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EXTENDED WELL-POSEDNESS OF VECTOR OPTIMIZATION
PROBLEMS: THE CONVEX CASE

Giovanni P. Crespi,* Melania Papalia and Matteo Rocca

Abstract. In this paper we investigate a notion of extended well-posedness in
vector optimization. Appropriate asymptotically minimizing sequences, when
both the objective function and the feasible region are subject to perturbation
are introduced. We show that convex problems, i.e. problems in which both
the objective function and the perturbations are C−convex, are extended well-
posed. Further, we characterize the proposed well-posedness notion both in
terms of linear and nonlinear scalarization.

1. INTRODUCTION

Well-posedness of a scalar minimization problem is a classical concept deeply
studied in different fields of scalar optimization such as calculus of variations and
optimal control (see for example the monographs [6, 14, 17] for a review on this
topic). Applications in the field of variational analysis are also studied, for details
and references see [23, 24]. Two different approaches to scalar well-posedness are
well known: the first one, proposed by Hadamard ([7]), at the beginning of the last
century, studies well-posedness as a form of continuous dependence of the optimal
solution from the data of the problem, i.e. the feasible region or the objective func-
tion.
In the early sixties Tykhonov ([28]) introduced another well-posedness notion based
on the construction of appropriate minimizing sequences converging to the unique
solution. The relationships between these two approaches have been widely studied
([2, 10]).
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Nevertherless most applications require a form of convergent behaviour of minimiz-
ing sequences obtained from perturbed problems and this led to the statement of
extended well-posedness as a combination of Hadamard and Tykhonov approaches.
This notion was introduced by Zolezzi ([30]) in the context of scalar optimization.

In the framework of vector optimization several approaches gave rise to various
well-posedness notions. New definitions of Tykhonov’s type have been proposed
and the search for classes of functions that enjoy such well-posedness properties has
been carried on (see for example [16, 1, 2, 21, 20, 5]), together with the development
of scalarization techniques. In this last case, the aim is to investigate the equivalence
between the well-posedness of vector problems and the well-posedness of scalarized
ones (see for example [19, 22, 25] as recent contributions).

The generalization of extended well-posedness to the vector case is less devel-
oped. The first attempt to consider parametric models for vector valued functions
has been made by Huang ([10, 11, 12]), who extended the notion introduced by
Zolezzi.

In this paper we study in a finite dimensional setting, a vector notion of extended
well-posedness which considers the perturbation of both the objective function and
the feasible region. We show that C-convex functions enjoy such extended well-
posedness property. As a consequence C-convex functions enjoy also the extended
well-posedness property in the sense of Huang. Finally we study the links between
the introduced well-posedness notion and well-posedness of scalarized problems,
both in the linear and in the nonlinear case.

2. PRELIMINARIES

Consider a function f : R
m → R

l and let C ⊆ R
l be a closed, convex,

pointed cone with nonempty interior endowing R
l with a partial order relation in

the following way:
y ≤C z ⇐⇒ z − y ∈ C,

y <C z ⇐⇒ z − y ∈ intC.

We consider the vector optimization problem

V P (f, X) minC f(x), x ∈ X

where X is a closed subset of R
m.

A point x ∈ X is an efficient solution of problem V P (f, X) when

(f(X)− f(x)) ∩ (−C) = {0}.

We denote by Eff (f, X) the set of all efficient solutions of the problem V P (f, X) and
by Min (f, X) the set of all minimal points, i.e. the image of Eff (f, X) through
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the objective function f .
A point x ∈ X is a weakly efficient solution for problem V P (f, X) when

(f(X)− f(x)) ∩ (−intC) = ∅.

We denote by WEff (f, X) the set of weakly efficient solutions of the original
problem and by WMin (f, X) the set of all weakly minimal points.
Consider now a sequence of functions fn : R

m → R
l and a sequence of closed

subsets Xn ⊆ R
m. We denote by

V P (fn, Xn) minC fn(x), x ∈ Xn

the perturbation of V P (f, X) and we wish to investigate the behaviour of the
sets WEff (fn, Xn) and WMin (fn, Xn) when fn and Xn “approach” to f and X
respectively.

