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GRAM-SCHMIDT PROCESS OF ORTHONORMALIZATION
IN BANACH SPACES∗

Ying-Hsiung Lin

Abstract. Gram-Schmidt orthonormalization in Banach spaces is con-
sidered. Using this orthonormalization process we can prove that if P is
a projection on a reflexive Banach space X with a basis {en; fn}, then
there exists a basis {un; gn} of X such that {gn} ≈ {fn} and the ma-
trix of P with respect to {un; gn} has the property that all but a finite
number of entries of each column and each row are zero.

1. Introduction

Hilbert spaces possess many beautiful properties which are derived from
Gram-Schmidt Process of Orthonormalization. For instances, every separable
closed subspace of a Hilbert space has an unconditional [resp. symmetric,
orthogonal, etc] basis; any closed subspace of a separable Hilbert space is
complemented; any infinite dimensional closed [complemented] subspace Y of
an infinite dimensional separable Hilbert space H is isomorphic to H; · · · It
naturally arises the question to determine Banach spaces which possess similar
properties by using Gram-Schmidt Process of Orthonormalization. In this
paper, we shall first introduce Gram-Schmidt Process of Orthonormalization
in Banach spaces. By virtue of this orthonomalization process we can prove
that if P is a projection on a reflexive Banach space X with a basis {en; fn},
then there exists a basis {un; gn} of X such that {gn} ≈ {fn} and the matrix
of P with respect to {un; gn} has the property that all but a finite number
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of entries of each column and each row are zero. This result will be used to
study projections in reflexive Banach spaces with unconditional (symmetric)
bases, in particular, to study primary Banach spaces. Recall that a Banach
space X is primary if for all projection P on X, X is isomorphic to P (X) or
(I −P )(X). For some results on primary Banach spaces, see [1, 3, 4, 5, 6 and
7].

Let {xn} be a sequence in a Banach spaceX. If there exists a sequence {fn}

in X∗ such that fi(xj) = δij =

{
0, i 6= j
1, i = j.

for all i, j in N , where δij is the

Kronecker delta, then we say that {xn; fn} is a biorthogonal system in X×X∗;
in this situation, {xn} is called a minimal sequence in X. A sequence {xn} in
X is called a (Schauder) basis for X if for every x in X, there exists a unique

sequence {an} of scalars such that x =
∞∑
n=1

anxn; or, equivalently, if {xn} is a

minimal sequence in X, then for every x in X, x =
∞∑
n=1

fn(x)xn, where {xn; fn}

is a biorthogonal system in X × X∗. Hence {fn} is unique. We sometimes
call {fn} the coordinate (or biorthogonal , or coefficient) functionals with
respect to {xn}. For convenience, we also call {xn; fn} a basis for X. Other
notions concerning bases can be seen in [14], [15] and [16]. By a sequence
in N we mean an increasing sequence of positive integers unless otherwise
stated. Let {xn} and {yn} be bases of Banach spaces X and Y, respectively.
Then {xn} ≈ {yn} denotes that the bases {xn} and {yn} are equivalent; that
is, there is an isomorphism U from X onto Y such that Uxn = yn (n ∈
N). The (closed linear) subspace spanned by the sequence {xn} is denoted
by [x1, x2, . . . , xn, . . .], or [{xn}], or simply [xn]. Throughout this paper, all
subspaces are closed linear subspaces, and all operators are bounded linear
operators unless specifically noted.

2. Gram-Schmidt Process of Orthonormalization

Let us characterize a linearly independent sequence in a Banach space X
as follows:

Proposition 2.1. Let {xn} be a (finite or infinite) sequence in X. Then
the following are equivalent:

(a) {xn} is linearly independent.

