TAIWANESE JOURNAL OF MATHEMATICS
Vol. 1, No. 4, pp. 547-553, December 1997

ON THE SOLVABILITY OF SOLUTIONS TO SOME
QUASILINEAR ELLIPTIC PROBLEMS

Tsang-Hai Kuo and Chiung-Chiou Tsai

Abstract. Let ©Q be a bounded open set in RY and 1 < p < co. We
study the following quasilinear elliptic problem:

N
Lu = - ; %ai(x, u, Vu) = f(x,u, Vu) in Q,
u = 0 on 012,

where L is a Leray-Lions type operator from VVO1 "P(Q) into its dual space.
It is shown that there exists a solution u € Wy ?(Q)NL>(Q) to the prob-
lem provided that |f(z,r,&)| < C(1+|r|° 4 |£[") where C is a nonnegative
constant and 0 < 0, <p — 1.

1. INTRODUCTION

In this paper, € shall be a bounded open set in RY and 1 < p < oc.
Wmr(Q)= {u € LP(Q)| weak derivatives Du € LP(Q) for all |a] < m},
WP () is the closure of C°(Q) in W2 () and W~ (Q) is the dual space
of Wi"*(Q), % + ﬁ = 1. Vu denotes the gradient of u.

Consider the following nonlinear elliptic problem:

N
(1.1) Lu = —; :xiai(x,u,Vu) = f(z,u,Vu) in D'(Q),

u € Wy P(Q) N L2(Q),
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where L is a Leray-Lions type operator from Wy?() into its dual space

W=7 (Q). An operator L : Wy ?(Q) — W1 (Q) defined in (1.1) is called a

Leray-Lions type operator if a; is a Carathédory function, that is,

(1.2) x — a;(z,r,€) is measurable V(r,&) € R x RY,
’ (r,&) — a;(x,r, &) is continuous for a.e. z € Q;

and satisfies the following hypotheses:

There is a > 0 such that, for a.e. x € €,

(1.3) al
Zai(az,r,f) & > al€lP Vr € R,VE €RY;

i=1

(1.4) There exist 3 > 0, k € L () such that, for a.e. z € Q,
|ai(z,r, )] < B(Ir[P~" + [P~ + k(z))  Vr €R,VE € RY;

N

(L5) > (e, €) —ai(e ) (6= &) > 0

for a.e. 7 € O, Vr e R,VE, € €RY, € £E.

Suppose that f is a Carathéodory function satisfying

[ (7, )] < h(|r[) (1 + [E]7),

where h is an increasing function from RT into RT, and that there exist a
subsolution ¢ and a supersolution ¢ with ¢, ¥ € Wh>(Q) and ¢ < ¢ a.e.
in Q. Suppose further that there exists ¢ > 0 such that k& € Lp/+€(Q) in
hypothesis (1.4). Then it has been shown that in [1] there exists a solution
u € Wy (Q) N L=(Q) with ¢ < u < ¢ a.e. in Q. However, the existence of a
subsolution and a supersolution is a structure hypothesis.

In this paper, instead of this hypothesis, we impose the growth condition
on f with respect to r, & by

(1.6) (2,7, &) < O+ [r]” + €],

where C' is a nonnegative constant and 0 < §,7 < p — 1. We then prove the
following main result.

Theorem 1.1. Under hypotheses (1.2)-(1.6), there exists a solution to
problem (1.1).
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As an example, when p > 1 and 0 < §,n < p — 1, consider the following
problem:

N
0 ou
_ p—2 8 n __ : /
(1.7) Lu = ; oz, <|Vu| 0:L‘i> +u’ + |Vu|"=h in D'(Q),
u=0 on 01,

where h € L>(§2). Theorem 1.1 then ensures the existence of solutions to
problem (1.7) without knowing apriori the existence of subsolutions and su-
persolutions.

2. LEMMAS AND PROOF OF MAIN RESULTS

We first give some lemmas which will be employed in the proof of Theorem
1.1.

Lemma 2.1. ([3, Lemma 1.3]) Letg € L), g, € L1(Q) and ||gp[[ () <
C, 1<qg<oo. If g, — g a.e., then g, — g weakly in LI(Q).

Lemma 2.2. ([3, Lemma 2.1]) Ifu, — u in LP(Q) and v € WP(Q), then

a;(x,u,, Vo) — a;(x,u, Vo) in LF' ().
Lemma 2.3. If u, — u weakly in Wy (Q) and if

N
0
(2.1) <— Z r (ai(z,u,, Vu,) — a;(x,u,, Vu)) ,u, — u> — 0,
i—1 Yt
then u, — u in Wy*(Q).

Proof. By the compact imbedding theorem, we have u, — u in LP(Q). It
follows from Lemma 2.2 that, for u € W?(Q),

(2.2) a;(x, u,, Vu) — a;(z,u, Vu) in LP (Q).
Combining (2.1) with (2.2), we have

N
<_ Z aax» (ai(z,uy, Vu,) — ai(z,u, Vu)),u, — U> =0.

By a well-known result on mappings of type (S) [2, Lemma 3], it follows that
u,, — w in Wy (Q).

549



550 Tsang-Hai Kuo and Chiung-Chiou Tsai

For v € W?(Q), we associate the Nemytskii operator F with respect to
f, defined by

F(v,Vv)(z) = f(x,v,Vv) forae. z €.

