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THE PERIOD OF A LOTKA-VOLTERRA SYSTEM1∗

Shagi-Di Shih

Abstract. A classical Lotka-Volterra system of two first-order nonlinear
differential equations modeling predator prey competition in population
biology has been known to have an algebraic relation between two depen-
dent variables for its periodic behavior in the phase plane since pioneering
works by Lotka [12] on chemical reaction, Lotka [13] on parasitology, and
Volterra [24] on fishing activity in the upper Adriatic Sea. The techniques
of Volterra [24], Hsu [10], Waldvogel [25, 26], Rothe [19], and Shih [22]
in obtaining an integral representation of the period of Lotka-Volterra
system are surveyed. These integrals are then shown to be equivalent.

1. Introduction

The problem of investigating periodic solutions is very old. It first became
prominent in the study of celestial mechanics and there is a well-known dis-
cussion of its importance by the French mathematician Poincaré [18]. In later
years, when other physical phenomena have been analyzed mathematically by
using nonlinear ordinary differential equations, periodic solutions have often
played an important role in radio circuits, control theory, and, most recently,
chemical and biological oscillations. In this work, an attention is paid to a
predator prey problem in mathematical biology.

For two competing species model, Lotka [13, pp. 88-94] and Volterra [24]
studied independently the predator prey model
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u′(t) = u(t){a− b v(t)}, v′(t) = v(t){c u(t)− d},(1.1)

where u(t) is the prey population, v(t) that of the predator at time t, and
a, b, c, d are positive constants, see also Rubinow [20] and Murray [15]. Lotka
[12] derives this system for the chemical reaction which exhibits periodic be-
havior in the chemical concentrations, see also Murray [14]. The system (1.1)
is a classical but nontrivial problem. Periodic solutions of some Lotka-Volterra
systems are further investigated by Davis [5], Grasman and Veling [9], Frame
[7], Lauwerier [11], Dutt [6], Hsu [10], Rothe [19], and Waldvogel [25, 26]. Non-
periodic solutions of some Lotka-Volterra systems are studied by Abdelkader
[1], Varma [23], Willson [27], Burnside [3], Murty and Rao [16], and Olek [17].
Several asymptotic solutions of the Lotka-Volterra equations with oscillatory
behavior are reviewed in detail by Grasman [8].

The system (1.1) has only one critical point (singular point, or equilibrium
point) (d/c, a/b) in the first quadrant of the uv-plane, which is the center for
the linearized system of (1.1)

u′(t) = −bd
c

{
v(t)− a

b

}
, v′(t) =

ac

b

{
u(t)− d

c

}
.(1.2)

Moreover, the linearized problem (1.2) subject to the initial conditions u(0) =
u0 > 0, v(0) = v0 > 0 has the solution

u(t) =
d

c
+ r sin(t

√
ad+ t∗), v(t) =

a

b
+ r

c

b

√
a

d
cos(t

√
ad+ t∗);

for some t∗ satisfying

cos(t∗) =
v0 − a/b

r

b

c

√
d

a
, sin(t∗) =

u0 − d/c
r

,

r =

√
(u0 −

d

c
)2 + (v0 −

a

b
)2 b

2d

ac2
.

Hence the trajectory of the linearized problem is an ellipse with the period
2π/
√
ad in the uv-plane. The linear theory, which appears in both Lotka [12]

and Volterra [24], may not predict what happens in the nonlinear system (1.1),
but it is closely related to Waldvogel [25, 26] in some sense. In fact, the period
for the nonlinear system (1.1) will be shown to depend on the initial data.

On the other hand, combining two equations of the system (1.1) yields

dv

du
=
v{cu− d}
u{a− bv}

,(1.3)



Lotka-Volterra System 453

which is a separable differential equation. Rewrite (1.3) as {a/v − b}dv =
{c− d/u}du, which is integrated to give a functional relation between u and v

F (u, v) = H(1.4)

with F (u, v) = cu+bv−d log(u)−a log(v) and some constantH. Equation (1.4)
indicates that F (u, v) is a conservative quantity for all t ≥ 0. More precisely,
for given initial data u(0) = u0 > 0, v(0) = v0 > 0, we have H = F (u0, v0).
An elementary technique in calculus further shows that