In the following, we set Lev (f, y, X) = {x ∈ X : f(x) ∈ y − C} and denote
by B the unit ball both in R

m and Rl; from the context will be clear to which space
we refer.

A tool that plays a key role in the sequel is the Kuratowski-Painlevé set-conver-
gence ([3, 17]). Let An be a sequence of subsets of R

m. Set

Ls An :=
{

x ∈ R
m : x = lim

k→+∞
xk, xk ∈ Ank

, nk a selection of the integers
}

and

Li An :=
{

x ∈ R
m : x = lim

k→+∞
xk, xk ∈ Ak, eventually

}
.

The set Ls An is called the upper limit of the sequence of sets An, while the set
Li An is called the lower limit of An. We say that the sequence An converges in
the sense of Kuratowski to the set A ⊆ Rm, when

Ls An ⊆ A ⊆ Li An ,

and we denote this convergence by An
K→ A.

We close this section recalling some stability results involving the level sets
Lev (f, y, X) and the efficient solutions of problem V P (f, X) . Both these results
will play a crucial role in the next section.

Definition 2.1. ([15]). A function f : Rm → Rl is said to be C-convex on Rm

if
f (λx + (1− λ) z) − λf (x) − (1 − λ) f (z) ∈ −C,

for every x, z ∈ R
m and λ ∈ [0, 1].
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Lemma 2.1. ([18]). Let fn : R
m → R

l and f : R
m → R

l be C−convex
functions. Suppose

(i) fn → f in the continuous convergence,

(ii) Xn
K→ X,

(iii) Lev (f, y, X) is nonempty and bounded for some y ∈ R
l.

Then ∀ε > 0 it holds:
Lev (fn, y, Xn) ⊆ Lev (f, y, X)+ εB,

eventually.

Theorem 2.1. ([18]). Let fn : R
m → R

l and f : R
m → R

l be C−convex
functions, with fn → f in the continuous convergence and Xn

K→ X . Assume
Lev (f, y, X) is nonempty and bounded for some y ∈ R l.

(i) If y ∈ Min (f, X), there exists a sequence yn ∈ Min (fn, Xn) such that
yn → y, i.e. Li Min (fn, Xn) ⊆ Min (f, X);

(ii) if y ∈ Min (f, X), there exist x̄ ∈ f−1(y) and xn ∈ Eff (fn, Xn) such that
xn → x̄.

3. EXTENDED WELL-POSEDNESS OF CONVEX VECTOR MINIMIZATION PROBLEMS

Throughout this section and the following one, we assume WEff (f, X) 
= ∅ and
we denote by d(y, A) = inf{‖y − a‖ , a ∈ A} the distance of a point y ∈ R

l from
a set A ⊆ R

l.

Definition 3.1. Let e ∈ int C, let f : Rm → Rl, let fn : Rm → Rl be a sequence
of functions, and let Xn be a sequence of subsets of R

m. Problem V P (f, X) is
well-posed (with respect to the perturbations defined by the sequences fn and Xn)
when for every sequence xn ∈ Xn such that

(1) (fn(Xn) − fn(xn)) ∩ (−int C − εne) = ∅,
for some sequence εn → 0+, there exists a subsequence xnk of xn such that
d(xnk , WEff (f, X)) → 0, as k → +∞.

It can be shown that the previous definition does not depend on the choice of
the vector e ∈ intC. The proof of this statement follows along the lines of that of
Proposition 3.3 in [5].

When WEff (f, X) is compact, the requirement d(xnk , WEff (f, X)) → 0,
amounts to the existence of a point x̄ ∈ WEff (f, X) such that xnk converges
to x̄. Sequences xn satisfying condition (1) are called asymptotically minimizing
sequences.
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Remark 3.1. Definition 3.1 considers sequences of points which can fail to
be feasible for problem V P (f, X) and hence recalls the notion of Levitin-Polyak
well-posedness [13]. Indeed, if xn is a minimizing sequence in the Levitin-Polyak
sense, and hence d(xn, X) → 0, then it is also minimizing in the sense specified
above, if we choose Xn = X + αnB for a convenient sequence αn → 0+.