(b) There exists a sequence {fn} in X∗ such that
f1(x1) 6= 0; f2(x1) = 0, f2(x2) 6= 0; f3(x1) = f3(x2) = 0, f3(x3) 6= 0;

f4(x1) = f4(x2) = f4(x3) = 0, f4(x4) 6= 0; . . . .
(1)
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(c) There exists a sequence {fn} in X∗ such that

f1(x1) 6= 0,

∣∣∣∣∣ f1(x1) f2(x1)
f1(x2) f2(x2)

∣∣∣∣∣ 6= 0,

∣∣∣∣∣∣∣
f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
f1(x3) f2(x3) f3(x3)

∣∣∣∣∣∣∣ 6= 0, . . . .(2)

Proof. “(a) ⇒ (b)”. If {xn} is linearly independent, then x1 6= 0. Hence
by Hahn-Banach Theorem, there exists f1 ∈ X∗ such that f1(x1) 6= 0. By
the linear independence of {xn}, we have x2 6∈ [x1]. Hence by Hahn-Banach
Theorem again, there exists f2 ∈ X∗ such that f2(x1) = 0 and f2(x2) 6= 0.
Similarly, by the linear independence of {xn}, we have x3 6∈ [x1, x2].
Hence by Hahn-Banach Theorem again, there exists f3 ∈ X∗ such that f3(x1) =
f3(x2) = 0 and f3(x3) 6= 0; · · ·

“(b)⇒ (c)” is obvious.
“(c) ⇒ (a)”. Assume that condition (c) holds. Suppose that {xn} is

linearly dependent. Then there exists n ∈ N such that {x1, x2, ..., xn} is
linearly dependent. Thus there are scalars α1, α2, ..., αn, not all zero, such
that α1x1 + α2x2 + · · ·+ αnxn = 0. Let k be the largest positive integer such
that αk 6= 0. Then xk = −1

αk
[α1x1 + α2x2 + · · ·+ αk−1xk−1].

Thus the determinant∣∣∣∣∣∣∣∣∣∣
f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
...

. . .
...

f1(xk) f2(xk) · · · fk(xk)

∣∣∣∣∣∣∣∣∣∣
= 0,

which is absurd. q.e.d
Now we consider the Gram-Schmidt orthonormalization process as follows:

Let {xn} be a (finite or infinite) linearly independent sequence in X and let
{fn} in X∗ such that (1) holds. Define

x(1)
n = xn −

f1(xn)
f1(x1)

x1 for n ∈ N.

Then

x
(1)
n =

∣∣∣∣∣ f1(x1) x1
f1(xn) xn

∣∣∣∣∣
f1(x1) and f1(x(1)

n ) = 0 for all n in N ; f2(x1) = 0, and

f2(x(1)
2 ) =

∣∣∣∣∣ f1(x1) f2(x1)
f1(x2) f2(x2)

∣∣∣∣∣
f1(x1)

= f2(x2) 6= 0.

Moreover, for n ∈ N and all f ∈ X∗ the determinant
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∣∣∣∣∣∣∣
f1(x1) f2(x1) f(x1)
f1(x2) f2(x2) f(x2)
f1(xn) f2(xn) f(xn)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
f1(x1) f2(x1) f(x1)

0 f2(x2)− f1(x2)
f1(x1)f2(x1) f(x2)− f1(x2)

f1(x1)f(x1)

0 f2(xn)− f1(xn)
f1(x1) f2(x1) f(xn)− f1(xn)

f1(x1) f(x1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
f1(x1) f2(x1) f(x1)

0 f2(x(1)
2 ) f(x(1)

2 )
0 f2(x(1)

n ) f(x(1)
n )

∣∣∣∣∣∣∣

(3)

Define x(2)
n = x

(1)
n − f2(x(1)

n )
f2(x(1)

2 )
x

(1)
2 for n ∈ N. Then f2(x(2)

n ) = 0 for all n in

N; f3(x1) = f3(x2) = 0, and for n ∈ N and all f ∈ X∗,

f(x(2)
n ) =

∣∣∣∣∣ f2(x(1)
2 ) f(x(1)

2 )
f2(x(1)

n ) f(x(1)
n )

∣∣∣∣∣
f2(x(1)

2 )
=

f1(x1)

∣∣∣∣∣ f2(x(1)
2 ) f(x(1)

2 )
f2(x(1)

n ) f(x(1)
n )

∣∣∣∣∣
f1(x1)f2(x(1)

2 )

=

∣∣∣∣∣∣∣
f1(x1) f2(x1) f(x1)
f1(x2) f2(x2) f(x2)
f1(xn) f2(xn) f(xn)

∣∣∣∣∣∣∣
f1(x1)f2(x(1)

2 )
(from (3)) .