H ≥ a+ d− a log
(
a

b

)
− d log

(
d

c

)
,

and the minimum value takes place at u = d/c, v = a/b. In the notion of
Hamiltonian systems, we write H = a+d−a log(a/b)−d log(d/c)+E in (1.4)
to obtain

cu− d+ bv − a− a log
(
b

a
v

)
− d log

(
c

d
u

)
= E,(1.5)

with the energy E ≥ 0, and E = 0 at u = d/c, v = a/b. The system (1.1) has
been known to give a one parameter family of periodic solutions (1.4) or (1.5)
having (d/c, a/b) as the center point since Lotka [12]. Thus many qualitative
properties of the system (1.1) have been obtained from (1.4) or (1.5). For
example, Lotka [12] obtains the period of the periodic orbit determined by
(1.1) to be about 2π/

√
ad by linearizing the algebraic equation (1.4) at u =

d/c, v = a/b.
By using a diversity of techniques, there are several integral representations

for the period of the periodic solution of the Lotka-Volterra system (1.1) in the
literature. In what follows, a survey is given to methods employed by Volterra
[24], Hsu [10], Waldvogel [25, 26], Rothe [19], and Shih [22]. Moreover, these
integrals are shown to be equivalent.

2. Volterra’s Method

Volterra [24] uses dimensionless variables u = cN1/d, v = bN2/a to reduce
the system

N ′1(t) = N1{a− bN2}, N ′2(t) = N2{cN1 − d}

to the system

u′(t) = au{1− v}, v′(t) = dv{u− 1},(2.1)
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which gives

{u exp(−u)}d = C{v exp(−v)}−a,(2.2)

for some positive constant C. Volterra states that if, using (2.2), we express
v as a function of u, or u as a function of v, and substitute them into the
equations

dt =
du

au{1− v}
, dt =

dv

dv{u− 1}
;

obtained from (2.1), the variables are separated and the integration is reduced
to a quadrature. Instead, Volterra defines the auxiliary variable x by

x = {u exp(−u)}d = C{v exp(−v)}−a,(2.3)

and obtains the general behavior of the curves x = {u exp(−u)}d in the ux-
plane and x = C{v exp(−v)}−a in the vx-plane, which, in turn, are used to
construct the periodic orbit of (2.2) in the uv-plane.

It follows from (2.3) that log(x) = d{log(u)−u}, which, after differentiating
with respect to t and using (2.1), gives

1
x
x′(t) = ad{1− u}{1− v} or dt =

dx

adx{1− u}{1− v}
.

Volterra then concludes the following result.

Theorem 2.1. The period of fluctuation for the closed orbit determined
by (2.2) is the sum of four integrals

T =
∫
_
SE

dx

adx{1− u}{1− v}
+
∫
_
EN

dx

adx{1− u}{1− v}

+
∫

_
NW

dx

adx{1− u}{1− v}
+
∫
_
WS

dx

adx{1− u}{1− v}
,

(2.4)

over the four segments
_
SE,

_
EN,

_
NW,

_
WS of the closed orbit determined by

(2.2), where points N , S have the coordinates (1, v2), (1, v1), respectively, with
v1, v2 satisfying exp(−d) = C{v exp(−v)}−a and 0 < v1 < 1 < v2; and points
E, W have the coordinates (u2, 1), (u1, 1), respectively, with u1, u2 satisfying
C exp(a) = {u exp(−u)}d and 0 < u1 < 1 < u2.

Volterra also observes that the integrand of each integral in (2.4) becomes
infinite at the four vertices S,E,N,W , but the integrals are absolutely con-
vergent. Furthermore, constructing some approximate solutions to 1− u and
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1− v, Volterra integrates (2.4) over four segments
_
SE,

_
EN ,

_
NW ,

_
WS to ob-

tain the period of the system (2.1) to be 2π/
√
ad when fluctuations are small

enough.

3. Hsu’s Method

Hsu [10] chooses appropriate nondimensional variables

u(t) =
δ

γ
N1(τ), v(t) =

β

γ
N2(τ); t = γτ, a =

α

γ
,

to reduce the Lotka-Volterra system

N ′1(τ) = N1(τ){α− β N2(τ)}, N ′2(τ) = N2(τ){δ N1(τ)− γ},

to the system

u′(t) = u(t){a− v(t)}, v′(t) = v(t){u(t)− 1},(3.1)

which, along with the initial conditions

u(0) = u0 > 0, v(0) = v0 > 0,(3.2)

gives ∫ u

1

ξ − 1
ξ

dξ +
∫ v

a

η − a
η

dη = C0

or

u− 1− log(u) + v − a− a log
(
v

a

)
= C0,(3.3)

with
C0 = u0 − 1− log(u0) + v0 − a− a log

(
v0

a

)
.