The next example shows a problem V P (f, X) which is not well-posed according
to Definition 3.1.

Example 3.1. Let f : R → R be the function f(x) =
√|x|, let X = R and

C = R+. We consider the sequence of functions

fn(x) =




√
n , x ∈ (−∞,−n]√|x| , x ∈ (−n, n]√
n +

√
n(n − x) , x ∈ (n, n + 1]√

n −√
n(n + 2 − x) , x ∈ (n + 1, n + 2]√

n , x ∈ (n + 2, +∞)

and the sequence of sets Xn = [−n − 2, n + 2]. Problem V P (f, X) is not well-
posed with respect to the perturbations fn and Xn. Indeed xn = n + 1 is a
minimizing sequence, but it does not converge to the unique solution x∗ = 0. It is
clear that WEff (f, X) = {0} 
= ∅.

For the reader’s convenience, we recall the notion of connected set that will play
a key role in the proof of the next theorem.

Definition 3.2. A set A ⊆ R
m is said to be connected when there are no open

subsets U and V of R
m such that:

A ⊆ U ∪ V, A ∩ U 
= ∅, A ∩ V 
= ∅ and A ∩ U ∩ V = ∅ .

Theorem 3.1. Let f : R
m → R

l and fn : R
m → R

l be C−convex functions,
with fn → f in the continuous convergence, let Xn, X be closed and convex sets
such that Xn

K→ X, and assume WEff (f, X) is nonempty and bounded. Then
problem V P (f, X) is well-posed (with respect to the perturbations defined by the
sequences fn and Xn).

Proof. Let

WEff εne (fn, Xn) = {x ∈ Xn : (fn (Xn)− fn(x)) ∩ (−int C − εne) = ∅} .

Assume that V P (f, X) is not well-posed (with respect to the perturbations defined
by the sequences fn and Xn). Then we can find sequences εn → 0+, xn ∈
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WEff εne (fn, Xn) , such that, for some δ > 0 it holds xn 
∈ WEff (f, X) + δB.
We claim that for every n there exists a point zn ∈ ∂[WEff (f, X) + δB], the
boundary of WEff (f, X) + δB, such that zn ∈ WEff εne(fn, Xn). Indeed, if such
a zn does not exist, we would have for every n

(2) WEff εne (fn, Xn) ⊆ int [WEff (f, X) + δB] ∪ [WEff (f, X) + δB]c .

Clearly WEff εne (fn, Xn) ∩ [WEff (f, X) + δB]c 
= ∅. We now prove that

(3) WEff εne (fn, Xn) ∩ int [WEff (f, X) + δB] 
= ∅,

eventually. Since
WEff (fn, Xn) ⊆ WEff εne (fn, Xn) ,

it is enough to prove

(4) WEff (fn, Xn) ∩ int [WEff (f, X) + δB] 
= ∅,

eventually.
It is known [27] that functions which are C−convex on R

m are also continuous
on Rm. If ȳ = f(x̄), with x̄ ∈ WEff (f, X), the level set Lev (f, ȳ, X) is clearly
nonempty and further we have

Lev (f, ȳ, X) ⊆ WEff (f, X).

Indeed, assume there exists a point x′ ∈ Lev (f, ȳ, X)\WEff (f, X). Hence
f(x′) ∈ f(x̄)−C and we can find a point x′′ ∈ X such that f(x′′) ∈ f(x′)− intC.
This entails f(x′′) ∈ f(x′) − int C ⊆ f(x̄) − int C, which contradicts to x̄ ∈
WEff (f, X).
The inclusion Lev (f, ȳ, X) ⊆ WEff (f, X) proves Lev (f, ȳ, X) is bounded.
Since f is continuous, we conclude that Lev (f, ȳ, X) is compact.

