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QUOTIENTS OF QUANTUM BORNOLOGICAL SPACES

Anar Dosi

Abstract. In the note we investigate the main duality properties of quantum (or
local operator) spaces involving quantum bornology. Namely, we prove that
each finite complete bornology admits precisely one quantization and each
complete quantum space is a matrix bornology quotient of a local trace class
algebra.

1. INTRODUCTION

One of the principal foundations of the quantum functional analysis [9, 11]
is the well developed duality theory for operator spaces, which is mainly due to
Blecher [1-3], Effros and Ruan [9, 4.2]. This duality theory for operator spaces is
based on the following two central results. First one asserts that if X ⊆ V is an
operator space inclusions then the restriction ϕ : V ∗ → X∗, ϕ (f) = f |X , is an
exact matrix quotient mapping, that is, ϕ (∞) (ballM (V ∗)) = ballM (X∗), where
ϕ(∞) : M (V ∗) → M (X∗) is the canonical extension of ϕ over all finite matrices,
and ball indicates the unit ball of the relevant normed space. The second one asserts
that each complete operator space V is a matrix quotient of an L1-direct sum of
finite dimensional trace class algebras up to a matrix isometry [1], [9, 4.2.3]. Thus
there is a matrix quotient mapping ϕ : T J → V in the sense that ϕ(∞) (ballM (TJ))

is dense in ballM (V ), where TJ =
1⊕

i∈J
Tni and Tni is the ni-square trace class

matrix algebra. These duality results play key roles in tensor products of operator
spaces [2, 9]. The duality theory for general quantum (or local operator) spaces has
been partially developed in [4, 6, 7, 10] (see [5] for applications). The quantizations
of all polynormed topologies compatible with the given duality (V, W ) have been
classified in [7] over a local von Neumann algebra.

In the present note we investigate the main duality properties of quantum spaces.
First note that the ”normed tricks” used in the duality theory can not be applied to the
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general quantum spaces. The main reason is that the properties to be open quotient
and bornology quotient should be separated for the general quantum spaces. In fact
we need to develop a bornology theory for the quantum spaces independently. By a
matrix (or quantum) bornology on a linear space V we mean a classical bornology
S in the matrix space M (V ) such that it contains all absolutely matrix convex hulls
amcB for each B ∈ S. The pair (V, S) is called a quantum bornological space.
For instance, if (V, W ) is a dual pair and N is a neighborhood filter base of a certain
quantum topology in M (V ) compatible with the duality, that is, (V,N|V )′ = W ,
then the family N� of matrix (or operator) polars is a base of matrix bornology
in M (W ). Conversely, if S is a matrix bornology in M (V ) of weakly bounded
matrix sets then S� is a neighborhood filter base of a certain quantum topology
in M (W ). Actually each matrix bornology S automatically generates a (vector)
bornology s on V . We are saying that S is a quantization of s. Our first central
result asserts that the canonical bornology of a finite dimensional space V admits
precisely one quantization. Further, we prove the main duality theorems for quantum
space. Namely, let (T, T) and (V, S) be quantum bornological space and let ϕ :
(T, T) → (V, S) be a linear mapping. We say that ϕ is a matrix quotient mapping
if the weak closures S− and ϕ(∞) (T)− coincide. If S = ϕ(∞) (T) then we
say that ϕ is an exact matrix quotient mapping. The first duality result asserts
that if V is a quantum space with its neighborhood filter base N of absolutely
matrix convex sets and X ⊆ V is a linear subspace, then the restriction mapping
(V ′,N�) →

(
X ′, (M (X) ∩N )�

)
, f �→ f |X is an exact matrix quotient mapping

of the quantum bornological spaces. Thus
(
X ′, (M (X) ∩ N )�

)
is a bornology

quotient of (V ′,N�). Finally, we prove that if V is a complete quantum space and
S is a matrix bornology in M (V ) of σ (V, V ′)-bounded matrix sets, then there is
a matrix quotient mapping ϕ : (TJ , β) → (V, S) of the matrix bornological spaces,
where TJ = op

⊕
κ

TJκ is the quantum inductive sum of the trace class algebras

equipped with its strong matrix bornology β. Thus (V, S) is a bornology quotient
of (TJ , β). In the normed case, these assertions are reduced to the main duality
results mentioned above.

2. PRELIMINARIES

The linear space of all m × n-matrices x = [xij] over a linear space V is
denoted by Mm,n (V ), and we set Mm,n = Mm,n (C), Mm (V ) = Mm,m (V ).
Further, M (V ) (respectively, M ) denotes the linear space of all infinite (respec-
tively, scalar) matrices [xij], xij ∈ V , where all but finitely many of xij are zero.
Note that Mm,n (L (E)) = L (En, Em) is the space of all linear transformations
up to the canonical identification. In particular, if E = H is a Hilbert space then
Mn (B (H)) = B (Hn) is a normed space of all bounded linear operators. So is
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Mm,n equipped with the operator norm ‖·‖ between the canonical Hilbert spaces
C

n and C
m. Hence M is a normed space.

Let us introduce the main quantum operations, the direct sum and M -bimodule
structure in the space M (V ) of all matrices over V . If v ∈ Ms,t (V ) and w ∈
Mm,n (V ) then we have their direct sum v⊕w ∈ Ms+m,t+n (V ). If a ∈ Mm,s, v ∈
Ms,t (V ) and b ∈ Mt,n then we have the matrix product avb =

[∑
k,l aikvklblj

]
i,j

∈

Mm,n (V ). A linear mapping ϕ : V → W has the canonical linear extensions ϕ(n) :
Mn (V ) → Mn (W ) (respectively, ϕ(∞) : M (V ) → M (W )) over all matrix spaces
defined as ϕ(n) ([xij]) = [ϕ (xij)] (respectively, ϕ(∞)|Mn (V ) = ϕ(n)). By a matrix
set B in M (V ) we mean a collection B = (bn) of subsets bn ⊆ Mn (V ), n ∈ N.
Each subset b ⊆V determines a matrix set b = (bn) with b1 = b and bn = {0} if
n > 1. The set of all matrix combinations