Hsu employs an auxiliary system (3.6) of differential equations to obtain an
integral formula for the period of the closed orbit determined by (3.3).

A manipulation of differentiating the first equation of (3.1) with respect
to t and then eliminating both v′(t) [by using the second equation of (3.1)]
and v(t) [by using the first equation of (3.1)] yields the nonlinear second-order
differential equation

u′′(t)− [u′(t)]2

u(t)
− {u′(t)− a u(t)}{u(t)− 1} = 0,(3.4)
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which can not be integrated in terms of elementary functions. But Hsu uses
a transform

u = exp(z) or z = log(u)(3.5)

to simplify (3.4) into the form

z′′(t)− {z′(t)− a}{exp(z)− 1} = 0,

which gives the auxiliary system

z′(t) = w, w′(t) = {w − a}{exp(z)− 1}.(3.6)

It follows that

dw

dz
=
{w − a}{exp(z)− 1}

w
, or

w

w − a
dw = {exp(z)− 1} dz.(3.7)

Moreover, the zw-coordinates are related to the uv-coordinates by

z = log(u) and w = z′(t) =
u′(t)
u(t)

= a− v(t).(3.8)

The periodic orbit of (3.1), (3.2), which is determined by (3.3), has the left
extreme point (u∗, a) and the right extreme point (u∗, a), where u∗, u∗ are two
roots of u− 1− log(u) = C0 with u∗ < u∗. The lower branch of periodic orbit
corresponds to v ∈ (0, a) or w ∈ (0, a) in the zw-coordinates. To compute the
time T1 traveling along the lower branch of the closed curve (3.3) from (u∗, a)
to (u∗, a), suppose that u = u∗, v = a for t = 0. Then, from (3.8), we have
z = log(u∗), w = 0 for t = 0. It follows from z′(t) = w that

T1 =
∫ log(u∗)

log(u∗)

dz

w
.

To determine a formula for w in terms of z, we integrate (3.7) to get∫ w

0

ξ

ξ − a
dξ =

∫ z

log(u∗)
{exp(η)− 1} dη or F (w) = G(z),

with F (w) = w + a log(1 − w/a) and G(z) = exp(z) − z + log(u∗) − u∗ =
exp(z)−z−1−C0. From the fact that F ′(w) = −w/(a−w) < 0 for w ∈ (0, a),
we have the existence of the inverse function of F (w) for w ∈ (0, a), and thus
w = F−1

1 (G(z)), where F1(w) is the restriction of F (w) on (0, a), and
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T1 =
∫ log(u∗)

log(u∗)

dz

F−1
1 (G(z))

.(3.9)

Similarly, the time T2 traveling along the upper branch of the periodic orbit
(v > a or w < 0) from (u∗, a) to (u∗, a) is

T2 =
∫ log(u∗)

log(u∗)

dz

F−1
2 (G(z))

,(3.10)

where F2(w) is the restriction of F (w) on (−∞, 0).
Hsu observes that each of two integrals in (3.9), (3.10) is an improper

integral with a singularity of the square root type at both log(u∗) and log(u∗)
by virtue of the fact that G(log(u∗)) = G(log(u∗)) = 0, F (0) = F ′(0) = 0, and
F ′′(0) 6= 0. Thus, combining (3.9), (3.10) yields the following theorem.

Theorem 3.1. The period of the periodic solution for the system (3.1)
subject to the initial data (3.2) is represented as

T =
∫ log(u∗)

log(u∗)

{
1

F−1
1 (G(z))

− 1
F−1

2 (G(z))

}
dz,(3.11)

where u∗, u
∗ are two roots of u − 1 − log(u) = C0 satisfying u∗ < u∗, C0 =

u0 − 1 − log(u0) + v0 − a − a log(v0/a), G(z) = exp(z) − z − 1 − C0, and
F2(w), F1(w) are the restrictions of F (w) = w + a log(1 − w/a) on (−∞, 0],
[0, a), respectively.