It follows, see Corollary 3.11 in [15] that Min (f, Lev (f, y, X)) is nonempty
and since

Min (f, Lev (f, ȳ, X)) ⊆ Min (f, X),

also Min (f, X) is nonempty. Further, the compactness of Lev (f, ȳ, X) and the
C-convexity of f implies Lev (f, y, X) is compact ∀y ∈ R

l (when nonempty) [18].
Let y ∈ Min (f, X). From Theorem 2.1 ii), we get the existence of a point x ∈
f−1(y) ⊆ Eff (f, X) and a sequence vn ∈ Eff (fn, Xn) , with vn → x.
Recalling Eff (f, X) ⊆ WEff (f, X) and Eff (fn, Xn) ⊆ WEff (fn, Xn), it follows
easily that (4) holds and hence (3) holds.

From Lemma 2.1, we get

(5) Lev (fn, y, Xn) ⊆ Lev (f, y, X) + εB,
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eventually. Hence there exists n̄ ∈ N such that Lev (fn, y, Xn) is bounded for n >

n̄. Since fn are C−convex, this implies that for n > n̄ all the level sets of fn are
bounded [18]. This means that the sets WEff εne(fn, Xn) are connected, nonempty
and closed for n > n̄ (see Theorem 4.1 in [5]) and hence (2) cannot hold. It follows
the existence of a sequence zn ∈ ∂ [WEff (f, X) + δB] ∩ WEff εne (fn, Xn) .

Since WEff (f, X) is compact, we can assume zn converges to a point z̄ and
since Xn

K→ X , it follows z̄ ∈ X . Since zn ∈ WEff εne (fn, Xn) it follows
z̄ ∈ WEff (f, X). Indeed, if z̄ 
∈ WEff (f, X), there exists x ∈ X such that
f(x) − f(z̄) ∈ −int C and hence we can find a positive number δ̄, such that

(6) f(x) − f(z̄) ∈ −int C − δ̄e.

Since x ∈ X , there exists a sequence wn → x, wn ∈ Xn and from (6), we obtain
fn(wn) − fn(zn)∈ −int C−δ̄e, eventually, which contradicts to zn ∈ WEffεne

(fn, Xn). To complete the proof it is enough to observe that from zn ∈ ∂[WEff
(f, X) + δB] we get the contradiction z̄ 
∈ WEff (f, X).

The boundedness assumption on WEff (f, X) cannot be avoided, as the follow-
ing example shows.

Example 3.2. Let f : R
2 → R

2, f(x, z) = (z2, ex), C = R
2
+ and X =

R
2, fn = f and Xn = X, ∀n. Function f is C−convex, and WMin (f, X) =

{(y1, y2) ∈ R
2 : y1 = 0} while WEff (f, X) = {(x, z) ∈ R

2 : z = 0}. The asymp-
totically minimizing sequence (xn, zn) = (−n,−n) doesn’t admit any subsequence
(xnk , znk) such that d(f(xnk, znk), WEff (f, X)) → 0.

Huang ([10, 11]) introduced three different types of extended well-posedness for
a vector optimization problem, considering a fixed feasible region and a parametric
model for the objective function. Let (P, ρ) be a metric space and let p∗ ∈ P

be a fixed point. Let L be a closed ball with center p∗ and positive radius. Let
F : X × L → Y be such that F (x, p∗) = f(x), ∀x ∈ X.

The following definitions are quoted from [10] and [11].

Definition 3.3. A sequence xn ∈ X is a strongly asymptotically minimizing
sequence if for any sequence pn → p∗, it holds

(7) (F (X, pn) − F (xn, pn) + εne) ∩ (−C \ {0}) = ∅,

for some εn > 0, εn → 0+.

Consider e ∈ int C and let ξ(y) = min{t ∈ R : y ∈ te − C}, ∀y ∈ Y .