∑
i aivibi with ai, bi ∈ M and vi ∈ B is

called the matrix span of a matrix set B and it is denoted by mspan (B). A matrix
set B in M (V ) is said to be absolutely matrix convex if B⊕B ⊆ B and aBb ⊆ B

for all a, b ∈ ballM . One can easily verify that an absolutely matrix convex set
B turns out to be absolutely convex set, that is, so are all bn, n ∈ N. Using the
canonical identification M (V × Y ) → M (V )×M (Y ), [(vij, yij)] �→ ([vij ] , [yij])
for linear spaces V and Y , one can easily prove that the direct product A × B of
absolutely matrix convex sets A ⊆M (V ) and B ⊆M (Y ) is an absolutely matrix
convex set in M (V × Y ). The intersection of all absolutely matrix convex sets
containing a matrix set A is called the absolutely matrix convex hull of A and it is
denoted by amcA. The known lemma by B. E. Johnson [10, Lemma 3.2] asserts
that if M = (mn) = amc A then mn consists of those

∑
s asvsbs, as ∈ Mn,ks ,

vs ∈ bks , bs ∈ Mks,n, such that
∑

s asa
∗
s ≤ 1 and

∑
s b∗sbs ≤ 1.

Lemma 2.1. If b ⊆V and M = amcb then m1 = abc b is the absolutely convex
hull of b.

Proof. Since m1 is absolutely convex set containing b, it follows that abc b ⊆
m1. Conversely, take x ∈ m1. Using Johnson’s lemma, we derive that x =∑

i αiviβi for some αi, βi ∈ C, vi ∈ b such that
∑

i |αi|2 ≤ 1 and
∑

i |βi|2 ≤ 1.

But
∑

i |αiβi| ≤
(∑

i |αi|2
)1/2 (∑

i |βi|2
)1/2

≤ 1. Hence x ∈ abc b.

Lemma 2.2. Let B = (bn) be an absolutely matrix convex set in M (V ). Then
mspan (B) = M (VB), where VB = span (b1).

Proof. By its very definition, mspan (B) consists of finite sums
∑

i aivibi

with ai, bi ∈ M and vi ∈ B. Actually,
∑

i aivibi = avb∗ with a = [· · ·ai · · · ], b =

[· · ·bi · · · ] ∈ M and v = ⊕ivi ∈ B. But avb∗ = ‖a‖ ‖b‖
(
‖a‖−1 av ‖b‖−1 b∗

)
∈

‖a‖ ‖b‖B. If w = [wij] ∈ bn then wij = εiwε∗j ∈ εibnε∗j ⊆ b1 for all i, j,
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where εi = [· · ·1 · · · ] is the canonical row matrix, that is, w ∈ M (b1). Hence
avb∗ ∈ M (VB). Thus mspan (B) ⊆ M (VB).

Conversely, if u = [uij ] ∈ Mn (VB) then uij =
∑p

k=1 αk
ijv

k
ij with vk

ij ∈ b1,
αk

ij ∈ C. It can be assumed that uij = αijvij with vij ∈ b1 and αij ∈ C

for all i, j. Put α = [αij] ∈ Mn and v = [vij ] ∈ Mn (b1). First note that
n−1v ∈ bn. Indeed, n−1v =

∑
i,j n−1/2ε∗i vijn

−1/2εj ∈ bn (Johnson lemma), for∑
i,j n−1ε∗i εi = In. Further, u = E (α ⊗ v)E∗ with E = ε1 ⊕ · · · ⊕ εn. It follows

that u = nE (α ⊗ In)
(
n−1v

)⊕n
E∗ ∈ nE (α ⊗ In) BE∗ ⊆ mspan (B), that is,

M (VB) ⊆ mspan (B).

If pB is the Minkowski functional of B then pB is a matrix seminorm on
M (VB) thanks to Lemma 2.2. Note that pB (v) ≤

∑
‖ai‖ p (vi) ‖bi‖ < ∞ when-

ever v =
∑

i aivibi ∈ M (VB). Hence (VB, pB) is a matrix seminormed space.
We say that B is a matrix norming if pB is a matrix norm on M (VB), that is,
(VB, pB) is an operator space. If VB is a complete operator space then we say that
B is matrix completant. These notions play the central roles to develop the matrix
bornology technique (see [12], [13] for the classical case).

Let B be a matrix set in M (V ). The matrix set

HS (B) = {avb : a, b ∈ M, v ∈ B, ‖a‖2 ‖b‖2 ≤ 1}

is called the Hilbert-Schmidt boundary of B [6], where ‖x‖ 2 = tr (x∗x)1/2 is the
Hilbert -Schmidt norm of a matrix x ∈ M . If B is absolutely matrix convex then
HS (B) ⊆ B. Actually, n−1bn ⊆ mn ⊆ bn for all n, whenever M =(mn) =
HS (B) (see [6]). Moreover, if X ⊆ V is a linear subspace and B is an absolutely
matrix convex set in M (V ) then

(2.1) HS (M (X) ∩ B) = M (X) ∩ HS (B) .

If ϕ : X → V is a linear mapping and B⊆M (X) is a matrix set then ϕ(∞) (HS (B))
= HS

(
ϕ(∞) (B)

)
.

Now let F = {J} be a family of absorbent absolutely matrix convex sets in
M (V ) such that ∩F = {0}. Consider the family {tU}, where t runs over all
positive real numbers and U runs over all finite intersections of the matrix sets from
F. This family defines a Hausdorff polynormed (or locally convex) topology in
M (V ) whose neighborhood filter base of the origin is F. This topology is called a
quantum topology in M (V ). The linear space V with a quantum topology in M (V )
is called a quantum space. Note that the quantum topology inherits a polynormed
topology in V , and the topology in Mn (V ) is just the direct product topology of
V n2 (see [10]). Each polynormed topology in V admits a quantization, that is, it
is a trace of a certain quantum topology in M (V ). All these quantizations of the
polynormed space V rate between the min and max quantizations [15, 2.2.2]. A
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matrix set A ⊆ M (V ) is said to be a matrix bounded set if it is absorbed by each
J from F. Finally, a linear mapping ϕ : V → Y of quantum spaces is said to be
a matrix continuous if the mapping ϕ (∞) : M (V ) → M (Y ) is continuous in the
usual sense.

