit| ≤ t for t ≥ 0. This proves the lemma.

Proof of Theorem 3.3. (1) ⇒ (2). This follows immediately from the maximum
modulus principle and Lemma 3.1.

Now, suppose (2) holds. If (1) is not true, then the origin belongs to the
unbounded component of C \ E . We shall assume that, if z ∈ E , |z| ≤ r < 1 for
some r. Hence, by Mergelyan’s approximation theorem, there exists a polynomial
h(z) such that

|h(0)− 1| < 0.1, and |h(z) + 1| < 0.1 for z ∈ E.

Let u(z) = Reh(z), then we have

(3.1) |u(0)− 1| < 0.1, and |u(z) + 1| < 0.1 for z ∈ E.

Clearly, u(z) is a real polynomial and is equal to the Poisson integral of the boundary
value u(eit). We shall assume that |u(eit)| ≤ M for some positive constant M and
all t.

Therefore, given 0 < ε < 0.1, there exists n0 ∈ N such that

|u(eiα) − u(eiβ)| < ε if |α − β| ≤ 2π

n0
.

Now, let n ≥ n0 be any positive integer. Divide the unit circle T into n equal
subarcs, say, by the points eiθj , θj = 2πj

n , j = 1, · · · , n. Also, let θ0 = 0. Next,
let eitj , tj = 1

2 (θj−1 + θj) = 2π
n (j − 1

2 ), j = 1, · · · , n, be the midpoint of the arc
from eiθj−1 to eiθj . Define

g(eit) =
n∑

j=1

u(eitj)χ[θj−1,θj ),

where χ[θj−1,θj ) denotes the characteristic function of the half open arc from eiθj−1

to eiθj .
A direct estimate shows, for |z| ≤ r < 1,

(3.2) |u(z)− P [g](z)| =
∣∣∣∣ 1
2π

∫ 2π

0

1 − |z|2
|eit − z|2 (u(eit) − g(eit))dt

∣∣∣∣ ≤ ε.

Next, define a singular measure µ by

(3.3) µ(t) =
n∑

j=1

u(eitj)
n

δ(eitj),

where δ(eitj) is the unit point mass measure at eitj . Hence, by Lemma 3.4 for large
n, we obtain, for |z| ≤ r < 1,
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(3.4)

|P [µ](z)−P [g](z)|=
∣∣∣∣

n∑
j=1

u(eitj)
(

1
n

1−|z|2
|eitj−z|2 −

1
2π

∫ 2πj
n

2π(j−1)
n

1−|z|2
|eit−z|2dt

)∣∣∣∣

≤
n∑

j=1

|u(eitj)| (π
n)2

π(1− r)4

≤ Mπ

n(1 − r)4
.

Thus, if n is chosen large enough, we can achieve that, for |z| ≤ r < 1,

(3.5) |P [µ](z)− P [g](z)| < ε.

Hence, by combining estimates (3.2), (3.4) and (3.5), we see that, for |z| ≤ r < 1,

(3.6) |u(z)− P [µ](z)| < 2ε.

Namely, there exists a real harmonic function P [µ](z) generated by a singular mea-
sure µ such that

(3.7) P [µ](0) >
1
2
, and P [µ](z) < −1

2
for z ∈ E.

In particular, it shows that µ(T) = µ+(T) − µ−(T) = P [µ](0) > 1
2 . We also note

from (3.3) that |µ|(T) ≤‖ u ‖∞≤ M .
Finally, we let µ1 = µ+ and µ2 = µ−, and let the singular inner functions

S1(z), S2(z) be generated by µ1 and µ2 respectively. It follows that, for z ∈ E ,
∣∣∣∣ 1
S1(z)

∣∣∣∣ = exp
{∫ 2π

0

1 − |z|2
|eit − z|2dµ1(t)

}
< exp

{∫ 2π

0

1 − |z|2
|eit − z|2 dµ2(t)

}
=

∣∣∣∣ 1
S2(z)

∣∣∣∣.
However, ∥∥ 1

S1(z)
∥∥

0
= eµ1(T) > eµ2(T) =

∥∥ 1
S2(z)

∥∥
0

.

This is a contradiction. Therefore, (2) implies (1), and the proof of the theorem is
now completed.

Theorem 3.5. Let P [f ](z) > 0 be the Poisson integral generated by a non-
negative L1-function f on T. Then, given ε > 0 and 0 < r < 1, there is a finite
positive Borel singular measure µ on T such that 2πµ(T) ≤ ‖ f ‖ 1 + ε and

|P [f ](z)− P [µ](z)| < ε

for |z| ≤ r < 1.
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Proof. Note first that f can be approximated by continuous function h in L1-
norm on T. If f is nonnegative, we may also assume that h is nonnegative. Then
the assertion follows immediately from the proof of Theorem 3.3.

Now, we consider the case when the set E is not compact in U , i.e., E contains a
point sequence tending to the boundary. We shall give an alternate proof of Theorem
2.3. In order to do so, we need the following lemma.

Lemma 3.6. Given ε > 0, for any 0 < α < β < 2π, there exist positive
numbers η > 0, δ > 0, and finitely many points e itj , j = 1, · · · , k = k(ε), such
that

(i) α ≤ t1 < t2 < · · · < tk ≤ β,

(ii) kη2 ≤ ε,

(iii) for z ∈ E = {z = reiθ ∈ U | 1 − δ ≤ r < 1, α ≤ θ ≤ β},

1− |z|2
|1− z|2 ≤ η2

k∑
j=1

1 − |z|2
|eitj − z|2 .