Definition 3.4. Problem V P (f, X) is called well-posed in the strongly extended
sense (with respect to the perturbation defined by F ) if
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(i) WEff (f, X) 
= ∅,
(ii) for any p ∈ L, ξ(F (x, p)) is bounded from below on X ,
(iii) for every strongly asymptotically minimizing sequence xn ∈ X , there exist a

subsequence xnk and some point x∗ ∈ WEff (f, X) such that xnk → x∗.

Next result shows that if F (·, p) is C-convex for p ∈ L and F is continuous,
then V P (f, X) is well posed in the sense of Definition 3.4.

Corollary 3.1. Assume F (x, p) are C−convex for all p ∈ L, WEff (f, X) 
= ∅
and for any p ∈ L, ξ(F (x, p)) is bounded below on X

Assume further that ∀pn → p∗, ∀xn → x∗, F (xn, pn) → F (x∗, p∗).
Then V P (f, X) is well-posed in the sense of Definition 3.4, (with respect to

the perturbation defined by F ).

Proof. Let fn(x) = F (x, pn), ∀x ∈ X. Then the proof follows easily from
Theorem 3.1.

4. WELL-POSEDNESS OF SCALARIZED PROBLEMS

We divide the results of this section in two subsections. The first one is devoted
to nonlinear scalarization in which no convexity assumption is needed, while the
second one concerns linear scalarization under C−convexity hypothesis.
We recall the notion of oriented distance (for more details see [8, 9, 29, 23]).

Definition 4.1. For a set A ⊆ R
l, the oriented distance function ∆A : R

l →
R ∪ {±∞} is defined as

∆A(y) = d(y, A)− d(y, Ac).

The main properties of function ∆A are gathered in the following proposition.

Proposition 4.1. ([29]).
(i) If A 
= ∅ and A 
= Rl then ∆A is real valued;
(ii) ∆A(y) < 0 for every y ∈ intA, ∆A(y) = 0 for every y ∈ ∂A and ∆A(y) > 0

for every y ∈ intAc;
(iii) if A is closed, then it holds A = {y : ∆A(y) ≤ 0}
(iv) if A is a closed convex cone, then ∆A is nonincreasing with respect to the

ordering relation induced on R
l, i.e. the following is true: if y1, y2 ∈ R

l then

y1 − y2 ∈ A =⇒ ∆A(y1) ≤ ∆A(y2)

If A has nonempty interior, then

y1 − y2 ∈ intA =⇒ ∆A(y1) < ∆A(y2)
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4.1. Nonlinear scalarization

We relate to V P (f, X) the scalar optimization problem

SP (h, X) min h(x), x ∈ X

where h(x) = − infz∈X ∆−C(f(z)− f(x)) and X is a closed subset of R
m.

Function h is always nonnegative and can be written ([4, 25]) as

h(x) = sup
z∈X

min
λ∈C+∩∂B

〈λ, f(x)− f(z)〉

where C+ = {v ∈ R
l : 〈v, c〉 ≥ 0, ∀c ∈ C}.

We denote by S (h, X) the set of solutions of problem SP (h, X). Further, for fn

and Xn defined as in Section 2, we consider the scalar perturbed problem

SP (hn, Xn) min hn(x), x ∈ Xn

where hn(x) = − infz∈Xn ∆−C(fn(z) − fn(x)).
We investigate the behaviour of solutions of problem SP (h, X) when it is subject
to the perturbation SP (hn, Xn) induced by fn and Xn.

Definition 4.2. A sequence xn ∈ Xn is called asymptotically minimizing for
problem SP (h, X) when

hn(xn) → inf
x∈X

h(x).

Definition 4.3. Problem SP (h, X) is well-posed (with respect to the perturba-
tions defined by the sequences fn and Xn) when for every asymptotically minimiz-
ing sequence xn there exists a subsequence xnk such that d(xnk , S (h, X)) → 0 as
k → ∞.

Next result characterizes solutions of V P (f, X) in terms of solutions of the
scalar problem SP (h, X).