Let V and W be linear spaces. These spaces are said to be in duality if there is
a pairing 〈·, ·〉 : V × W → C such that {〈v, ·〉 : v ∈ V } and {〈·, w〉 : w ∈ W} are
separating families of functionals on W and V , respectively. We briefly say that
(V, W ) is a dual pair. The spaces V and W are equipped with the relevant weak
σ (V, W ) and weak ∗ σ (W, V ) topologies, respectively. The given pairing between
V and W determines the matrix pairing

〈〈·, ·〉〉 : Mm (V ) × Mn (W ) → Mmn, 〈〈v, w〉〉 = [〈vij, wst〉] ,
where v = [vij] ∈ Mm (V ), w = [wst] ∈ Mn (W ). Each Mm (V ) (respectively,
Mn (W )) is a polynormed space equipped with the direct product (V, σ (V, W ))n2

(respectively, (W, σ (W, V ))n
2

) topology. One can easily verify (see [7] for the
details) that these polynormed topologies in Mn (V ) and Mn (W ) are just the weak
σ (Mn (V ) , Mn (W )) and weak∗ σ (Mn (W ) , Mn (V )) topologies determined by
the scalar pairing 〈·, ·〉 : Mn (V ) × Mn (W ) → C, 〈v, w〉 =

∑
i,j 〈vij, wij〉. Given

a matrix set B in M (V ) let us introduce the matrix (or operator) polar B� in
M (W ) to be a matrix set (b�n ) defined as b�n = {w ∈ Mn (W ) : ‖〈〈v, w〉〉‖ ≤
1, v ∈ bs, s ∈ N}. We briefly write B� = {w ∈ M (W ) : sup ‖〈〈B, w〉〉‖ ≤ 1}. It
can be proved (see [10]) that b�

1 coincides with the classical absolute polar of b1 in
W , that is, b�1 = b◦1 = {w ∈ W : sup |〈b1, w〉| ≤ 1}. Similarly, one can define the
absolute matrix polar M� ⊆ M (V ) for a matrix set M = (mn) in M (W ). A matrix
set B in M (V ) is said to be weakly closed if each bn is σ (Mn (V ) , Mn (W ))-
closed in Mn (V ). Note that B� is an absolutely matrix convex and weakly closed
set in M (W ). The following quantum version of the bipolar theorem was proved
in [10] by Effros and Webster.

Theorem 2.1. Let (V, W ) be a dual pair and let B be a matrix set in M (V ).
Then B�� = (amc B)−, where (amcB)− is the weak closure of amcB.

In order to compare the classical and matrix polars of a matrix set we introduce
the classical polar B◦ ⊆ M (W ) of a matrix set B ⊆M (V ) as the matrix set (b◦n)
of the polars b◦n = {w ∈ Mn (W ) : sup |〈bn, w〉| ≤ 1} with respect to the scalar
pairing. The following assertions were proved in [6].

Theorem 2.2. If B ⊆ M (V ) is a matrix set then B� = HS (B)◦. If B is
absolutely matrix convex then HS (B�)− = B◦, where HS (B�)− indicates the
weak∗ closure of HS (B�).

The family of matrix polars Bw = {w}�, w ∈ M (W ), determines the quantum
topology s (V, W ) in M (V ) called the weak quantum topology. For each w ∈
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M (W ) we put pw (v) = ‖〈〈v, w〉〉‖, v ∈ M (V ). One can easily verify that the
family {pw : w ∈ M (W )} of matrix seminorms defines s (V, W ).

Theorem 2.3. The weak topology σ (V, W ) admits precisely one quantization
s (V, W ).

Similar result for a nuclear quantum space was proved in [10].

3. MATRIX BORNOLOGY

The bornology in the quantum space theory can independently be developed
using the properties of matrix bounded sets in quantum spaces.

3.1. The quantizations of a bornology

Let V be a linear space. Recall [12] that a family f of subsets in V is said to
be a (vector) bornology on V if ∪f =V , and the family f is closed with respect to
the taking subsets, finite sums and absolutely convex hulls. In particular, f is closed
with respect to the finite unions, scalar multipliers and it contains all singletons.
Indeed, take A, B ∈ f. It can be assumed that both are absolutely convex sets.
Then A ∪ B ⊆ A + B ∈ f, hence A ∪ B ∈ f. Since ∪f =V , it follows that each
v ∈ V belongs to a certain A ∈ f, therefore {v} ∈ f. Finally, for each λ ∈ C\ {0}
and an absolutely convex set A ∈ f, we have |λ| ≤ n for some n ∈ N, and
λA ⊆ |λ|

(
λ |λ|−1 A

)
⊆ |λ|A ⊆ nA ⊆ A + · · ·+ A ∈ f. A subfamily s ⊆ f of

absolutely convex sets is called a base of bornology if each set from f is contained in
a certain set from s. The pair (V, f) is called a bornological space and the sets from
the bornology f are called bounded sets. We assume that {0} is the only bounded
linear subspace in V , that is, f is a separated bornology. A (base of) bornology f

is said to be finite-complete if span (A) has the finite dimension for each A ∈ f. In
particular, it turns out to be a finite dimensional Banach space with respect to the
Minkowski functional of A.

Remark 3.1. Let s be a family of absolutely convex sets in V . Then s is a
base of a bornology iff ∪s = V and for each couple A0, B0 ∈ s there exists C0 ∈ s

such that A0 + B0 ⊆ C0. Indeed, only possible choice for the bornology f is the
collection of those subsets which are contained in an element of s. So, for each
A ∈ f there is A0 ∈ s such that A ⊆ A0. If A, B ∈ f then A + B ⊆ A0 + B0 for
some A0, B0 ∈ s. But A0 + B0 ⊆ C0 for a certain C0 ∈ s. Hence A + B ∈ f. The
rest is clear.

Assume f and l are bornologies on the space V . We say that f is finer than l and
we write l � f if l ⊆ f as the families of sets. Thus for each A ∈ l there corresponds
B ∈ f such that A ⊆ B.
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Definition 3.1. Let V be a linear space. A family S of matrix subsets in
the matrix space M (V ) is said to be a matrix bornology on V if the following
conditions hold:

(i) M (V ) = ∪S;
(ii) if B ∈ S and M ⊆ B then M ∈ S;
(iii) if B, M ∈ S then B + M ∈ S;
(iv) if B ∈ S then amcB ∈ S.

