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ON THE SOLVABILITY OF SOLUTIONS TO SOME
QUASILINEAR ELLIPTIC PROBLEMS

Tsang-Hai Kuo and Chiung-Chiou Tsai

Abstract. Let Ω be a bounded open set in RN and 1 < p < ∞. We
study the following quasilinear elliptic problem: Lu = −

N∑
i=1

∂

∂xi
ai(x, u,∇u) = f(x, u,∇u) in Ω,

u = 0 on ∂Ω,

where L is a Leray-Lions type operator from W 1,p
0 (Ω) into its dual space.

It is shown that there exists a solution u ∈W 1,p
0 (Ω)∩L∞(Ω) to the prob-

lem provided that |f(x, r, ξ)| ≤ C(1+|r|δ+|ξ|η) where C is a nonnegative
constant and 0 ≤ δ, η < p− 1.

1. Introduction

In this paper, Ω shall be a bounded open set in RN and 1 < p < ∞.
Wm,p(Ω)= {u ∈ Lp(Ω)| weak derivatives Dαu ∈ Lp(Ω) for all |α| ≤ m},
Wm,p

0 (Ω) is the closure of C∞0 (Ω) in Wm,p(Ω) and W−m,p′(Ω) is the dual space
of Wm,p

0 (Ω), 1
p

+ 1
p′

= 1. ∇u denotes the gradient of u.
Consider the following nonlinear elliptic problem: Lu = −

N∑
i=1

∂

∂xi
ai(x, u,∇u) = f(x, u,∇u) in D′(Ω),

u ∈W 1,p
0 (Ω) ∩ L∞(Ω),

(1.1)
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where L is a Leray-Lions type operator from W 1,p
0 (Ω) into its dual space

W−1,p′(Ω). An operator L : W 1,p
0 (Ω) → W−1,p′(Ω) defined in (1.1) is called a

Leray-Lions type operator if ai is a Carathédory function, that is,{
x→ ai(x, r, ξ) is measurable ∀(r, ξ) ∈ R× RN ,
(r, ξ)→ ai(x, r, ξ) is continuous for a.e. x ∈ Ω;

(1.2)

and satisfies the following hypotheses:


There is α > 0 such that, for a.e. x ∈ Ω,
N∑
i=1

ai(x, r, ξ) · ξi ≥ α|ξ|p ∀r ∈ R, ∀ξ ∈ RN ;
(1.3)

{
There exist β > 0, k ∈ Lp′(Ω) such that, for a.e. x ∈ Ω,
|ai(x, r, ξ)| ≤ β(|r|p−1 + |ξ|p−1 + k(x)) ∀r ∈ R, ∀ξ ∈ RN ;

(1.4)


N∑
i=1

(ai(x, r, ξ)− ai(x, r, ξ̂)) · (ξi − ξ̂i) > 0

for a.e. x ∈ Ω, ∀r ∈ R, ∀ξ, ξ̂ ∈ RN , ξ 6= ξ̂.

(1.5)

Suppose that f is a Carathéodory function satisfying

|f(x, r, ξ)| ≤ h(|r|)(1 + |ξ|p),

where h is an increasing function from R+ into R+, and that there exist a
subsolution ϕ and a supersolution ψ with ϕ, ψ ∈ W 1,∞(Ω) and ϕ ≤ ψ a.e.
in Ω. Suppose further that there exists ε > 0 such that k ∈ Lp

′
+ε(Ω) in

hypothesis (1.4). Then it has been shown that in [1] there exists a solution
u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) with ϕ ≤ u ≤ ψ a.e. in Ω. However, the existence of a
subsolution and a supersolution is a structure hypothesis.

In this paper, instead of this hypothesis, we impose the growth condition
on f with respect to r, ξ by

|f(x, r, ξ)| ≤ C(1 + |r|δ + |ξ|η),(1.6)

where C is a nonnegative constant and 0 ≤ δ, η < p − 1. We then prove the
following main result.

Theorem 1.1. Under hypotheses (1.2)-(1.6), there exists a solution to
problem (1.1).
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As an example, when p > 1 and 0 ≤ δ, η < p − 1, consider the following
problem: Lu = −

N∑
i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
+ uδ + |∇u|η = h in D′(Ω),

u = 0 on ∂Ω,
(1.7)

where h ∈ L∞(Ω). Theorem 1.1 then ensures the existence of solutions to
problem (1.7) without knowing apriori the existence of subsolutions and su-
persolutions.