Theorem 4.2. ([25]). Let x̄ ∈ X. Then x̄ ∈ WEff (f, X) if and only if h(x̄) = 0
(and hence x̄ ∈ S (h, X)).

Remark 4.2. When WEff (f, X) 
= ∅, Theorem 4.2 states infx∈X h(x) = 0
and hence Definition 4.2 recalls the notion of extended well-posedness introduced
in [30].

Theorem 4.3. Problem V P (f, X) is well-posed (with respect to the perturba-
tions defined by the sequences fn and Xn) if and only if SP (h, X) is well-posed
(with respect to the perturbations defined by the sequences h n and Xn).

Proof. Since WEff (f, X) 
= ∅, it follows infx∈X h(x) = 0. We show that the
asymptotically minimizing sequences of the two problems coincide.
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Let xn be an asymptotically minimizing sequence for problem V P (f, X), i.e.

fn(x) − fn(xn) + εne /∈ −int C, ∀x ∈ Xn.

This is equivalent to ∆−C(fn(x) − fn(xn) + εne) ≥ 0, ∀x ∈ Xn and hence by
subadditivity of ∆−C(·),

∆−C(fn(x)− fn(xn)) ≥ −∆−C(εne) := −γn, ∀x ∈ Xn,

where γn ≥ 0 and γn → 0. It follows

0 ≤ hn(xn) = − inf
z∈Xn

∆−C(fn(z)− fn(xn)) ≤ γn,

hence hn(xn) → 0, that is xn is asymptotically minimizing for problem SP (h, X).

Assume now xn is an asymptotically minimizing sequence for problem SP (h, X),
i.e.

hn(xn) → 0,

which implies hn(xn) ≤ βn, for some sequence βn ≥ 0, βn → 0. It holds,

− inf
z∈Xn

∆−C(fn(z)− fn(xn)) ≤ βn,

that is ∆−C(fn(z) − fn(xn)) ≥ −βn, ∀z ∈ Xn.
Since ∆−C(y) = maxλ∈C+∩∂B〈λ, y〉, choosing a vector e ∈ intC with 〈λ, e〉 ≥
1, ∀λ ∈ C+ ∩ ∂B, we obtain, ∀z ∈ Xn :

∆−C(fn(z) − fn(xn) + βne) = max
λ∈C+∩∂B

〈λ, fn(z) − fn(xn) + βne〉
≥ max

λ∈C+∩∂B
〈λ, fn(z) − fn(xn)〉+ min

λ∈C+∩∂B
〈λ, βne〉

≥ max
λ∈C+∩∂B

〈λ, fn(z) − fn(xn)〉+ βn

≥ −βn + βn = 0.

Hence ∆−C(fn(z) − fn(xn) + βne) ≥ 0, ∀z ∈ Xn and this is equivalent to say
fn(z)− fn(xn) + βne /∈ −int C, ∀z ∈ Xn.

Thus xn is an asymptotically minimizing sequence for the vector problem V P (f, X).
Recalling WEff (f, X) = {x ∈ X : h(x) = 0} = S (h, X), the proof of the result
is easily completed.

4.2. Linear scalarization

Consider the scalar optimization problem

SP (g, X) min g(λ, x), x ∈ X
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where g(λ, x) = 〈λ, f(x)〉, λ is a fixed vector belonging to the set C+ ∩ ∂B and
X is the feasible region of function f .
We denote by S (g, X) the set of solutions of SP (g, X). We consider the perturbed
problem

SP (gn, Xn) min gn(λ, x), x ∈ Xn

where gn(λ, x) = 〈λ, fn(x)〉.
Definition 4.4. A sequence xn ∈ Xn is called asymptotically minimizing for

problem SP (g, X) when

gn(λ, xn) → inf
x∈X

g(λ, x).

Definition 4.5. Problem SP (g, X) is well-posed (with respect to the perturba-
tions defined by the sequences fn and Xn) when

(i) S (g, X) 
= ∅;
(ii) for every asymptotically minimizing sequence xn there exists a subsequence

xnk such that d(xnk , S (g, X))→ 0 as k → ∞.