4. Waldvogel’s Method

Using a change of dependent variables

x = log(u), y = log(v)(4.1)

[or u = exp(x), v = exp(y)], Waldvogel [25, 26] reduces the system having two
positive constants a, d

u′(t) = au{v − 1}, v′(t) = dv{1− u};(4.2)

to

x′(t) = a{exp(y)− 1}, y′(t) = d{1− exp(x)};(4.3)

which is considered as a Hamiltonian system x′(t) = ∂H/∂y, y′(t) = −∂H/∂x.
It then follows from the theory of Hamiltonian systems that the equation
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H(x, y) = h > 0(4.4)

with H(x, y) = a{exp(y)−y−1}+d{exp(x)−x−1}, defines a periodic solution.
Next, Waldvogel defines increasing functions G1(x), G2(y) such that

[G1(x)]2 = 2d{exp(x)− x− 1}, [G2(y)]2 = 2a{exp(y)− y − 1};(4.5)

and introduces new coordinates ξ, η by

ξ = G1(x) η = G2(y), or x = g1(ξ) y = g2(η),(4.6)

where gj is the inverse function of Gj . Thus, in the ξη-coordinates, the system
(4.3) becomes

ξ′(t) =
η

g′1(ξ)g′2(η)
, η′(t) =

−ξ
g′1(ξ)g′2(η)

;(4.7)

and, moreover, (4.4) is converted into an equation of the circle

ξ2 + η2 = 2h.(4.8)

Finally, integrating the first equation in (4.7) gives the period of the periodic
solution of (4.3)

T =
∮
g′1(ξ)g′2(η)

dξ

η
,

where the integral is taken clockwise over the circle (4.8). With the parame-
terization

ξ =
√

2h cos(s), η =
√

2h sin(s);(4.9)

Waldvogel obtains the following result.

Theorem 4.1. The period of the closed orbit determined by (4.4) is given
by

T =
∫ 2π

0
g′1(
√

2h cos(s)) g′2(
√

2h sin(s)) ds,(4.10)

where g1 and g2 are functions described above.

Waldvogel [25] further states that the period is written as the integral over
a full period of a continuously differentiable periodic function, and integrals
of this type can be evaluated efficiently by the means of the trapezoidal rule
[25, 26]. Waldvogel seems not to be aware of the fact that the integrand has
a singularity of the square root type at several places.
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5. Rothe’s Method

Introducing the new coordinates (x, y) defined by u = exp(x), v = exp(y),
Rothe [19] transforms the system having positive constants a, d

u′(t) = au{1− v} v′(t) = dv{u− 1}(5.1)

to the Hamiltonian system

x′(t) = −∂H
∂y

y′(t) =
∂H

∂x
(5.2)

with the Hamiltonian

H(x, y) = d{exp(x)− x− 1}+ a{exp(y)− y − 1}.(5.3)

Based on thermodynamics, the state sum of the Hamiltonian system (5.2),
(5.3) is

Z(β) =
∫ ∞
−∞

∫ ∞
−∞

exp[−βH(x, y)] dx dy

for the inverse absolute temperature β ∈ (0,∞). It follows that Z(β) =
z(βa) z(βd) where we have with a substitution s = exp(x)

z(γ)=
∫ ∞
−∞

exp[−γ{exp(x)− x− 1}] dx

= exp(γ)
∫ ∞

0
exp(−γs) sγ−1 ds = exp(γ) γ−γ Γ(γ),

with the Gamma function Γ defined by Euler’s integral of the second kind

Γ(γ) =
∫ ∞

0
exp(−σ)σγ−1 dσ, γ > 0.

On the other hand, the state sum is related to the energy-period function
T (E) via

Z(β) =
∫ ∞

0
T (E) exp(−βE) dE := L[T ](E).

In other words, the Laplace transform of the energy-period function is the
canonical state sum. It follows from the inverse Laplace transform that

T (E) = L−1[Z](β) = L−1[z](βa) ∗ L−1[z](βd).

To determine the function z is a Laplace transform, consider the function h
from (−∞,∞) to [0,∞) defined by h(x) = exp(x)− x− 1. Let x− ∈ (−∞, 0)
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and x+ ∈ (0,∞) be two solutions of h(x) = E for E ∈ (0,∞). Define the
functions τ± : (0,∞)→ (0,∞), and τ : (0,∞)→ (0,∞) by

τ+(E) =
1

|h′(x+)|
=

1
exp(x+)− 1

=
1

E + x+
,

τ−(E) =
1

|h′(x−)|
=

1
1− exp(x−)

=
1

|x−| − E
,

and τ(E) = τ+(E) + τ−(E), respectively. Then L[τ ](E) = z(β). Moreover, we
have

z(βa) = L
[

1
a
τ

(
E

a

)]
z(βd) = L

[
1
d
τ

(
E

d

)]
.