Hence

x(2)
n =

∣∣∣∣∣∣∣
f1(x1) f2(x1) x1
f1(x2) f2(x2) x2
f1(xn) f2(xn) xn

∣∣∣∣∣∣∣
f1(x1)f2(x(1)

2 )
for n in N.

Thus

f3(x(2)
3 ) =

∣∣∣∣∣∣∣
f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
f1(x3) f2(x3) f3(x3)

∣∣∣∣∣∣∣
f1(x1)f2(x(1)

2 )
= f3(x3) 6= 0 (from (1) and f1(x1) 6= 0,

f2(x(1)
2 ) = f2(x2) 6= 0) .
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Also f3(x(1)
2 ) =

∣∣∣∣∣ f1(x1) f3(x1)
f1(x2) f3(x2)

∣∣∣∣∣
f1(x1) = f3(x2) = 0. And fj(x

(2)
n ) = 0 for j = 1, 2

and n ∈ N .
By induction, define

x(k)
n = x(k−1)

n − fk(x
(k−1)
n )

fk(x
(k−1)
k )

x
(k−1)
k for n ∈ N,

provided that x(k−1)
n is defined and k ∈ N , with fk(x1) = · · · = fk(x

(k−2)
k−1 ) = 0

and fk(x
(k−1)
k ) = fk(xk) 6= 0. Then fk(x

(k)
n ) = 0 for n ∈ N ; fk(x1) = fk(x2) =

· · · = fk(xk−1) = 0; and

x(k)
n =

∣∣∣∣∣∣∣∣∣
f1(x1) · · · fk(x1) x1
· · · · · · · · · · · ·

f1(xk) · · · fk(xk) xk
f1(xn) · · · fk(xn) xn

∣∣∣∣∣∣∣∣∣
f1(x1)f2(x(1)

2 ) · · · fk(x
(k−1)
k )

.(4)

Hence

fk+1(x(k)
k+1) =

∣∣∣∣∣∣∣∣∣
f1(x1) · · · fk(x1) fk+1(x1)
· · · · · · · · · · · ·

f1(xk) · · · fk(xk) fk+1(xk)
f1(xk+1) · · · fk(xk+1) fk+1(xk+1)

∣∣∣∣∣∣∣∣∣
f1(x1)f2(x(1)

2 ) · · · fk(x
(k−1)
k )

= fk+1(xk+1) 6= 0

(5)

(from (1); and f2(x(1)
2 ) = f2(x2), . . . , fk(x

(k−1)
k ) = fk(xk)) and fj(x

(k)
n ) = 0 for

1 ≤ j ≤ k and n ∈ N .

Therefore f1(x1) 6= 0, f1(x(1)
2 ) = f1(x(2)

3 ) = · · · = 0; f2(x1) = 0, f2(x(1)
2 ) 6=

0, f2(x(2)
3 ) = f2(x(3)

4 ) = · · · = 0 and f3(x1) = f3(x(1)
2 ) = 0, f3(x(2)

3 ) 6=
0, f3(x(3)

4 ) = f3(x(4)
5 ) = · · · = 0; · · · (from (1), (4), (5),. . . ). Note: it is easily

seen that [x1] = [x1], [x1, x
(1)
2 ] = [x1, x2], [x1, x

(1)
2 , x

(2)
3 ] = [x1, x2, x3], . . . .

Consequently, we get a generalized Gram-Schmidt process for orthonor-
malizing the linearly independent sequence {x1, x2, . . .} in X as follows:

Let

y1 =
x1

f1(x1)
; yn =

x
(n−1)
n

fn(x(n−1)
n )

for n > 1.