Theorem 4.4. ([15, 26]). Let f : R
m → Rl be a C-convex function and let x̄

∈ X . Then x̄ ∈ WEff (f, X) if and only if

x̄ ∈
⋃

λ∈C+∩∂B

S (g, X).

Theorem 4.5. Let f : R
m → R

l and fn : R
m → R

l be C−convex functions
with fn → f in the continuous convergence. Let Xn, X be closed and convex
sets such that Xn

K→ X . If, for every λ ∈ C+ ∩ ∂B, problem SP (g, X) is well-
posed (with respect to the perturbations defined by the sequences g n and Xn), then
problem V P (f, X) is well-posed (with respect to the perturbations defined by the
sequences fn and Xn).

Proof. We know that an asymptotically minimizing sequence for problem
V P (f, X) , is always asymptotically minimizing for problem SP (h, X) defined in
the previous subsection.
Let xn be an asymptotically minimizing sequence for problem V P (f, X) . Then
hn(xn) → 0 and by the compactness of C+ ∩ ∂B, there exists a sequence λn →
λ∗ ∈ C+ ∩ ∂B such that

min
λ∈C+∩∂B

〈λ, fn(xn) − fn(x)〉 = 〈λn, fn(xn) − fn(x)〉, ∀n,

and hence
sup

x∈Xn

〈λn, fn(xn) − fn(x)〉 → 0,
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i.e.
〈λn, fn(xn)〉 − inf

x∈Xn

〈λn, fn(x)〉 → 0.

Since f is C-convex, we observe that g(λ, x) is a convex function for every λ ∈
C+ ∩ ∂B (see [15]) and since λn → λ∗, it follows 〈λn, fn〉 → 〈λ∗, f〉 in the
continuous convergence. Hence (see e.g. [17]),

gn(λn, xn) = 〈λn, fn(xn)〉 → inf
x∈X

〈λ∗, f(x)〉 = inf
x∈X

g(λ∗, x).

We claim that gn(λ∗, xn) → infx∈X g(λ∗, x).
Since λn → λ∗, ∀ε > 0, ∃n̄ such that ∀n > n̄

|〈λ∗, fn(xn)〉 − 〈λn, fn(xn)〉| <
ε

2
,

i.e. |〈λ∗ − λn, fn(xn)〉| < ε
2 . Hence, ∀n > n̄

0 ≤ 〈λ∗, fn(xn)〉 − inf
x∈X

〈λ∗, f(x)〉
= gn(λ∗, xn) − inf

x∈X
〈λ∗〉, f(x)

= 〈λn, fn(xn)〉 − inf
x∈X

〈λ∗, f(x) + 〈λ∗〉 − λn, fn(xn)〉

≤ 〈λn, fn(xn)〉 − inf
x∈X

〈λ∗, f(x)〉+
ε

2
.

Since 〈λn, fn(xn)〉 → infx∈X〈λ∗, f(x)〉 and ε is arbitrary, we prove the claim.
Hence recalling the assumption of scalar well-posedness on SP (g, X) the proof is
completed.

The following example shows that the converse of Theorem 4.5 is not true in
general.

Example 4.3. Let f : R → R2, f(x) = (x2, ex), C = R2
+ and X = R, fn = f

and Xn = X, ∀n.
Function f is C−convex and WEff (f, X) = {x ∈ R : x ≤ 0}. Problem

V P (f, X) is well-posed (with respect to the perturbations defined by fn and Xn),
but the scalarized function g(λ, x) = ex obtained by λ = (0, 1) is not well-posed,
since S (g, X) = ∅.
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Università dell’Insubria
via Ravasi 2, 21100 Varese
Italia
E-mail: melaniapa@libero.it

Matteo Rocca
Department of Economics
Università dell’Insubria
via Ravasi 2, 21100 Varese
Italia
E-mail: mrocca@eco.uninsubria.it