2. Lemmas and Proof of Main Results

We first give some lemmas which will be employed in the proof of Theorem
1.1.

Lemma 2.1. ([3, Lemma 1.3]) Let g ∈ Lq(Ω), gµ ∈ Lq(Ω) and ‖gµ‖Lq(Ω) ≤
C, 1 < q <∞. If gµ → g a.e., then gµ ⇀ g weakly in Lq(Ω).

Lemma 2.2. ([3, Lemma 2.1]) If uµ → u in Lp(Ω) and v ∈W 1,p(Ω), then

ai(x, uµ,∇v)→ ai(x, u,∇v) in Lp
′
(Ω).

Lemma 2.3. If uµ ⇀ u weakly in W 1,p
0 (Ω) and if〈

−
N∑
i=1

∂

∂xi
(ai(x, uµ,∇uµ)− ai(x, uµ,∇u)) , uµ − u

〉
→ 0,(2.1)

then uµ → u in W 1,p
0 (Ω).

Proof. By the compact imbedding theorem, we have uµ → u in Lp(Ω). It
follows from Lemma 2.2 that, for u ∈W 1,p(Ω),

ai(x, uµ,∇u)→ ai(x, u,∇u) in Lp
′
(Ω).(2.2)

Combining (2.1) with (2.2), we have〈
−

N∑
i=1

∂

∂xi
(ai(x, uµ,∇uµ)− ai(x, u,∇u)), uµ − u

〉
→ 0.

By a well-known result on mappings of type (S) [2, Lemma 3], it follows that
uµ → u in W 1,p

0 (Ω).
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For v ∈ W 1,p(Ω), we associate the Nemytskii operator F with respect to
f , defined by

F (v,∇v)(x) = f(x, v,∇v) for a.e. x ∈ Ω.

Lemma 2.4. The operator v → F (v,∇v) is continuous from W 1,p(Ω)
into Lp

′
(Ω).

Proof. By hypothesis (1.6), we have

|f(x, r, ξ)| ≤ C(3 + |r|p−1 + |ξ|p−1)(2.3)

which implies F (v,∇v) ∈ Lp
′
(Ω). Since f is a Carathédory function, the

lemma follows immediately by applying [4, Theorem 2.1].

Proof of Theorem 1.1. We will show that the operator A : W 1,p
0 (Ω) →

W−1,p′(Ω) defined by
A(v) = Lv − f(x, v,∇v)

is a variational operator ([3, p. 180]) and satisfies the coercive condition

lim
‖v‖W1,p→∞

〈A(v), v〉
‖v‖W 1,p

=∞.(2.4)

The detailed proof is achieved as follows.

(1) Let

A(u, v) = −
N∑
i=1

∂

∂xi
ai(x, u,∇v)− f(x, u,∇u).

Then A(v, v) = A(v) for all v ∈ W 1,p
0 (Ω). It is easy to see that A and the

operator v → A(u, v) is bounded for all u ∈ W 1,p
0 (Ω). Now we claim that the

operator v → A(u, v) is hemicontinuous for all u ∈W 1,p
0 (Ω), i.e., the operator

λ → 〈A(u, v1 + λv2), w〉

is continuous for all v1, v2, w ∈W 1,p
0 (Ω). Since ai is a Carathédory function,

ai(x, u,∇(v1 + λv2))→ ai(x, u,∇v1) a.e. as λ→ 0.

Further, we know from (1.4) that ai(x, u,∇(v1 + λv2)) is bounded in Lp
′
(Ω).

Thus, by Lemma 2.1,

ai(x, u,∇(v1 + λv2)) ⇀ ai(x, u,∇v1) weakly in Lp
′
(Ω).
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Hence, as λ→ 0,

〈A(u, v1 + λv2), w〉

=
∫

Ω
ai(x, u,∇(v1 + λv2))

∂w

∂xi
dx−

∫
Ω
f(x, u,∇u)wdx

→
∫

Ω
ai(x, u,∇v1)

∂w

∂xi
dx−

∫
Ω
f(x, u,∇u)wdx

= 〈A(u, v1), w〉

for all v1, v2, w ∈ W 1,p
0 (Ω). Similarly, it follows from the proof as stated

above that the operator u → A(u, v) is bounded and hemicontinuous for all
v ∈W 1,p

0 (Ω).