The sets from S are called matrix bounded sets. Again we assume that {0}
is the only matrix bounded subspace in M (V ). Actually, S is a bornology on
M (V ) in the classical sense, for abc B ⊆ amc B. In particular, S is closed with
respect to the finite unions and scalar multiples, and it contains all singletons. Note
that S is a matrix bornology on V iff it is a bornology on M (V ) which contains
amcB for each B ∈ S. We are saying that (V, S) is a quantum bornological
space. A subfamily S ⊆ S of absolutely matrix convex sets is called a base of
matrix bornology if each set from S is contained in a certain set from S . Using
Remark 3.1, we derive that S is a base of a matrix bornology on V iff ∪S = M (V )
and for each couple A0, B0 ∈ S there exist C0 ∈ S such that A0 + B0 ⊆ C0.

Let S be a family of absolutely matrix convex sets in M (V ). Since each B ∈ S
is a matrix set B = (bn), we put S|V = {b1 : B ∈ S}, which consists of absolutely
convex sets.

Lemma 3.1. If S is a (base of) matrix bornology on V then S|V is a (base
of) bornology on V .

Proof. Obviously, V = ∪ (S|V ). Moreover, b1 + m1 ∈ S|V whenever B,
M ∈ S. Indeed, it can be assumed that both B and M are absolutely matrix convex
sets. In particular, they are absolutely convex sets. But b1 + m1⊆ B + M as the
matrix sets, hence b1 + m1∈ S, that is, b1 + m1 ∈ S|V . Finally, take B ∈ S with
M = amc B. Then abc b1 ⊆ m1, for m1 is absolutely convex. But abc b1 ⊆ M as
the matrix sets in M (V ), hence abc b1 ∈ S (see Definition 3.1), or abc b1 ∈ S|V .
The rest is clear.

Based on Lemma 3.1, we say that a (base of) matrix bornology S is a quan-
tization of a (base of) bornology s if S|V = s. Note that if S is a base of
matrix bornology on V then (VB, pB) is an operator space for each B ∈S , where
VB = span (b1) (see Lemma 2.2). Thus each B ∈S is matrix norming. If VB

has the finite dimension then we are saying that B is matrix finite-completant. In
particular, each base of a matrix bornology on a finite dimensional space consists
of matrix finite-completant sets.

Now let (V, W ) be a dual pair with the duality 〈·, ·〉, and let S be a base of
matrix bornology on V . The family of the weak closures S− = {A− : A ∈S} turns
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out to be a matrix bornology base on V . Indeed, S− consists of absolutely matrix
convex sets. Moreover, for each A, B ∈S there is C ∈S such that A + B ⊆ C. It
follows that A− + B− ⊆ (A + B)− ⊆ C−. Hence S− is a bornology base thanks
to Remark 3.1. If s is a base of bornology on V , then we put smin = {a�� : a ∈ s}
and smax =

{
(a◦)� : a ∈ s

}
, which consist of absolutely matrix convex, weakly

closed matrix sets in M (V ).

Proposition 3.1. Let (V, W ) be a dual pair and let s be a base of bornology
on V with its weak closure s−. Then smin and smax are base of matrix bornologies
on V , and smin|V = s− = smax|V . Moreover, if S is a quantization of s− then

smin � S− � smax.

Proof. First let us prove that smin is a matrix bornology base on V . Take a, b ∈s.
Then a + b ⊆ c for some c ∈s (see Remark 3.1). Using the Bipolar Theorem 2.1,
we derive that a�� + b�� = (amc a)− + (amcb)− ⊆ (amc a + amc b)−. But
amc a + amcb ⊆ 2 amc c. Indeed, take x ∈ amc a, y ∈ amc b and assume that
x, y ∈ Mk (V ). By Johnson’s lemma (see Section ), x = avb and y = a′v′b′ with
a, a′, b, b′ ∈ ballM and v ∈ a⊕n and v′ ∈ b⊕m. Then x + y = c (v ⊕ v′) d∗

with c =
[

a a′
]

and d =
[

b b′
]
. Note that v ⊕ v′ ∈ c⊕(n+m), cc∗ =

aa∗ + a′a′∗ ≤ 2 and dd∗ = bb∗ + b′b′∗ ≤ 2. Hence x + y ∈ 2 amc c. Thus
a�� + b�� ⊆ (amc (2c))− ⊆ (2c)��. But 2c ⊆ c + c ⊆ d for some d ∈s (see
Remark 3.1). It remains to prove that ∪smin = M (V ). Take a matrix v ∈ Mn (V ).
Then vij ∈ aij for some aij ∈ s. But ∪aij ⊆

∑
i,j aij ⊆ a for some a ∈s. Then

n−1v =
∑

i,j n−1/2ε∗i vijn
−1/2εj ∈ amc (a), for

∑
i,j n−1ε∗i εi = In. Therefore

v ∈ (na)��. But again na ⊆ b for some b ∈s. Hence v ∈ b��. Thus smin is a
matrix bornology base on V .

Now let us prove that smax is a matrix bornology base on V . Take x ∈
(a◦)�, y ∈ (b◦)� with a, b ∈s. Then

∥∥〈〈
2−1 (x + y) , w

〉〉∥∥ ≤ 2−1 ‖〈〈x, w〉〉‖ +
2−1 ‖〈〈y, w〉〉‖ ≤ 1 for all w ∈ a◦ ∩ b◦. But a + b ⊆ c for a certain c ∈s. It
follows that c◦ ⊆ (a + b)◦ ⊆ a◦ ∩ b◦ and (a◦ ∩ b◦)� ⊆ (c◦)�. In particular,
2−1 (x + y) ∈ (c◦)� or x + y ∈ ((2c)◦)�. Thus (a◦)� + (b◦)� ⊆ ((2c)◦)�.
But 2c ⊆ c + c ⊆ d for some d ∈s. Hence (a◦)� + (b◦)� ⊆ (d◦)�. It remains to
prove that ∪smax = M (V ). Take v ∈ Mn (V ). As above we can assume that
all vij ∈ a for a certain a ∈s. If y ∈ a◦ then

∥∥〈〈
n−2v, y

〉〉∥∥ = n−2 ‖[〈vij, y〉]‖ ≤
n−2

∑
i,j |〈vij, y〉| ≤ 1, that is, v ∈

((
n2a

)◦)�. But n2a ⊆ b for some b ∈s. Hence
v ∈ (b◦)�, that is, smax is a base of matrix bornology on V .

