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TAYLOR EXPANSION FOR AN ANALYTIC HYPERSURFACE IN RN

Jyotshana V. Prajapat

Abstract. Here we obtain a Taylor’s expansion of the function ρ(x, r) =
|B(x,r)|

|B(x,r)∩Ω| for r small and x ∈ ∂Ω where the boundary of domain Ω is
assumed to be analytic. The coefficients are expressed as recurrence relation
and it is proved yhat the series is odd.

1. INTRODUCTION

Related to series of work on stationary isothermic surfaces and hot spots in
[4-7], R. Magnanini and S. Sakaguchi obtained a simple geometric/measure theo-
retic characterization for stationary isothermic hypersurfaces. Precisely, let Γ be an
oriented hypersurface in R

N and for x ∈ Γ, r > 0, define functions

ρ(x, r) =
|B(x, r) ∩ Ω|
|B(x, r)|(1.1)

σ(x, r) =
|∂B(x, r) ∩ Ω|
|∂B(x, r)|(1.2)

where Ω is the domain on one of the two sides of the surface Γ and |.| is the
Lebesgue measure. It was proved in [3] that Γ is a stationary isothermic surface
if and only if ρ(x, r)(or σ(x, r)) is constant (depending only on r) at all points
x ∈ Γ and for all 0 < r < ∞. Observe that the condition that ρ(x, r) is constant is
equivalent to σ(x, r) is constant (for a.e. r).

Restricting r to vary in (0, r0) for r0 small, assuming ρ(x, r) is constant de-
pending only on r, gave astonishing geometric results for Γ:

(i) firstly, this condition implied that Γ must be smooth;
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(ii) for dimensions N ≥ 2, if Γ is compact, then it is necessarily a sphere in
R

N ;
(iii) for dimension N=3, Γ is either a sphere or a spherical cylinder or a minimal

surface.

Proofs of the above results and other related results can be found in [3]. The
classifications (ii) and (iii) above were arrived at by writing down the Taylor’s
expansion for the functions ρ(x, r) and σ(x, r) in r and comparing them at two
different points.

The quantity meas(B(x, r) ∩ Ω) has been studied in different contexts. For
example, related to the isoperimetric inequality in [10], a problem of Cimino in [9]
and Besicovitch conjecture in [2], to mention a few of them.

The problem of Cimino is to classify all minimal surfaces S in R
3 with the

property that ρ(x, r) = 1
2 for every x ∈ S, r > 0 and B(x, r) is a ball in R

3 with
the center x on S. G. Cimino [1] was first to characterize the mean curvature H(x)
at a point x on a surface as the limit

(1.3) H(x) = lim
r→0

(1/2− σ(x, r))
r

.

Nitsche [8], pp.60 is a good reference where one can find above definition as well
as Taylor’s expansion for σ(0, r) upto order 3. The Taylor expansion given in [8]
involved the mean curvature function and its derivatives. In [9], Nitsche used it to
prove that the plane and the right helicoid are the only (minimal) surfaces in R

3

such that ρ ≡ 1/2.
Similar expansion in lower order terms was also used by Preiss and Kowalski in

[2] to classify manifolds which satisfy “local Besicovitch property” i.e., to classify
smooth n dimensional submanifolds M ⊂ R

k (n ≤ k) with the property

(1.4) V ol(B(x, r)∩M) = αnrn for each x ∈ M each sufficiently small r > 0.

Here, B(x, r) is the k-dimensional open ball in Rk with center x and radius r > 0
and αn is the n-dimensional volume of a unit ball in R

n. See [2] for more details.
I wish to thank Prof. Gursky for informing me this reference.

Due to its varied applications in different fields, as seen from [9, 2] and [3], it is
important to have the expression for the complete Taylor expansion for σ(x, r). Here,
the coefficients of σ(x, r) are given by recurrence relations. In special situations of
[9, 3, 2], these coefficients can be expressed as polynomials with principal curvatures
of the hypersurface as variables. While using mathematica or maple it can be verified
that the even terms of the series vanish, I give below a simple proof of the same
using induction argument, proving that the Taylor series expansion for σ(x, r) is
odd.
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2. TAYLOR’S EXPANSION

Taylor’s expansion for the density function ρ(x, r) and σ(x, r) upto order 3
have already been obtained in [3]. We proceed as described in [3] to write down
the complete series. For the sake of completeness and to fix the notations we will
repeat some of the proofs already mentioned therein. We begin by the following
general lemma( Lemma 5.1 in [3]):