Then {yn; fn} is a minimal sequence in X.
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Remark. Let {xn} be a (finite or infinite) linearly independent sequence
in X and let {fn} in X∗ such that (2) holds. Then by the same way as above
we can get a minimal sequence {yn; gn} derived from {xn; fn}. But {yn; fn}
may not be a minimal sequence in general.

3. Reduction of the Matrices of Projections on Reflexive

Banach Spaces with a Basis.

Let X be a reflexive Banach space with a basis {en; fn}. One application
of the generalized Gram-Schmidt Process of Orthonormalization is to reduce
the matrices of projections on X relative to {en; fn}. Let P be an operator
on X. Set aij = fj(P (ei)) for all i, j in N . Then the matrix [aij ] is called
the matrix of P with respect to {en; fn}. The column vector [a1j , a2j , · · ·]>
is called the j − th column of the matrix, and the row vector [ai1, ai2, · · ·] is
called the i− th row of the matrix.

We first show by induction on k that there are three increasing (finite or
infinite) sequences {rk}, {pk}, {nk} of positive integers, and {e(k)

i } in X, {a(k)
ij }

in R (k = 0, 1, 2 · · ·) (i, j ∈ N) given by
e

(0)
i = ei and

e
(k)
i = e

(k−1)
i −

a
(k−1)
i,rk

a
(k−1)
pk,rk

e
(k−1)
pk for k ≥ 1

for each i ∈ N , where

a
(0)
ij = aij and

a
(k)
ij = fj(P (e(k)

i )) for k ≥ 1 and all i, j ∈ N such that

(i) r1 is the smallest positive integer so that ai,r1 6= 0 for some i ∈ N ; p1 is
a positive integer so that ap1,r1 6= 0; n1 is an integer such that p1 < n1. Next,
define

e
(1)
i = ei −

ai,r1
ap1,r1

ep1 ,

and then a
(1)
ij = fj(P (e(1)

i )) = aij −
ai,r1
ap1,r1

ap1,j (i, j, k ∈ N).

(ii) rk is the smallest positive integer so that a(k−1)
i,rk

= frk(P (e(k−1)
i )) 6= 0

for some i ≥ nk−1; pk is a positive integer so that a(k−1)
pk,rk 6= 0 and pk ≥ nk−1;

nk is an integer such that pk < nk; provided that rk−1, pk−1, nk−1, e
(k−1)
i and

a
(k−1)
ij are defined and rk exists.
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Next, define

e
(k)
i = e

(k−1)
i −

a
(k−1)
i,rk

a
(k−1)
pk,rk

e
(k−1)
pk ,

and then a
(k)
ij = fj(P (e(k)

i )) = a
(k−1)
ij −

a
(k−1)
i,rk

a
(k−1)
pk,rk

a
(k−1)
pk,j

(i, j ∈ N).

Lemma 3.1. (a) If dim P(X)< ∞, then {ri} is a finite sequence, say
{ri}ki=1; and a

(k)
ij = fj(P (e(k)

i )) = 0 for all j ∈ N and i ≥ nk; and hence

P (e(k)
i ) = 0 for i ≥ nk. In this case, {e1, e2, . . . , en1−1; e(1)

n1 , e
(1)
n1+1, . . . , e(1)

n2−1; . . . ;

e
(k−1)
nk−1 , e

(k−1)
nk−1+1, . . . , e(k−1)

nk−1 ; e(k)
nk , e

(k)
nk+1, . . . , e(k)

m , . . .} is a basis. Let {un; gn} de-
note this basis. Then gn = fn for n 6∈ {p1, p2, . . . , pk}. Hence {gn} ≈ {fn}.
And P (ui) = 0 for i ≥ nk.

(b) If dim P(X)=∞, then {rn} is an infinite sequence in N; and fj(P (e(k)
i ))

= 0 for 1 ≤ j < rk+1 and i ≥ nk (see Remark (2) and Note below and by the
definition of rn), where n0 = 1.