Further, fix a ∈ s. Put M = a��. On the grounds of the Bipolar Theorem 2.1,
M is the weak closure of the matrix set B = amc a. But b1 = abc a = a thanks
to Lemma 2.1. Therefore m1 = b−1 = a−. In particular, smin|V = s−. Similarly,
if M = (a◦)� then m1 = (a◦)◦ (see Section ). But (a◦)◦ = a− by the classical
Bipolar Theorem. Hence s− = smax|V .
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Finally, let S be a base of matrix bornology on V such that S|V = s−. Take
a ∈ s. If b = a− then b = b1 ∈ S|V for a certain B ∈S . Since a ⊆ B as the
matrix sets then a�� ⊆ B�� = B− thanks to Theorem 2.1. Hence smin � S−.
Further, if A = (an) ∈ S then a1 = b− for some b ∈ s and a�1 = a◦1 = b◦ ⊆ A� as
the matrix sets. It follows that A− = A�� ⊆ (b◦)�, that is, S− � smax.

3.2. The dual matrix bornology

Now we investigate the matrix bornologies obtained as matrix polars of the
neighborhoods from a quantum topology.

Lemma 3.2. Let (V, W ) be a dual pair and let N be a neighborhood filter
base of a certain quantum topology in M (V ) compatible with the duality. Then
N� = {U� : U ∈N} is a base of matrix bornology in M (W ) which consists of
weak∗ compact matrix sets.

Proof. Take w∈M (W ). Then {w}� is a neighborhood of the origin in M (V )
with respect to the weak quantum topology s (V, W ) (see Section ). Note that

s (V, W ) = maxσ (V, W ) = minσ (V, W ) ⊆ min (N|V ) ⊆ N

thanks to Theorem 2.3. In particular, {w}� ⊇ U for a certain U ∈N . Then {w} ⊆
{w}�� ⊆ U�, that is, ∪N� = M (W ). Further, if U ∈N and B =HS (U) then
u�n = b◦n by virtue of Theorem 2.2. Moreover, bn is a neighborhood in Mn (V ), for
n−1un ⊆ bn. By Alaoglu-Bourbaki Theorem, b◦n is the weak σ (Mn (W ) , Mn (V ))-
compact set. Hence U� is a weak∗ compact matrix set. It remains to prove that N�

is a base of matrix bornology. Take U, V ∈N . Since N is a neighborhood filter
base of a quantum topology, it follows that W ⊆2−1U ∩ V for a certain W ∈N .
Then U�+V�⊆

(
2−1U ∩ V

)�⊆W�. Hence N is a base of matrix bornology.

The assertion from Lemma 3.2 can be reversed by the following way.

Lemma 3.3. Let (V, W ) be a dual pair and let S be a base of matrix bornology
in M (V ) which consists of weakly matrix bounded sets. Then S � = {B� : B ∈S}
is a neighborhood filter base of a quantum topology in M (W ).

Proof. Since each B ∈S is weakly matrix bounded, it follows that B�

is absorbent absolutely matrix convex set in M (W ). Take A, B ∈ S . Then
A ∪ B ⊆ C for a certain C ∈S . It follows that C� ⊆ (A ∪ B)� = A� ∩ B�, that
is, S� is a filter base. Furthermore, ∩S� = (∪S)� = (M (V ))� = {0}. Hence
S� defines a (Hausdorff) quantum topology in M (W ).

Now we prove the main result on a matrix bornology.

Theorem 3.1. Let s be a base of bornology on V . If s is finite-complete then
the closures of all quantizations of s − coincide, that is, if S|V = s− = T |V for
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some bases S and T of matrix bornologies on V then S − = T −, where all closures
are taken with respect to the finest locally convex topology.

Proof. Let W be the subspace of those linear functionals w : V → C such
that sup |w (b)| < ∞ for all b ∈s. Thus W is the bornology dual of (V, s) or the
space of all s-bounded linear functionals on V . Since V = lim−→{span (b) , b ∈ s}
is the inductive limit of the finite-dimensional spaces, it follows that the relevant
inductive topology in V is just the finest polynormed topology. But W is the space
of all continuous linear functionals on V . Hence W = V ∗ is just the algebraic dual
space of V .

Obviously, all sets from s are weakly bounded. Furthermore, the polar sets s◦ in
W define the weak∗ topology σ (W, V ). Indeed, take a finite subset F ⊆ V . Then
each v ∈ F belongs to a certain bv ∈ s. It follows that F ⊆ ∪v∈F bv ⊆

∑
v∈F bv ⊆

b for some b ∈ s (see Remark 3.1). In particular, b◦ ⊆ F ◦, that is, s◦ is finer than
σ (W, V ). Conversely, fix b ∈ s whose Minkowski functional is denoted by p. Thus
(span (b) , p) is a finite dimensional normed space. Take a basis e = (e1, . . . , en)
in span (b), and let le be the �1-norm with respect to e. Then cle ≤ p for some
positive c. But cle = lx, where x = c−1e. Then b ⊆ ball p ⊆ ball lx = abc x,
which in turn implies that x◦ = (abc x)◦ ⊆ b◦. Hence s◦ is coarser than σ (W, V ).
Thus s◦ = σ (W, V ).

Now take a base of matrix bornology S on V such that S|V = s−. Note that
s− is just reduced to the weak(-σ (V, W )) closure of s thanks to Mazur’s theorem.
By Proposition 3.1, S− � smax. Let us prove that smax consists of weakly matrix
bounded sets. Take b ∈ s. Since b is weakly bounded, it follows that b◦ is
absorbent in W . Fix w ∈ Mn (W ). Then all m−1wij ∈ b◦ for a certain m ∈ N.
Then (nm)−1 w =

∑
i,j n−1/2ε∗i

(
m−1wij

)
n−1/2εj ∈ amcb◦. Thus amcb◦ is

absorbent in M (W ). Since amcb◦ ⊆ (b◦)��, it follows that (b◦)�� is absorbent
in M (W ). Hence (b◦)� is a weakly matrix bounded set in M (V ), that is, smax

consists of weakly matrix bounded sets. In particular, S consists of weakly matrix
bounded sets in M (V ). By Lemma 3.3, S� defines a quantum topology in M (W ).
Further, take B ∈S . Then b1 = a− for some a ∈ s. But b�1 = b◦1 = a◦. Hence
S�|W defines the polar topology s◦ in W , which in turn is reduced to the weak∗

topology σ (W, V ). But σ (W, V ) admits precisely one quantization s (W, V ) thanks
to Theorem 2.3. Therefore S� = s (W, V ).