Proof. We first consider the case when k = 1. It suffices to see where the
equality of (iii) holds, i.e.,

(3.8) η|1− z| = |eit − z|, z ∈ U.

We shall assume that η is sufficiently small, i.e., 0 < η � min{α, 2π−β}. A little
simplification shows (3.8) is equivalent to

(3.9)
∣∣∣∣z − eit − η2

1 − η2

∣∣∣∣ =
η|1− eit|
1− η2

, z ∈ U,

which means equation (3.8) defines a circle C in the complex plane that intersects
transversally the unit circle T at two different points eiθ1 and eiθ2 with θ1 < t < θ2.
Following from (3.8), we see that θ1, θ2 satisfy the equation

(3.10) η2(1− cosθ) = 1− cos(θ − t).

Since η is very small, θ1, θ2 must be very close to t. Thus, using Taylor’s
expansion of cosine, we solve (3.10) for θ and get

(θ − t)2 = F (θ, t)η2,

where F (θ, t) = 1−cosθ
1
2
+◦(|θ−t|) . Obviously, F (θ, t) ≥ m2 > 0 for some positive

constant m depending only on α and β. It follows that

θ1 = t −
√

F (θ1, t)η,

θ2 = t +
√

F (θ2, t)η.
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Hence, we obtain

θ2 − θ1 = (
√

F (θ2, t) +
√

F (θ1, t))η ≥ 2mη.

Now, given ε > 0, we simply choose k points t1, · · · , tk satisfying (i) for
sufficiently large k such that kη2 = ε. For such k, η will be sufficiently small, and
we can achieve

k∑
j=1

(θj2 − θj1) ≥
k∑

j=1

2mη = 2mkη =
2mε

η
> β − α.

Therefore, one can easily arrange these k points so that the corresponding open arcs
Ij = {eiθ | θj1 < θ < θj2} satisfy

(1) Ij intersects Ij−1 and Ij+1, where 2 ≤ j ≤ k − 1,
(2) 0 < θ11 < α < β < θk2 < 2π.

Then, it is clear that one can choose a small δ > 0 such that (iii) holds. This
proves the lemma.

Example 3.7. (an alternate proof of Theorem 2.3). Now, using Lemmas 3.1
and 3.6, we can provide an alternate proof of Theorem 2.3 by constructing two
singular inner functions with the required properties as follows. Let θ0 = π

4 and
θj = θ0/2j , j ∈ N. According to Lemma 3.6, for each j ∈ N, we can choose
ηj > 0, δj > 0 and kj points tj1, · · · , tjkj such that

(i) 2−jθ0 ≤ tj1 < · · · < tjkj ≤ 2−j+1θ0,

(ii) kjη
2
j ≤ 10−j,

(iii) for z ∈ Ej = {z = reiθ ∈ U | 1 − δj ≤ r < 1, 2−jθ0 ≤ θ ≤ 2−j+1θ0},

1− |z|2
|1− z|2 ≤ η2

j

kj∑
m=1

1 − |z|2
|eitjm − z|2 .

Similarly, we can also choose η0 > 0, δ0 > 0 and k0 points t01, · · · , t0k0 such that

(i) θ0 ≤ t01 < · · · < t0k0 ≤ 2π − θ0,

(ii) k0η
2
0 ≤ 9−1,

(iii) for z ∈ E0 = {z = reiθ ∈ U | 1 − δ0 ≤ r < 1, θ0 ≤ θ ≤ 2π − θ0},

1 − |z|2
|1 − z|2 ≤ η2

0

k0∑
m=1

1 − |z|2
|eit0m − z|2 .
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Clearly, if we denote the conjugate set of Ej by Ej , then

(3.11) E = E0 ∪
( ∞⋃

j=1

Ej

)
∪

( ∞⋃
j=1

Ej

)

is a closed nontangentially dense subset of U .
Now, we define the singular measures

(3.12)

µ1 = δ(1),

µ2 = η2
0

k0∑
m=1

δ(eit0m) +
∞∑

j=1

(
η2

j

kj∑
m=1

(δ(eitjm) + δ(e−itjm))
)

,

where δ(eiθ) is the Dirac unit point mass measure concentrated at eiθ . Then,

(3.13) Sj(z) = exp
{
−

∫
T

eit + z

eit − z
dµj(t)

}
, j = 1, 2,

are singular inner functions. Hence, 1/Sj(z), j = 1, 2, belong to the Nevanlinna
class.

Since, on E ,

1 − |z|2
|1− z|2 ≤ η2

0

k0∑
m=1

1 − |z|2
|eit0m − z|2 +

∞∑
j=1

(
η2

j

kj∑
m=1

(
1 − |z|2

|eitjm − z|2 +
1 − |z|2

|e−itjm − z|2 )
)

,

we have ∣∣∣∣ 1
S1(z)

∣∣∣∣ ≤
∣∣∣∣ 1
S2(z)

∣∣∣∣, for z ∈ E.

On the other hand, by Lemma 3.1, we obtain

∥∥ 1
S2

∥∥
0

= exp
{

k0η
2
0 + 2

∞∑
j=1

kjη
2
j

}
< exp

{
1
9

+ 2
∞∑

j=1

1
10j

}
= e1/3 < e =

∥∥ 1
S1

∥∥
0
.

Thus, a nontangentially dense subset of U , in general, is not sufficient to dominate
the Nevanlinna class N .
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