(c) If P(em) = 0, then e
(n)
m = em for all n ∈ N .

Remark. (1) For every k, we first define rk, next pk and then nk. (2) We
easily derive from(4) that

a
(k)
ij =

∣∣∣∣∣∣∣∣∣
ap1,r1 · · · ap1,rk ap1,j

· · · · · · · · · · · ·
apk,r1 · · · apk,rk apk,j
ai,r1 · · · ai,rk ai,j

∣∣∣∣∣∣∣∣∣
ap1,r1 · a

(1)
p1,r2 · · · a

(k−1)
pk,rk

(6)

if a(k)
ij and e

(k)
i exist.

Note: By (4), (6) and Proposition 2.1, it is easy to prove that {P (epn)} is a lin-
early independent sequence in X and {frn} is a sequence in X∗ corresponding
to {P (epn)}, satisfying (2) in Proposition 2.1. And {P (e(k)

n )} is derived from
{P (epn)} by the generalized Gram-Schmidt process of orthonormalization.

Lemma 3.2. Under the same assumptions of Lemma 3.1, let {aij}, {ri},
{pi}, {ni}, {e(k)

i } and {a(k)
ij } be defined as in Lemma 3.1. Then for each j ∈ N ,

we have
∞∑
i=1

a
(k−1)
ij fi converges in norm to an element in [P ∗fr1 , . . . , P ∗frk−1 , P

∗fj ].

In particular,
∞∑
i=1

Ak(i)fi converges in norm to an element in [P ∗fr1 , . . . , P ∗frk−1 ,

423
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P ∗frk ] (k ∈ n), where

Ak(i) =
a

(k−1)
i,rk

a
(k−1)
pk,rk

(i, k ∈ N).

Proof. Since P ∗fj =
∞∑
i=1

(P ∗fj(ei))fi =
∞∑
i=1

aijfi converges in norm in X∗

for every j ∈ N , it follows that the lemma holds for k = 1. Assume that
∞∑
i=1

a
(k−1)
ij fi ∈ [P ∗fr1 , . . . , P ∗frk−1 , P

∗fj ] for each j ∈ N . Then

∞∑
i=1

a
(k)
ij fi =

∞∑
i=1

a(k−1)
ij −

a
(k−1)
pk,j

a
(k−1)
pk,rk

a
(k−1)
i,rk

 fi
=

∞∑
i=1

a
(k−1)
ij fi −

a
(k−1)
pk,j

a
(k−1)
pk,rk

∞∑
i=1

a
(k−1)
i,rk

fi

converges in norm to an element in [P ∗fr1 , . . . , P ∗frk , P
∗fj ] for j ∈ N . This

completes the proof. q.e.d.

Remarks. (1) For each i, k ∈ N , we have

e
(k)
i = ei −

ai,r1
ap1,r1

ep1 − · · · −
a

(k−1)
i,rk

a
(k−1)
pk,rk

e(k−1)
pk

.

(2) For each i, j, k ∈ N , we have

a
(k)
ij = aij −

ai,r1
ap1,r1

ap1,j − · · · −
a

(k−1)
i,rk

a
(k−1)
pk,rk

a
(k−1)
pk,j

.

(2) is a direct consequence of (1), the fact a(k)
ij = fj(P (e(k)

i )) and the
definition of aij . Hence it suffices to prove (1) as follows:

It is obvious that (1) holds for k = 1 from the definition of e(1)
i . Assume

that (1) holds for k. Then

e
(k+1)
i = e

(k)
i −

a
(k)
i,rk+1

a
(k)
pk+1,rk+1

e(k)
pk+1

= ei −
ai,r1
ap1,r1

ep1 − · · · −
a

(k−1)
i,rk

a
(k−1)
pk,rk

e(k−1)
pk

−
a

(k)
i,rk+1

a
(k)
pk+1,rk+1

e(k)
pk+1
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also holds for k+ 1. Thus (1) follows by induction. q.e.d.