The period is formulated as a convolution integral via the Laplace transform.
Thus Rothe obtains the following result.

Theorem 5.1. The period of oscillations of the system (5.1) is given by

T (E) =
1
ad

∫ E

0
τ

(
s

d

)
τ

(
E − s
a

)
ds,(5.4)

where τ is the function described above.

6. Shih’s Method

It seems in the literature that the algebraic equation (1.4) or (1.5) can
not be solved explicitly for either variable in terms of the other; see, for ex-
ample, Boyce and DiPrima [2, p. 475] among others. In Shih [22], we solve
(1.5) explicitly for one variable in terms of the other, from which two integral
representations of the period are obtained. The basic notations we employ
are two inverse functions W (0, x),W (−1, x) of x exp(x) restricted to the in-
tervals [−1, 0), (−∞,−1], respectively. Our method can be considered to be
elementary but elegant.

First of all, the function x exp(x) has the positive derivative (x+1) exp(x)
if x > −1. Define the inverse function of x exp(x) restricted on the interval
[−1,∞) to be W (0, x). Similarly, we define the inverse function of x exp(x) re-
stricted on the interval (−∞,−1] to be W (−1, x). For the nature of this study,
both W (0, x) and W (−1, x) will be employed only for x ∈ [− exp(−1), 0).

In 1779, Euler obtained a series expansion for the solution of the trinomial
equation xα − xβ = (α − β)vxα+β in the limiting case as α → β, which was
proposed in 1758 by Lambert. In this case, the equation becomes log(x) =
vxβ, which has the solution x = exp(−W (0,−βv)/β). Shih [21] uses W (0, x)
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for x > 0 to describe a slowly moving shock of Burgers’ equation in the
quarter plane. Functions W (−k, x) are denoted as LambertW (−k, x) in the
computer algebra system Maple V release 4b (available since August 1996),
and ProductLog [−k, x] in Mathematica version 3 (released in November 996),
respectively. Both of them are found to have some bugs in asymptotic behavior
of W (−1, x) with x = − exp(−1). A good reference of these functions is
Corless, Gonnet, Hare, Jeffrey, and Knuth [4].

Rewrite (1.5) as

− b
a
v exp

(
− b
a
v

)
= −

(
c

d
u

)−d/a
exp

(
c

a
u− 1− d

a
− E

a

)
,

which lies in the interval [− exp(−1), 0) for positive v. Solving this equation
for v gives

v = gk (u) gk (u) = −a
b

W
(
−k ,−

( c
d

u
)−d/a

exp
(

c
a

u − 1 − d
a
− E

a

))
,(6.1)

for k = 0, 1. Next, we determine the range of u. From

−
(
c

d
u

)−d/a
exp

(
c

a
u− 1− d

a
− E

a

)
∈ [− exp(−1), 0),

we get the inequality

− c
d
u exp

(
− c
d
u

)
≤ − exp

(
−1− E

d

)
,

which is solved to give

u ∈ [umin, umax], umin = −d
c
W

(
0,− exp

(
−1− E

d

))
,

umax = −d
c
W

(
−1,− exp

(
−1− E

d

))
.

(6.2)

Finally, substituting (6.1) into the first equation of (1.1) gives

dt =
du

u{a− b gk(u)}

for k = 0, 1. Then traveling along the lower branch described by v = g0(u)
from the point (umin, a/b), with t = t|Pw , to the point (umax, a/b), with t = t|Pe ,
in the counterclockwise direction yields

t|Pe − t|Pw =
∫ umax

umin

du

u{a− b g0(u)}
;(6.3)
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while traveling along the upper branch described by v = g1(u) from the point
(umax, a/b), with t = t|Pe , to the point (umin, a/b), with t = t|Pw , in the
counterclockwise direction yields

t|Pw − t|Pe =
∫ umin

umax

du

u{a− b g1(u)}
.(6.4)

Thus an integral representation of the period is obtained.

Theorem 6.1. The closed trajectory determined by (1.5) has the period

T (E) =
∫ umax

umin

{
1

u{a− b g0(u)}
+

−1
u{a− b g1(u)}

}
du,(6.5)

where the functions g0(u), g1(u) are given by (6.1); and two endpoints umin, umax
of the integral are defined by (6.2).