Lemma 2.1. Let the function

(2.1) θ(r) =
∞∑

n=1

θnrn

be analytic in a neighbourhood of r = 0. Then the function A k(r) = fk(θ(r))
where

(2.2) fk(θ) :=
∫ θ

0
cosk s ds; k = 0, 1, 2, . . . ,

is analytic in a neighbourhood of r = 0 and we have that

(2.3) Ak(r) =
∞∑

n=1

Ak(n)rn,

where

(2.4) Ak(n) =
n∑

m=1

f
(m)
k

m!
αm,n, n ∈ N

and
α1,n = θn, n ∈ N(2.5)

αm,n =
∑

i1+···+im=n

θi1 · · ·θim , 1 ≤ m ≤ n, n ∈ N.(2.6)

Proof. Since fk(0) = 0 we have Taylor’s expansion

(2.7) fk(θ) =
∞∑

m=1

f
(m)
k (0)
m!

θm.

Using

θ(r)m =
∞∑

i1=1

· · ·
∞∑

im=1

θi1 · · ·θimri1+···+im

=
∞∑

n=m

(
∑

i1+···im=n

θi1 · · ·θim)rn

=
∞∑

n=m

αm,nrn
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and inserting θ = θ(r) in (2.7) we get

Ak(r) =
∞∑

m=1

f
(m)
k

m!
(

∞∑
n=m

αm,nrn)

=
∞∑

n=1

(
n∑

m=1

f
(m)
k

m!
αm,n)rn.

Note that we do not need to assume that Γ is oriented, since for p ∈ Γ and r

sufficiently small, the sphere (in R
N ) centered at p and with radius r will intersect

the surface in a closed curve which will divide the sphere into two parts. We need to
make choice of normal in a local neighbourhood. Moreover, since the computations
are local, we may without loss of generality assume that the hypersurface Γ is the
boundary ∂Ω of a domain Ω in R

N . Also, to be able to write the entire series, we
need to assume that the ∂Ω can be represented locally as a graph of an analytic
function.

The Taylor’s expansion for the functions ρ(x, r) and σ(x, r) in r, for r close
to 0 will be obtained by writing the surface ∂Ω in terms of two different local
parameterizations. First, for x ∈ ∂Ω, let Tx(∂Ω) denote that tangent space at x and
ν denote the unit normal vector to ∂Ω at x. For fixed v ∈ Tx(∂Ω) with |v| = 1, let
πx(v, ν) denote the plane through x spanned by the vectors v and ν. Also, assume
that for r > 0 sufficiently small, each point z ∈ Ω ∩ B(x, r) can be parameterized
in spherical coordinates as

(2.8)
z = x + ρ cosφv + ρ sinφν

v ∈ Tx(∂Ω) ∩ SN−2, θ(ρ, v) ≤ φ ≤ π

2
, 0 ≤ ρ ≤ r

}

where for fixed v ∈ Tx(∂Ω)∩SN−2, θ(ρ, v) parameterizes the curve ∂Ω∩πx(v, ν)
in polar coordinates. In the following, for sake of simplicity of notation, we will
omit dependence of θ on x. Also, θ

(n)
r (r, v) denotes the n-th partial derivative with

respect to the variable r.
For the second parameterization, we assume that ∂Ω is the graph of an analytic

function ϕ : B ⊂ R
N−1 → R in a neighbourhood of point x ∈ ∂Ω. Thus, without

loss of generality, supposing that x is origin and denoting the elements of RN−1

by y = (y1, . . . , yN−1), we have the tangent plane Tx∂Ω at X coincides with
the hyperplane yN = 0. We may further assume ϕ(0) = 0 and ∇ϕ(0) = 0. In
this neighbourhood, ∂Ω can be represented by the equation yN = ϕ(y). For the
multi-index i = (i1, . . . , iN−1), denoting

|i| = i1 + i2 + . . . + iN−1; i! = i1! · · · iN−1!,

yi : = yi1
1 · · ·yiN−1

N−1 , for y ∈ R
N−1

Diϕ = ∂i1
y1
· · ·∂iN−1

yN−1ϕ,
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the Taylor’s expansion of ϕ around the origin is given by

(2.9) ϕ(y) =
∞∑

n=2

Pn(y) where Pn(y) =
∑
|i|=n

Diϕ(0)
i!

yi, n = 0, 1, 2, . . . .