Theorem 3.3. Let P be a projection on a reflexive Banach space X with
a basis {en; fn}. Then there is a basis {un; gn} of X such that {gn} ≈ {fn}
and the matrix of P with respect to {un} possesses the property that all but a
finite number of entries of each column are zero. If {en} is an unconditional
[resp. symmetric] basis for X, so is {un}. If P (ek) = 0, then uk = ek.

Proof. If dim P (X) < ∞, then by Lemma 3.1 (a) there exists a basis
{un; gn} for X such that {gn} ≈ {fn}, and the matrix of P with respect to
{un} has the required property. Also, if P (ek) = 0, then uk = e

(n)
k = ek for

some n ≤ k. Since {gn} ≈ {fn} and X is reflexive, it is clear that {un} has the
required properties in this case. Hence we may assume that dim P (X) = ∞.

By Lemma 3.2, we have
∞∑
i=1

Ak(i)fi converges in norm in X∗ for each k ∈ N .

Thus we may let n1 be the smallest positive integer such that n1 > p1 and

‖
∞∑
i=m

A1(i)fi‖ ‖ep1‖ <
1
22 for m ≥ n1.

Similarly, for k > 1, by Lemma 3.2,
∞∑
i=1

An(i)fi converges in X∗ for 1 ≤ n ≤ k.

Hence we may let nk be the smallest positive integer such that nk > pk and

‖
∞∑
i=m

An(i)fi‖max(‖e(n−1)
pn ‖, ‖epn‖) <

1
2k
· 1

2n
(7)

for 1 ≤ n ≤ k, and all m ≥ nk.

Define

{
un = en, for 1 ≤ n < n1 and
un = e

(k)
n , for nk ≤ n < nk+1 (k ∈ N).

We claim that {un} is a basis of X. Let x ∈ X. Put

an =


fn(x), for n ∈ N − {p1, p2, . . .},
fpk(x) +

∞∑
i=nk

Ak(i)fi(x) for n = pk with some k ∈ N.

Then we have two possibilities:

Case 1. If nk ≤ n < pk+1, then

425
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n∑
i=1

aiui =
n1−1∑
i=1

aiui +
n2−1∑
i=n1

aiui + · · ·+
nk−1∑
i=nk−1

aiui +
n∑

i=nk

aiui

=
n1−1∑
i=1

fi(x)ei +
∞∑
i=n1

((
ai,r1
ap1,r1

)
fi(x)

)
ep1

+
n2−1∑
i=n1

fi(x)e(1)
i +

∞∑
i=n2

 a
(1)
i,r2

a
(1)
p2,r2

 fi(x)

 e(1)
p2

+ · · ·

+
nk−1∑
i=nk−1

fi(x)e(k−1)
i +

∞∑
i=nk

a(k−1)
i,rk

a
(k−1)
pk,rk

 fi(x)

 e(k−1)
pk

+
n∑

i=nk

fi(x)e(k)
i

=
n1−1∑
i=1

fi(x)ei +
n∑

i=n1

(A1(i)fi(x))ep1 +
∞∑

i=n+1

(A1(i)fi(x))ep1

+
n2−1∑
i=n1

fi(x)(ei −A1(i)ep1) +
n∑

i=n2

(A2(i)fi(x))e(1)
p2

+
∞∑

i=n+1

(A2(i)fi(x))e(1)
p2

+
n3−1∑
i=n2

fi(x)(ei −A1(i)ep1 −A2(i)e(1)
p2

)

+
n∑

i=n3

(A3(i)fi(x))e(2)
p3

+
∞∑

i=n+1

(A3(i)fi(x))e(2)
p3

+ · · ·

+
nk−1∑
i=nk−1

fi(x)(ei −A1(i)ep1 −A2(i)e(1)
p2
− · · · −Ak−1(i)e(k−2)

pk−1
)

+
n∑

i=nk

(Ak(i)fi(x))e(k−1)
pk

+
∞∑

i=n+1

(Ak(i)fi(x))e(k−1)
pk

+
n∑

i=nk

fi(x)(ei −A1(i)ep1 −A2(i)e(1)
p2
− · · · −Ak(i)e(k−1)

pk
)

=
n∑

i=nk

fi(x)ei +
k∑
j=1

∞∑
i=n+1

Aj(i)fi(x)e(j−1)
pj .