Finally, if S|V = s− = T |V for some bases S and T of matrix bornologies
on V then S� = s (W, V ) = T �. Using the Bipolar Theorem 2.1, we derive that
S− = S�� = T �� = T −, that is, S− = T −.

It seems similar argument can be applied to a nuclear quantum bornology.

3.3. The finite dimensional matrix bornology

Now let V be a finite dimensional linear space. It has a canonical finite-
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complete bornology f of bounded sets, which is unique up to an isomorphism [12].
The family s of all closed (with respect to the canonical normed topology in V )
absolutely convex bounded sets is a base of this bornology. Let S be a matrix
bornology in M (V ) such that S|V = f, that is, S is a quantization of f. Consider
the family S of those absolutely matrix convex sets B from S whose first members
b1 are closed.

Lemma 3.4. The family S is a base of the matrix bornology S. Moreover,
S|V = s.

Proof. First let us prove that ∪S = M (V ). Take an absolutely matrix convex
set B ∈ S. Then the closure b−1 is a bounded set in V , that is, b−

1 ∈ f. Since
S|V = f, it follows that b−1 = m1 for a certain M ∈ S. But m1 ⊆ M as the
matrix sets. Hence b−1 ∈ S, and B ∪ b−1 ∈ S. Consider A = amc

(
B ∪ b−1

)
which

belongs to S too (see Definition 3.1). Let us prove that a1 = b−1 . Take v ∈ a1. Then
v = a (v1 ⊕ · · · ⊕ vs) b with vi ∈ B ∪ b−1 , a, b ∈ ballM . If vi ∈ b−1 for some i,
then vi = limn vin for a certain sequence vin ∈ b1. Put vn = a (v1n ⊕ · · · ⊕ vsn) b,
where vin = vi if vi ∈ B\b−1 . Note that vn ∈ amc B = B for all n. Actually
vn ∈ b1. Moreover, v = limn vn ∈ b−1 . Therefore a1 = b−1 . Thus A ∈S and
B ⊆ A. In particular, ∪S = M (V ).

It remains to observe that if A, B ∈S then A + B ∈S , for A + B is absolutely
matrix convex and a1 + b1 is closed being a sum of two compact sets in a finite
dimensional space. Thus S is a base of S.

Finally, let us prove that S|V = s. Evidently, S|V � s. Take a ∈ s. Then
a = a1 for a certain A ∈ S. Since a ⊆ A as the matrix sets, it follows that a ∈ S.
Put B = amc a ∈ S. But b1 = abc a = a by Lemma 2.1. Hence B ∈ S and
b1 = a, that is, a ∈S|V .

Theorem 3.2. The canonical bornology f on a finite dimensional space V

admits precisely one quantization, that is, if S and T are matrix bornologies on V
such that S|V = f = T|V , then S = T.

Proof. By Lemma 3.4, S is a base of the matrix bornology S such that S|V
= s. Similarly, if T is another quantization of f then is has the base T of absolutely
matrix convex sets with their closed first members. Moreover, T |V = s by Lemma
3.4. Using Theorem 3.1, we derive that S− = T −. Hence S− = T−. It remains
to prove that S = T.

First we consider the one dimensional case, that is, dim (V ) = 1. Take a
bounded set b ∈ f. Then b ⊆ a = abc {v} for a certain v ∈ V \ {0}. But a is a
compact set and a ∈ s. Consider the matrix set A = amc (a) ⊆ M (V ). Let us prove
that A is closed, that is each an is closed in the finite dimensional space Mn (V ).
Take w ∈ an. Then w =

∑m
i=1 aiwibi with ai ∈ Mn,1, wi ∈ a, bi ∈ M1,n, and
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∑
i aia

∗
i ,

∑
i b∗i bi ≤ 1. But wi = λiv with |λi| ≤ 1. Put θi = λi |λi|−1/2 (if λi = 0

then θi = 0) and ηi = |λi|1/2. It follows that w =
∑m

i=1 (θiai) v (ηibi) = av⊕mb∗ =
cv⊕n, where a =

[
θ1a1 · · · θmam

]
∈ Mn,m, b =

[
η1b

∗
1 · · · ηmb∗m

]
∈

Mm,n, and c = ab∗ ∈ Mn. Note that

aa∗ =
m∑

i=1

|θi|2 aia
∗
i =

m∑
i=1

|λi| aia
∗
i ≤ 1, bb∗ =

m∑
i=1

|ηi|2 b∗i bi =
m∑

i=1

|λi| b∗i bi ≤ 1,

that is, a, b ∈ ballM . In particular, c ∈ ballMn. Conversely, if w = cv⊕n

for some c ∈ ballMn, then w = u |c| v⊕n = uv⊕n |c|, where c = u |c| is the
polar decomposition of c. But u, |c| ∈ ballMn. Thus an = {cv⊕n : c ∈ ballMn},
which in turn implies that an is a compact set in Mn. Moreover, using the Bipolar
Theorem 2.1, we conclude that b�� = (amcb)− ⊆ A = amc a. But a = c1 for
a certain C ∈S thanks to Lemma 3.4. Since C is absolutely matrix convex, it
follows that amc (a) ⊆ C, that is, b�� ⊆ C. Hence smin � S . Using Proposition
3.1 and Theorem 3.1, we derive that S � S− =

(
smin

)− = smin � S , that is,
smin = S = S−. In particular, S = S− = T − = T , which in turn implies that
S = T. Thus the assertion has been proved for the case dim (V ) = 1.