It is easy to see from gk(u) = a/b at u = umax and u = umin for k = 0, 1 that
each integrand in (6.3), (6.4) is singular at each endpoint of the integration. In
particular, it is a weak singularity of the square-root type. The phenomenon
of having a weak singularity in the integral for the period takes place even in
the linear problems.

The period depends on the energy E, and thus on initial data u0, v0. This
is different from the linearized problem.

With a splitting of the integration interval and a simple substitution, one
can reduce the integral of the period (6.5) to be of the convolution type.

Theorem 6.2. The period of the closed trajectory determined by (1.5) can
be expressed as

T (E) =
1
ad

∫ E

0
Φ
(
s

d

)
Φ
(
E − s
a

)
ds,(6.6)

where
Φ(s) = {1 +W (0,− exp(−1− s))}−1

−{1 +W (−1,− exp(−1− s))}−1.
(6.7)

Proof. A splitting of the integration interval in (6.5) yields

T =
∫ d/c

umin

{
1

u{a− b g0(u)}
+

−1
u{a− b g1(u)}

}
du+∫ umax

d/c

{
1

u{a− b g0(u)}
+

−1
u{a− b g1(u)}

}
du.
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By using properties of the functions W (−k, x) with k = 0, 1, the substitution

u(s) = −d
c
W

(
0,− exp

(
−1− s

d

))
(6.8)

gives ∫ d/c

umin

1
u{a− b g0(u)}

du =
1
ad

∫ E

0
φ3(s) ds,

∫ d/c

umin

−1
u{a− b g1(u)}

du =
1
ad

∫ E

0
φ2(s) ds;

and the substitution

u(s) = −d
c
W

(
−1,− exp

(
−1− s

d

))
(6.9)

gives ∫ umax

d/c

1
u{a− b g0(u)}

du =
1
ad

∫ E

0
φ4(s) ds,∫ umax

d/c

−1
u{a− b g1(u)}

du =
1
ad

∫ E

0
φ1(s) ds,

where φ1(s), φ2(s), φ3(s), φ4(s) are defined by

φ1(σ) =
{

1 +W
(
−1,− exp

(
−1− σ

d

))}−1
{

1 +W

(
−1,− exp

(
σ

a
− 1− E

a

))}−1

,

φ2(σ) = −
{

1 +W
(

0,− exp
(
−1− σ

d

))}−1
{

1 +W

(
−1,− exp

(
σ

a
− 1− E

a

))}−1

,

φ3(σ) =
{

1 +W
(

0,− exp
(
−1− σ

d

))}−1
{

1 +W

(
0,− exp

(
σ

a
− 1− E

a

))}−1

,

φ4(σ) = −
{

1 +W
(
−1,− exp

(
−1− σ

d

))}−1
{

1 +W

(
0,− exp

(
σ

a
− 1− E

a

))}−1

,

respectively. It then follows that

T =
1
ad

∫ E

0
{φ1(s) + φ2(s) + φ3(s) + φ4(s)} ds,

which gives (6.6).

7. Equivalence of the Integrals

As a unified treatment to the period of the periodic solution of the Lotka-
Volterra system (1.1), its integral representations known in the literature are
shown to be equivalent to ours.
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Theorem 7.1. Volterra’s integral formula (2.4) is reduced to the form
(6.5) having a = b, c = d, and C = exp(−a− d− E).

Proof. There are two steps in the proof.
Step I : Express (2.4) in terms of Lambert W functions. In terms of Lambert
W functions, we obtain

v1 = −W
(

0,−C1/a exp
(
d

a

))
, v2 = −W

(
−1,−C1/a exp

(
d

a

))
;

u1 = −W
(

0,−C1/d exp
(
a

d

))
, u2 = −W

(
−1,−C1/d exp

(
a

d

))
.

Furthermore, the segment
_
SE of the closed orbit determined by (2.2) can be

represented by u = −W (−1,−x1/d), v = −W (0,−(C/x)1/a) in the counter-

clockwise direction as x moves from exp(−d) to C exp(a); the segment
_
EN of

the closed orbit determined by (2.2) can be represented by u = −W (−1,−x1/d),
v = −W (−1,−(C/x)1/a) in the counterclockwise direction as x moves from

C exp(a) to exp(−d); the segment
_
NW of the closed orbit determined by

(2.2) can be represented by u = −W (0,−x1/d), v = −W (−1,−(C/x)1/a)
in the counterclockwise direction as x moves from exp(−d) to C exp(a); the

segment
_
WS of the closed orbit determined by (2.2) can be represented by

u = −W (0,−x1/d), v = −W (0,−(C/x)1/a) in the counterclockwise direction
as x moves from C exp(a) to exp(−d). It follows that the period (2.4) is of
the form