(Note: By Remark (1) of Lemma 3.2, e(1)
i = ei−A1(i)ep1 , e

(k)
i = ei−A1(i)ep1−

A2(i)e(1)
p2 − · · · −Ak(i)e

(k−1)
pk for k > 1. )
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Thus

‖
n∑
i=1

aiui −
n∑
i=1

fi(x)ei ‖≤
k∑
j=1

‖
∞∑

i=n+1

Aj(i)fi ‖ ‖ e(j−1)
pj ‖ ‖ x ‖

<
k∑
j=1

(
1
2k

)
1
2j
‖ x ‖ (from (7))

<
1
2k
‖ x ‖< 1

k
‖ x ‖ .

Case 2. If pk+1 ≤ n < nk+1, then

n∑
i=1

aiui =
n1−1∑
i=1

aiui +
n2−1∑
i=n1

aiui + · · ·+
nk−1∑
i=nk−1

aiui +
n∑

i=nk

aiui

=
n1−1∑
i=1

fi(x)ei +
∞∑
i=n1

(A1(i)fi(x))ep1

+
n2−1∑
i=n1

fi(x)e(1)
i +

∞∑
i=n2

(A2(i)fi(x))e(1)
p2

+ · · ·

+
nk−1∑
i=nk−1

fi(x)e(k−1)
i +

∞∑
i=nk

(Ak(i)fi(x))e(k−1)
pk

+
n∑

i=nk

fi(x)e(k)
i +

∞∑
i=nk+1

(Ak+1(i)fi(x))e(k)
pk+1

.

Hence as in Case 1, we deduce that

n∑
i=1

aiui =
n∑
i=1

fi(x)ei +
k∑
j=1

∞∑
i=n+1

(Aj(i)fi(x))e(j−1)
pj

+
∞∑

i=nk+1

(Ak+1(i)fi(x))e(k)
pk+1

, and whence

‖
n∑
i=1

aiui −
n∑
i=1

fi(x)ei‖ ≤
k∑
j=1

‖
∞∑

i=n+1

Aj(i)fi‖ ‖e(j−1)
pj ‖ ‖x‖

+‖
∞∑

i=nk+1

Ak+1(i)fi‖ ‖e(k)
pk+1
‖ ‖x‖

<
k∑
j=1

1
2k

2−j‖x‖+
1

2(k + 1)
2−(k+1)‖x‖

<

(
1
2k

+
1
2k

)
‖x‖ = 1

k‖x‖.
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Combining both cases, we have

‖
n∑
i=1

aiui −
n∑
i=1

fi(x)ei‖ <
1
k
‖x‖ for nk ≤ n < nk+1 (k ∈ N).

Now if ε > 0 is given, then there exist N1, k0 ∈ N (independent of k) such
that

1
ko
‖x‖ < ε

2
and ‖x−

n∑
i=1

fi(x)ei‖ <
ε

2
for n ≥ N1.

Take No = max{nko, N1}. Then No is independent of k and if n ≥ No

with nk ≤ n < nk+1 for some k ∈ N , then k ≥ ko, whence

‖x−
n∑
i=1

aiui‖ ≤ ‖x−
n∑
i=1

fi(x)ei‖+ ‖
n∑
i=1

fi(x)ei −
n∑
i=1

aiui‖

<
ε

2
+

1
k
‖x‖ ≤ ε

2
+

1
ko
‖x‖

< ε, if n ≥ No.

This implies that for every x ∈ X, there is a sequence {ai} of scalars such that

x =
∞∑
i=1

aiui.

Moreover, it is easy to verify that {ui; gi} is a birothogonal system, where
{gn} is defined by

gn =


fn for n ∈ N − {p1, p2, . . .},

fpk +
∞∑
i=nk

Ak(i)fi for n = pk with some k ∈ N.