Lemma 2.4. The operator v — F(v,Vv) is continuous from W'r(Q)
into L¥ (£2).

Proof. By hypothesis (1.6), we have

(2.3) [f(a,r I < CE+ I+ 1)

which implies F(v,Vv) € LP (). Since f is a Carathédory function, the
lemma follows immediately by applying [4, Theorem 2.1].

Proof of Theorem 1.1. We will show that the operator A : W, (Q) —
W17 (Q) defined by
A(v) = Lv — f(x,v, Vv)

is a variational operator ([3, p. 180]) and satisfies the coercive condition

(2.0 TN - CLLLC/

ol —oo ||v]|wis

The detailed proof is achieved as follows.
(1) Let
Y0
A(u,v) = — ; a—xiai(x,u, V) — f(z,u, Vu).

Then A(v,v) = A(v) for all v € Wy ?(Q). Tt is easy to see that A and the
operator v — A(u,v) is bounded for all u € Wy ?(Q). Now we claim that the
operator v — A(u,v) is hemicontinuous for all u € W, *(Q), i.e., the operator

A — (A(u, vy + Avg), w)
is continuous for all vy, vy, w € I/VO1 P(Q). Since a; is a Carathédory function,
a;(x,u, V(vy + A\vg)) — a;(x,u, Vuy) a.e.as A — 0.

Further, we know from (1.4) that a,(z,u, V(v; + Avy)) is bounded in L¥'(Q).
Thus, by Lemma 2.1,

a;(z, u, V(vy + M) — a;(z,u, Voy)  weakly in L (Q).
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Hence, as A — 0,

(A(u, v1 + Avg),w)

:/ai(x,u,V(vl—{—)\vg))awdm—/f(x,u,Vu)wdx
Q z; Q
ow
e/ai(m,u,VUl) dx—/f(x,u,Vu)wdx
Q z; Q

= (A(u,vy),w)
for all vy, vy, w € Wy (). Similarly, it follows from the proof as stated
above that the operator u — A(u,v) is bounded and hemicontinuous for all
v € W, P ().
(2) By (1.5), we have, for all u,v € Wy*(Q),

(A(u,u) — A(u,v),u — v)

al ou  Ov
= ;/ﬂ(ai(x,u, Vu) — ai(z,u, Vo)) (3132- - 8zi> dx > 0.

(3) Let u, — u weakly in Wy"*(€) and (A(u,,,u,) — A(u,,u), u, —u)) — 0.
We claim that A(u,,v) — A(u,v) weakly in W17 (Q) for all v € Wy*(Q).
Since u, — u in LP(Q)) by the compact imbedding theorem, we can obtain
from Lemma 2.2 that

(2.5) a;(x,u,, Vo) — a;(x,u, Vv) in L¥ (Q).

By Lemma 2.3, we have u, — u in W;?(Q) and it follows from Lemma 2.4
that

(2.6) flx,u,, Vu,) — f(z,u, Vu)  in LP ().

Hence, by (2.5) and (2.6), we have

ow

N
(A(uy,v),w) = ;/ﬂai(a},u#,vwaxidx—/Qf(:r,u#,Vu#)wd:r

N
— Z/ai(x,u,Vv) awdw—/f(m,u,Vu)wdx
i—1 /Q axi Q

= (A(u,v),w) for all w € Wy*(Q).
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(4) If u, — u weakly in Wy ?(Q) and A(u,,v) — ¢ weakly in W17 (Q).
We claim that (A(u,,v),u,) — (¢, u). As stated in (3), we have

a;(x,u,, Vo) — a;(x,u, Vo) in L¥ (Q)

and so
ou,,

U
a;(x,u,, Vv dx a;(x,u, Vv dx.

/sz ( a )8331' - Q ( ) X
Hence, together with

ou

N
Z/ai(a:,uu,Vv)?dx—/f(m,uM,Vu“)udm — (@, u),
i=1 7€ X Q

we have

(A, v), )

N
0
= Z/ a;(z,u,, Vv) au"‘da;—/f(x,quuu)uudaz
=1 /9 € Q

N ou ou N ou
P— . M J— . —
_ Zizl /Q as(x, u,, V) ( o axi>dx+l§_lj /Q (a4, Vo) 5

—/f(a:,uM,VuH)udx—/f(x,uM,Vuu)(uu—u)dx — (¢, u).
Q Q

(5) Now we claim (2.4). By (1.3), we have

N
(Av,v) = ;/ﬂai(:v,v,Vv);de/Qf(x,v,Vv)vdaz

> aHVvHi—/Qf(aﬁ,v,Vv)vd:z:.

It follows from the Poincaré inequality that

/ f(z,v, Vv)vdz
1 Q

> Collvllyr —

(Av,v)

[ollwer

[ollwar

for some constant Cy > 0. By (1.6), there exist nonnegative constants Cy, Cy
and C'5 such that

/Qf(x,v,Vv)vdm < Cy + Col[o|| 5L, + Cs|lv||BH, .

Since 0 < §,7 < p— 1, we can conclude that
(Av,v)

[ollwr
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Therefore, by (1)-(5), there exists a solution u € W, () to problem (1.1)
by applying Corollary 2.1 of [3]. Furthermore, by (1.3) and (2.3), we can
obtain from [5, Theorem 10.9] that u € L>(2).
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