In the general case, we fix a decomposition V = Ce1 ⊕ · · · ⊕ Ceq, where
q = dim (V ). For brevity, we assume that q = 2. If Sk is the unique matrix
bornology on Cek then S = S1 × S2 is a matrix bornology on V with the base
S = S1×S2. Note that S is closed and S|V = s. Therefore T − = S for any
matrix bornology T on V with its basis T such that f = T|V . In particular, T � S .
Conversely, take B = B1 × B2 ∈ S . Since Sk = smin

k , k = 1, 2, it follows that
Bk ⊆ amc (ak) for some ak = abc {vk} ∈ sk. But amc (a1)×amc (a2) ⊆ amc (c),
where c =2a1 × 2a2 is a compact set in V . Indeed, if x =

(
a1v

⊕n1
1 b1, a2v

⊕n2
2 b2

)
with ak, bk ∈ ballM , then x = 2−1/2a12v⊕n1

1 2−1/2b1 + 2−1/2a22v⊕n2
2 2−1/2b2 in

M (V ). Note that 2−1a1a
∗
1 +2−1a2a

∗
2 ≤ 2−1 ‖a1‖2 I +2−1 ‖a2‖2 I ≤ I . Similarly,

2−1b∗1b1 + 2−1b∗2b2 ≤ I . Hence x ∈ amc c. But c = c1 for some C ∈T . It follows
that B ⊆ amc c ⊆ C, that is, S � T .

Let (T, T) and (V, S) be quantum bornological spaces and let ϕ : (T, T) →
(V, S) be a surjective linear mapping. The range ϕ(∞) (T) =

{
ϕ(∞) (L) : L ∈ T

}
of the matrix bornology T in M (V ) turns out to be a matrix bornology. We say
that ϕ is a matrix quotient mapping if S− = ϕ(∞) (T)−. If S = ϕ(∞) (T) then
we say that ϕ is an exact matrix quotient mapping.

Corollary 3.1. Let V be a finite dimensional linear space with its canonical
bornology f, (T, t) a bornological space and let ϕ : (T, t) → (V, f) be a bornologi-
cal quotient mapping, that is, ϕ (t) = f. Then ϕ is an exact matrix quotient mapping
for any quantizations of the original bornologies.

Proof. Assume T is a matrix bornology on T such that T|T = t. By Theorem
3.2, f admits precisely one quantization S. Then ϕ(∞) (T) is a matrix bornology
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on V such that ϕ(∞) (T) |V = ϕ (T|T ) = ϕ (t) = f = S|V . Using Theorem 3.2
again, we derive that ϕ(∞) (T) = S.

In the infinite dimensional case we use the duality (see Theorem 4.2 below).

4. THE DUALITY THEOREMS

In this section we prove the main duality results for quantum spaces.
As above we fix a dual pair (V, W ) of linear spaces. Consider a quantum

topology N in M (V ) which is compatible with the duality. We identify N with its
neighborhood filter base of weakly closed absolutely matrix convex sets in M (V ).
By Lemma 3.2, N� is a base of matrix bornology in M (W ). Let X ⊆ V be a
linear subspace, which is a quantum subspace in V with its neighborhood filter base
M (X)∩N = {M (X) ∩ U : U ∈N}. If Y = W/X⊥ then the spaces X and Y are
in the canonical duality associated with the dual pair (V, W ). Since M (X) ∩ N
defines a quantum topology in M (X), it follows that (M (X) ∩ N )� is a base of
matrix bornology in M (Y ) (see Lemma 3.2). So, we have the quantum bornological
spaces (W,N�) and

(
Y, (M (X) ∩N )�

)
, and the quotient mapping ϕ : W → Y .

Theorem 4.1. The mapping ϕ : (W,N�) →
(
Y, (M (X) ∩N )�

)
is an exact

matrix quotient mapping of the quantum bornological spaces, that is,

ϕ(∞)
(
N�)

= (M (X) ∩ N )� .

Proof. Fix n ∈ N and consider the polynormed space Mn (V ) equipped
with the weak topology, and the linear mapping Mn (W ) → Mn (V )′, f �→ F ,
F (v) = 〈v, f〉. If F ∈ Mn (V )′ is a continuous linear functional then all functionals
fij : V → C, fij (v) = F (ε∗i vεj), are weakly continuous. Indeed,

|fij (v)| = |F (ε∗i vεj)| ≤ pw (ε∗i vεj) = ‖〈〈ε∗i vεj, w〉〉‖ = ‖ε∗i ⊗ 1 〈〈v, w〉〉 εj ⊗ 1‖
≤ ‖〈〈v, w〉〉‖ ≤

∑
s,t

|〈v, wst〉| =
∑
s,t

pwst (v)

for a certain w ∈ M (W ) (see Section ). Hence fij ∈ W for all i, j. In par-
ticular, f = [fij ] ∈ Mn (W ) and 〈v, f〉 =

∑
i,j 〈vij , fij〉 =

∑
i,j F (ε∗i vijεj) =

F (v). Thus Mn (W ) = Mn (V )′ up to the canonical identification. Further, if
in : Mn (X) → Mn (V ) is the inclusion mapping then (in)′ = ϕ(n) : Mn (W ) →
Mn (Y ) is the dual mapping. Indeed, (in)′ (F ) (x) = F (in (x)) = F (x) =
〈x, f〉 =

〈
x, ϕ(n) (f)

〉
for all x ∈ Mn (X).