This proves that {un; gn} is a basis for X.
By Lemma 3.1 (b),

fj(P (ui)) = 0 for i ≥ 1 and 1 ≤ j < r1;
fj(P (ui)) = 0 for i ≥ n1 and 1 ≤ j < r2;
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fj(P (ui)) = 0 for i ≥ nk−1 and 1 ≤ j < rk; · · ·

(8)

Let bij = gj(P (ui)) (i, j ∈ N). It remains to prove that for each j ∈ N ,
bij = 0 for all but a finite number of indices i. Let j ∈ N . Then there exists
k ∈ N such that rk−1 ≤ j < rk.

1o If j 6∈ {p1, p2, · · ·}, then it follows from (8) and the definition of gj that
bij = gj(p(ui)) = fj(p(ui)) = 0 for i ≥ nk−1.
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2o Suppose j = pm for some m ∈ N . By the definition of gpm , we have

gj = gpm = fpm +
∞∑

i=nm
Am(i)fi = Am(pm)fpm +

∞∑
i=nm

Am(i)fi.

Since
∞∑
i=1

Am(i)fi ∈ [P ∗fr1 , . . . , P ∗frm ], we have
∞∑
i=1

Am(i) fi =
m∑
n=1

αnP
∗frn

for some scalars α
′
s. Thus from (8) we have( ∞∑

i=1

Am(i)fi)(P (ut)

)
=

(
m∑
n=1

αnP
∗frn

)
(P (ut))

m∑
n=1

αnP
∗frn(P (ut))

=
m∑
n=1

αnfrn(P (ut)) (for P is a projection)

= 0 for t ≥ nm;

that is, nm−1∑
i=1
i 6=pm

Am(i)fi + gpm

 (P (ut)) = 0 for t ≥ nm.(9)

But rnm ≥ nm > nm − 1. Thus by (8) we get

fi(P (ut)) = 0 for 1 ≤ i ≤ nm − 1 < rnm and t ≥ nnm − 1.(10)

Take η(m) = max{nm, nnm−1}. Then η(m) is increasing on m. From (9)
and (10) we have

gpm(P (ut)) = 0 for t ≥ η(m).

This implies that bi,pm = 0 for i ≥ η(m). Hence from both cases we prove that
the matrix of P with respect to {un} has the property that every column has
at most finitely many nonzero entries.

Since by (7) and the defintion of gn, we have

∞∑
n=1
‖gn − fn‖ ‖en‖ =

∞∑
k=1

‖
∞∑
i=nk

Ak(i)fi‖ ‖epk‖

<
∞∑
k=1

1
2k

2(−k) < 1,

by the stability theorem ([15], Theorem 10.2, p. 95), {gn} is a basis of X∗ and
{gn} ≈ {fn}. Suppose {en} is an unconditional [resp. symmetric] basis for
X, by ([15], Theorem 17.7, p. 524 & Proposition 22.5, p. 595) we have {fn}
is also an unconditional [resp. symmetric] basis for X∗. But {gn} ≈ {fn}.
Thus {gn} is an unconditional [resp. symmetric] basis of X∗. Since X is
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reflexive, we have {un} is an unconditional [resp.symmetric] basis of X (from
[15], Theorem 17.7, p. 524 & Proposition 22.5, p. 595 again).

From Lemma 3.1(c) we can easily prove that if P (ek) = 0, then uk = e
(i)
k =

ek (for some i). Hence we complete the proof of Theorem 3.3 q.e.d.

Remarks. (1) Theorem 3.3 can be improved such that the matrix of P
with respect to {un} possesses the property that all but a finite number of
entries of each column and each row are zero.

(2) Although all Banach spaces discussed in this paper are reflexive, our
technique also applies for non-reflexive Banach spaces. In fact, we can obtain
the same results in a similar manner if the underlying Banach space is only
assumed to have a shrinking basis. We also note that all bases of a reflexive
Banach space are shrinking. For further development in this line, readers are
refered to [13].
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