(2) By (1.5), we have, for all u, v ∈W 1,p
0 (Ω),

〈A(u, u)−A(u, v), u− v〉

=
N∑
i=1

∫
Ω

(ai(x, u,∇u)− ai(x, u,∇v))
(
∂u

∂xi
− ∂v

∂xi

)
dx ≥ 0.

(3) Let uµ ⇀ u weakly in W 1,p
0 (Ω) and 〈A(uµ, uµ)−A(uµ, u), uµ−u)〉 → 0.

We claim that A(uµ, v) ⇀ A(u, v) weakly in W−1,p′(Ω) for all v ∈ W 1,p
0 (Ω).

Since uµ → u in Lp(Ω) by the compact imbedding theorem, we can obtain
from Lemma 2.2 that

ai(x, uµ,∇v)→ ai(x, u,∇v) in Lp
′
(Ω).(2.5)

By Lemma 2.3, we have uµ → u in W 1,p
0 (Ω) and it follows from Lemma 2.4

that

f(x, uµ,∇uµ)→ f(x, u,∇u) in Lp
′
(Ω).(2.6)

Hence, by (2.5) and (2.6), we have

〈A(uµ, v), w〉 =
N∑
i=1

∫
Ω
ai(x, uµ,∇v)

∂w

∂xi
dx−

∫
Ω
f(x, uµ,∇uµ)wdx

→
N∑
i=1

∫
Ω
ai(x, u,∇v)

∂w

∂xi
dx−

∫
Ω
f(x, u,∇u)wdx

= 〈A(u, v), w〉 for all w ∈W 1,p
0 (Ω).
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(4) If uµ ⇀ u weakly in W 1,p
0 (Ω) and A(uµ, v) ⇀ φ weakly in W−1,p′(Ω).

We claim that 〈A(uµ, v), uµ〉 → 〈φ, u〉. As stated in (3), we have

ai(x, uµ,∇v)→ ai(x, u,∇v) in Lp
′
(Ω)

and so ∫
Ω
ai(x, uµ,∇v)

∂uµ
∂xi

dx→
∫

Ω
ai(x, u,∇v)

∂u

∂xi
dx.

Hence, together with

N∑
i=1

∫
Ω
ai(x, uµ,∇v)

∂u

∂xi
dx−

∫
Ω
f(x, uµ,∇uµ)udx → 〈φ, u〉,

we have

〈A(uµ, v), uµ〉

=
N∑
i=1

∫
Ω
ai(x, uµ,∇v)

∂uµ
∂xi

dx−
∫

Ω
f(x, uµ,∇uµ)uµdx

=
N∑
i=1

∫
Ω
ai(x, uµ,∇v)

(
∂uµ
∂xi
− ∂u

∂xi

)
dx+

N∑
i=1

∫
Ω
ai(x, uµ,∇v)

∂u

∂xi
dx

−
∫

Ω
f(x, uµ,∇uµ)udx−

∫
Ω
f(x, uµ,∇uµ)(uµ − u)dx → 〈φ, u〉.

(5) Now we claim (2.4). By (1.3), we have

〈Av, v〉 =
N∑
i=1

∫
Ω
ai(x, v,∇v)

∂v

∂xi
dx−

∫
Ω
f(x, v,∇v)vdx

≥ α‖∇v‖pp −
∫

Ω
f(x, v,∇v)vdx.

It follows from the Poincaré inequality that

〈Av, v〉
‖v‖W 1,p

≥ C0‖v‖p−1
W 1,p −

∫
Ω
f(x, v,∇v)vdx

‖v‖W 1,p

for some constant C0 > 0. By (1.6), there exist nonnegative constants C1, C2

and C3 such that∫
Ω
f(x, v,∇v)vdx ≤ C1 + C2‖v‖δ+1

W 1,p + C3‖v‖η+1
W 1,p .

Since 0 ≤ δ, η < p− 1, we can conclude that

〈Av, v〉
‖v‖W 1,p

→∞.
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Therefore, by (1)-(5), there exists a solution u ∈W 1,p
0 (Ω) to problem (1.1)

by applying Corollary 2.1 of [3]. Furthermore, by (1.3) and (2.3), we can
obtain from [5, Theorem 10.9] that u ∈ L∞(Ω).
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