Take U ∈N and consider its Hilbert-Schmidt boundary B =HS (U), which is
an absolutely convex set. Note that b◦n is σ (Mn (W ) , Mn (V ))-compact thanks
to Alaoglu-Bourbaki theorem (see to the proof of Lemma 3.2). Since ϕ(n) (b◦n) =
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(in)′ (b◦n) and (in)′ is weak∗ continuous, it follows that ϕ(n) (b◦n) is weak∗ com-
pact too. But ϕ(n) (b◦n)• = i−1

n (b◦◦n ) (this is a well known equality, see for
instance [8, (8.6.2)]), that is, ϕ(n) (b◦n)• = b−n ∩ Mn (X), where ϕ(n) (b◦n)• is
the polar of ϕ(n) (b◦n) with respect to the dual pair (Mn (X) , Mn (Y )), and b−n
is the weak closure of bn. But b−n ∩ Mn (X) = (bn ∩ Mn (X))− is the weak
closure of bn ∩ Mn (X) in the subspace Mn (X) with respect to the induced
topology σ (Mn (V ) , Mn (W )) |Mn (X). Since σ (Mn (V ) , Mn (W )) |Mn (X) =
σ (Mn (X) , Mn (Y )) [14, Section 4.4], it follows that b−

n ∩ Mn (X) is the weak
σ (Mn (X) , Mn (Y ))-closure of bn ∩ Mn (X). Then

(bn ∩ Mn (X))• =
(
b−n ∩ Mn (X)

)• = ϕ(n) (b◦n)•• = ϕ(n) (b◦n) ,

for ϕ(n) (b◦n) is weak∗ compact. Thus ϕ(∞) (HS (U)◦) = (HS (U) ∩ M (X))•.
Using (2.1) and Theorem 2.2 twice, we derive that

ϕ(∞)
(
U�)

= ϕ(∞) (HS (U)◦) = (HS (U) ∩ M (X))• = HS (M (X) ∩ U)•

= (M (X) ∩ U)� ,

that is, ϕ(∞) (N�) = (M (X) ∩N )� .

Corollary 4.1. Let V be a quantum space with its neighborhood filter base
N of absolutely matrix convex sets and let X ⊆ V be a linear subspace. Then
the restriction mapping (V ′,N�) →

(
X ′, (M (X) ∩ N )�

)
, f �→ f |X , is an exact

matrix quotient mapping.

Proof. It suffices to apply Theorem 4.1 to the dual pair (V, V ′).

Corollary 4.2. Let V be an operator space, X ⊆ V a linear subspace and let
ϕ : V ∗ → X∗, ϕ (f) = f |X , be the restriction mapping. Then

ϕ(∞) (ballM (V ∗)) = ballM (X∗) .

In particular, V ∗/X⊥ = X∗ up to the matrix isometry.

Proof. It suffices to put N= {s ballM (V ) : s > 0} in Corollary 4.1.

Now let again (V, W ) be a dual pair and let S be a matrix bornology in M (V )
of weakly bounded matrix sets. By Lemma 3.3, the space M (W ) can be equipped
with the quantum topology S�. The relevant quantum space is denoted by M (WS).

Theorem 4.2. Let (T, D) and (V, W ) be dual pairs with their matrix bornolo-
gies T and S of weakly bounded matrix sets, respectively, and let ϕ : T → V be a
weakly continuous linear mapping. If the dual mapping ϕ ′ : W → D implements
a matrix isomorphism (ϕ ′)(∞) : M (WS) → M (DT) onto its range which is a
weak∗ homeomorphism too, then ϕ : (T, T) → (V, S) is a matrix quotient mapping
of the matrix bornological spaces.
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Proof. We denote ϕ
′ by Φ. Since Φ : W → D is a weak∗ homeomorphism

onto its range, it follows that ϕ is a mapping onto [8, 8.6.4]. Further, take B ∈ S.
Since Φ(∞) : M (WS) → M (DT) is a topological isomorphism onto its range, it
follows that Φ(∞) (B�) ⊇ Φ(∞) (M (W )) ∩ L� or B� ⊇

(
Φ(∞)

)−1
(L�) for a

certain L ∈ T. But ϕ(∞) (L)� =
(
Φ(∞)

)−1
(L�). Indeed, (see [8, (8.6.2)])

ϕ(∞) (L)� = HS
(
ϕ(∞) (L)

)◦
= ϕ(∞) (HS (L))◦ =

(
Φ(∞)

)−1
(HS (L)◦)

=
(
Φ(∞)

)−1 (
L�)

.

Thus B� ⊇ ϕ(∞) (L)�. Using the Bipolar Theorem 2.1, we derive that B ⊆
ϕ(∞) (L)�� = ϕ(∞) (L)−, that is, B ∈ ϕ(∞) (T)−. Hence S− � ϕ(∞) (T)−.

Conversely, take L ∈ T. Since Φ(∞) : M (WS) → M (DT) is continuous,
it follows that ϕ(∞) (L)� =

(
Φ(∞)

)−1
(L�) ⊇ B� for a certain B ∈ S. Then

ϕ(∞) (L) ⊆ B−, that is, ϕ(∞) (L)− ∈ S−. Whence S− = ϕ(∞) (T)−, that is, ϕ

is a matrix quotient mapping of the relevant quantum bornological spaces.

Now fix a family J = {Jκ} of sets with a mapping n : ∨J → N over its
disjoint union. For each κ we have the operator space (von Neumann algebra) Mκ =
∞⊕

w∈Jκ

Mn(w) (-direct sum of the full matrix algebras). The family J associates the

quantum space (local von Neumann algebra) DJ = op
∏
κ

Mκ, which is the quantum

(or operator) direct product of von Neumann algebras. The quantum space DJ has
a realization as unbounded operators [4]. Note that the predual of the local von

Neumann algebra DJ (in the strong dual sense) is the space TJ = op
⊕
κ

1⊕
w∈Jκ

Tn(w)

of all trace class matrices in DJ , that is, DJ = (TJ)′β [7]. In particular, we have
the strong matrix bornology β on TJ of all matrix bounded sets in M (TJ ).

Corollary 4.3. Let V be a complete quantum space and let S be a matrix
bornology in M (V ) of σ (V, V ′)-bounded matrix sets. Then there is a matrix
quotient mapping ϕ : (TJ , β) → (V, S) of the matrix bornological spaces for some
family J .

Proof. Using the dual realization theorem for quantum spaces [7], we conclude
that there is a topological matrix isomorphism Φ : V ′

S → DJ onto its range, which
is a weak∗ homeomorphism too. Then Φ = ϕ′ for the uniquely defined weakly
continuous linear mapping ϕ : TJ → V . Since Φ is the weak∗ homeomorphism onto
its range, it follows that ϕ is onto [8, 8.6.4]. By Theorem 4.2, ϕ : (TJ , β) → (V, S)
is a matrix quotient mapping of the matrix bornological spaces.
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In the normed case Corollary 4.3 is reduced to the fact that each complete
operator space is a matrix quotient of an L1-direct sum of finite dimensional trace
class algebras up to a matrix isometry.
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