T = Tse + Ten + Tnw + Tws,(7.1)

where

Tse =
1
ad

∫ C exp(a)

exp(−d)

dx

x{1 +W (−1,−x1/d)}{1 +W (0,−(C/x)1/a)}
,

Ten =
1
ad

∫ exp(−d)

C exp(a)

dx

x{1 +W (−1,−x1/d)}{1 +W (−1,−(C/x)1/a)}
,

Tnw =
1
ad

∫ C exp(a)

exp(−d)

dx

x{1 +W (0,−x1/d)}{1 +W (−1,−(C/x)1/a)}
,

Tws =
1
ad

∫ exp(−d)

C exp(a)

dx

x{1 +W (0,−x1/d)}{1 +W (0,−(C/x)1/a)}
.

Step II : Apply a change of variable to each integral in (7.1) along with the
conversion between C and E. It follows from (1.5), (2.2), and the conditions
a = b, c = d that C = exp(−a− d− E). A substitution
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u = −W (−1,−x1/d) or x = {u exp(−u)}d(7.2)

having dx
(1−u)x = d

udu gives

Tse =
1
a

∫ −W (−1,− exp(−1−E/d))

1
u−1

{
1 +W

(
0,−u−d/a

× exp
(
d

a
u− 1− d

a
− E

a

))}−1
du,

and

Ten =
−1
a

∫ −W (−1,− exp(−1−E/d))

1
u−1

{
1 +W

(
−1,−u−d/a

× exp
(
d

a
u− 1− d

a
− E

a

))}−1
du;

while a substitution

u = −W (0,−x1/d) or x = {u exp(−u)}d(7.3)

having dx
(1−u)x = d

udu yields

Tnw =
1
a

∫ −W (0,− exp(−1−E/d))

1
u−1

{
1+

W

(
−1,−u−d/a exp

(
d

a
u− 1− d

a
− E

a

))}−1
du,

and

Tws =
−1
a

∫ −W (0,− exp(−1−E/d))

1
u−1

{
1+

W

(
0,−u−d/a exp

(
d

a
u− 1− d

a
− E

a

))}−1
du.

Thus, we have

Ten + Tnw =
−1
a

∫ −W (−1,− exp(−1−E/d))

−W (0,− exp(−1−E/d))
u−1

{
1+

W

(
−1,−u−d/a exp

(
d

a
u− 1− d

a
− E

a

))}−1
du,

Tws + Tse =
1
a

∫ −W (−1,− exp(−1−E/d))

−W (0,− exp(−1−E/d))
u−1

{
1+

W

(
0,−u−d/a exp

(
d

a
u− 1− d

a
− E

a

))}−1
du.

465



466 Shagi-Di Shih

This completes the proof.

It is interesting to note that the definition (2.3) used by Volterra is related
to the substitutions (7.2), (7.3) in the proof.

Theorem 7.2. Hsu’s integral formula (3.11) is reduced to (6.5) with E =
C0, b = 1, c = 1, d = 1.

Proof. The proof is similar to that for Volterra’s integral formula. First of
all, we have C0 = E by using (1.5), (3.3), and the conditions b = 1, c = 1, d = 1.
Next, in terms of Lambert W functions, we have

u∗ = −W (0,− exp(−1− E)), u∗ = −W (−1,− exp(−1− E));

F−1
1 (z) = a+ aW

(
0,− exp

(
−1 +

z

a

))
, F−1

2 (z) = a+ aW
(
−1,− exp

(
−1 +

z

a

))
;

and (3.11) becomes

T =
∫ log(−W (−1,− exp(−1−E)))

log(−W (0,− exp(−1−E)))

{{
a+ aW

(
0,− exp

(
exp(z)
a

− z

a
− 1− 1

a
− E

a

))}−1

−
{
a+ aW

(
−1,− exp

(
exp(z)
a

− z

a
− 1− 1

a
− E

a

))}−1
}
dz,

which, after using the substitution

z = log(u) or u = exp(z),(7.4)
gives

T =
∫ −W (−1,− exp(−1−E))

−W (0,− exp(−1−E))
u−1

{{
a+ aW

(
0,−u−1/a exp

(
u

a
− 1− 1

a
− E

a

))}−1

−
{
a+ aW

(
−1,−u−1/a exp

(
u

a
− 1− 1

a
− E

a

))}−1
}
du.