Let ωN denote the volume of unit sphere in R
N . We have

Theorem 2.2. Suppose that ∂Ω is analytic in a neighbourhood of a point
x ∈ ∂Ω and let the function θ(ρ, v) parameterize ∂Ω as specified in (2.8) in
neighbourhood of x. Then the functions σ(x, r) and ρ(x, r) defined in (1.2) and
(1.1) respectively, admit the following Taylor series expansions:

(2.10) σ(x, r) =
1
2

+
∞∑

n=1

σn(x)rn

and

(2.11) ρ(x, r) =
1
2

+
∞∑

n=1

N

N + n
σn(x)rn

where

(2.12) σn(x) = − 1
ωN

∫
SN−2

n∑
m=1

f
(m)
N−2(0)

m!
αm,ndSv,

with

(2.13) θ(r, v) = θ1(v)r + θ2(v)r2 + θ3(v)r3 + . . .

and αm,n’s as described in (2.5)-(2.6).
Moreover, using the non parametric representation (y, ϕ(y)) with y = (y 1, . . . ,

yN−1) ∈ B(0, R) ⊂ R
N−1 of ∂Ω in neighbourhood of x as described above, we

can compute

(2.14) α1,1(v) = P2(v), α1,2(v) = P3(v), α1,3 = P4(v)− 23
6

P2(v)3

and for n ≥ 2,

(2.15)

α1,2n(v) = P2n+1(v)−
n−1∑
k=1

f
(2k+1)
1 (0)
(2k + 1)!

α2k+1,2n(v)

+
n−1∑
i=1

P2n−2i+1(v)
i∑

k=1

f
(2k+1)
2n−2i+1(0)

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i(v)
i∑

k=1

f
(2k+1)
2n−2i (0)
(2k)!

α2k,2i+1(v)
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(2.16)

α1,2n+1(v) = P2n+2(v)−
n∑

k=1

f
(2k+1)
1 (0)
(2k + 1)!

α2k+1,2n+1(v)

+
n∑

i=1

P2n−2i+2(v)
i∑

k=1

f
(2k+1)
2n−2i+2(0)

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i+1(v)
i∑

k=1

f
(2k+1)
2n−2i+1(0)

(2k)!
α2k,2i+1(v).

and

(2.17) αm,n(v) =
∑

i1+···+im=n

α1,i1 · · ·α1,im, 1 ≤ m ≤ n, n ∈ N.

Proof. For the polar coordinates (2.8), since the Jacobian of change of variables
is ρN−1 cosN−2 φ we have

(2.18) |Ω ∩ B(x, r)| =
∫

SN−2

∫ r

0

ρN−1

∫ π/2

θ(r,v)

cosN−2 φ dφ dρdSv

where dSv denotes the surface element on the sphere SN−2. Differentiating (2.18)
with respect to r and dividing by ωNrN−1 we get

σ(x, r) =
1

ωN

∫
SN−2

π/2∫
θ(r,v)

cosN−2 φ dφdSv

=
1
2
− 1

ωN

∫
SN−2

θ(r,v)∫
0

cosN−2 φ dφdSv

=
1
2
− 1

ωN

∫
SN−2

fN−2(θ) dSv

in notations of Lemma 2.1. It follows that from Lemma 2.1 that

σ(x, r) =
1
2

+
∞∑

n=1

σnrn and(2.19)

ρ(x, r) =
1
2

+
∞∑

n=1

N

N + n
σnrn(2.20)

where

(2.21) σn = −
n∑

m=1

1
ωN

∫
SN−2

f
(m)
N−2(0)

m!
αm,n dSv
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with αm,n as defined in (2.5) and (2.6). Note that here, we have θ(r, v) = θ1(v)r+
θ2(v)r2 + θ3(v)r3 + . . ..

To determine the coefficients σn in terms of the more accessible geometric
functions, we will use the second parameterization. Note that for r sufficiently
small, r sin θ(r, v) = ϕ(r cos θ(r, v)v) in the neighbourhood N . Thus, we have

(2.22) sin θ(r, v) =
∞∑

n=2

cosn θ(r, v)Pn(v)rn−1.