This completes the proof.

We make a remark here that the change of variable (3.5) used by Hsu is
related to the substitution (7.4) in the proof.

Theorem 7.3. Waldvogel’s integral formula (4.10) is reduced to the form
(6.6) having E = h, a = b, and c = d.

Proof. Note that h = E by virtue of (1.5), (4.4), and the assumed condi-
tions a = b, c = d. The definitions of G1(x) and G2(y) give

G1(x) =


√

2d{exp(x)− x− 1}, x ≥ 0;

−
√

2d{exp(x)− x− 1}, x ≤ 0;
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G2(y) =


√

2a{exp(y)− y − 1}, y ≥ 0;

−
√

2a{exp(y)− y − 1}, y ≤ 0.

In terms of Lambert W functions, g1(ξ) and g2(η) become

g1(ξ) =

 log(−W (−1,− exp(−1− ξ2

2d))), ξ ≥ 0;

log(−W (0,− exp(−1− ξ2

2d))), ≤ 0;

g2(η) =

 log(−W (−1,− exp(−1− η2

2a))), η ≥ 0;

log(−W (0,− exp(−1− η2

2a))), η ≤ 0;

along with their first derivatives

g′1(ξ) =


−ξ

d{1 +W (−1,− exp(−1− ξ2/(2d)))}
, ξ > 0;

−ξ
d{1 +W (0,− exp(−1− ξ2/(2d)))}

, ξ < 0;

g′2(η) =


−η

a{1 +W (−1,− exp(−1− η2/(2a)))}
, η > 0;

−η
a{1 +W (0,− exp(−1− η2/(2a)))}

, η < 0.

According to the positive and negative signs of cos(s) and sin(s), the integral
(4.10) is split into four parts as follows:

T =
2h
ad

∫ π/2

0

cos(s)
1 +W (−1,− exp(−1− (h/d) cos2(s)))

sin(s)
1 +W (−1,− exp(−1− (h/a) sin2(s)))

ds

+
2h
ad

∫ π

π/2

cos(s)
1 +W (0,− exp(−1− (h/d) cos2(s)))

sin(s)
1 +W (−1,− exp(−1− (h/a) sin2(s)))

ds

+
2h
ad

∫ 3π/2

π

cos(s)
1 +W (0,− exp(−1− (h/d) cos2(s)))

sin(s)
1 +W (0,− exp(−1− (h/a) sin2(s)))

ds

+
2h
ad

∫ 2π

3π/2

cos(s)
1 +W (−1,− exp(−1− (h/d) cos2(s)))

sin(s)
1 +W (0,− exp(−1− (h/a) sin2(s)))

ds,

which, after a substitution

ρ = h cos2(s)(7.5)
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in each integral, becomes

T =
−1
ad

∫ 0

h

1
1 +W (−1,− exp(−1− ρ/d))

1
1 +W (−1,− exp(−1− (h− ρ)/a))

dρ

+
−1
ad

∫ h

0

1
1 +W (0,− exp(−1− ρ/d))

1
1 +W (−1,− exp(−1− (h− ρ)/a))

dρ

+
−1
ad

∫ 0

h

1
1 +W (0,− exp(−1− ρ/d))

1
1 +W (0,− exp(−1− (h− ρ)/a))

dρ

+
−1
ad

∫ h

0

1
1 +W (−1,− exp(−1− ρ/d))

1
1 +W (0,− exp(−1− (h− ρ)/a))

dρ.

In other words, we obtain

T =
1
ad

∫ h

0
Φ(
ρ

d
)Φ(

h− ρ
a

) dρ,(7.6)

with Φ(ρ) defined by (6.7). This completes the proof.

The relation between the dependent variable u defined by (4.2) and the
integrator ρ in (7.6) is

ρ = h cos2(s) =
ξ2

2
= d{exp(x)− x− x} = d{u− log(u)− 1}(7.7)

by using (7.5), (4.9), (4.6), (4.5), and (4.1). Thus, (7.7) is equivalent to
substitutions (6.8), (6.9) used to convert (6.5) into (6.6).

Theorem 7.4. Rothe’s integral formula (5.4) is reduced to the form (6.6)
having a = b and c = d.

As shown above, Rothe’s method is not as elementary as ours in obtaining
a convolution integral for the period of the periodic solution of the Lotka-
Volterra system (1.1).
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