Write sin θ(r, v) =
∞∑

k=0

(−1)k θ2k+1

k! and cosn θ(r, v) = (fn(θ))′ =
∞∑

m=1

f
(m)
n (0)
m! θm−1.

Using notations of Lemma 2.1, we have

(2.23)

∞∑
k=0

(−1)k θ2k+1

k!

=
∞∑

m=0

∞∑
k=0

(−1)k α2k+1,2k+1+m

(2k + 1)!
rm+2k+1

=
∞∑

m=1

(
m∑

k=1

(−1)k−1 α2k−1,2m

(2k − 1)!

)
r2m

+
∞∑

m=0

(
m∑

k=0

(−1)k α2k+1,2m+1

(2k + 1)!

)
r2m+1

and

(2.24)

∞∑
n=2

cosn θ(r, v)Pn(v)rn−1

=
∞∑

n=2

Pn(v)rn−1
∞∑

m=1

f
(m)
n (0)

(m − 1)!
θm−1

=
∞∑

k=0

∞∑
m=1

∞∑
n=2

f
(m)
n (0)

(m− 1)!
αm−1,m−1+kPn(v)rn−1rm−1+k

=
∞∑

m=0


 m∑

j=0

m−j∑
k=0

αm−j−k,m−jP2+j

f
(m−j−k+1)
2+j

(m − j − k)!


 rm.

Note that, by definition α0,k = 1 for any k ≥ 0. Equating the coefficients of r2m

we get

(2.25)
m∑

k=1

(−1)k−1 α2k−1,2m

(2k − 1)!
=

2m−1∑
j=0

j∑
k=0

αj,kP2+j

f
(k+1)
2+j

k!
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and comparing coefficients of r2m+1 we have

(2.26)
m∑

k=0

(−1)k α2k+1,2m+1

(2k + 1)!
=

2m∑
j=0

j∑
k=0

αj,kP2+j

f
(k+1)
2+j

k!

Thus we get

(2.27) α1,1(v) = P2(v), α1,2(v) = P3(v), α1,3 = P4(v)− 23
6

P2(v)3.

Since f
(2j)
k (0) = 0 for every j = 0, 1, . . . ,, from (2.25) and (2.26) we can write for

n ≥ 2:

α1,2n(v) = P2n+1(v)−
n−1∑
k=1

f
(2k+1)
1 (0)
(2k + 1)!

α2k+1,2n(v)

+
n−1∑
i=1

P2n−2i+1(v)
i∑

k=1

f
(2k+1)
2n−2i+1(0)

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i(v)
i∑

k=1

f
(2k+1)
2n−2i (0)
(2k)!

α2k,2i+1(v)

and

α1,2n+1(v) = P2n+2(v)−
n∑

k=1

f
(2k+1)
1 (0)
(2k + 1)!

α2k+1,2n+1(v)

+
n∑

i=1

P2n−2i+2(v)
i∑

k=1

f
(2k+1)
2n−2i+2(0)

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i+1(v)
i∑

k=1

f
(2k+1)
2n−2i+1(0)

(2k)!
α2k,2i+1(v).

This completes the proof.

The following lemma was proved in [3] (Lemma 5.4):

Lemma 2.3. Let i = (i1, . . . , iN−1) be a multi-index. We have that the moments

(2.28)
∫

SN−2

viDSv = 0 if atleast one entry of i is odd;

otherwise,
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(2.29)

1
ωN−1

∫
SN−2

v2i dSv = 1for N = 2

1
ωN−1

∫
SN−2

v2i dSv =
(N − 3)!!(2i)!

(2|i|+ N − 3)!!2|i|i!
for N ≥ 3




where n!! =
[ n−1

2
]∏

k=0

(n − 2k).

In view of (2.28)-(2.29) and (2.12), the fact that the series is odd will follow
once we prove

Lemma 2.4. Let αm,n be defined as in (2.15)-(2.16)-(2.17). Then

(a) αm,n, 1 ≤ m < n is an odd polynomial in v if either m is odd or n is odd
i.e., α2k−1,2n and α2k,2n+1, 1 ≤ k ≤ n are odd polynomials in v;

(b) αm,n is an even polynomial in v if both m and n are even or both are odd
i.e., α2k,2n and α2k+1,2n+1, 1 ≤ k ≤ n are even polynomials in v.

Proof. We shall prove (a) and (b) by induction on n. Recall,

(2.30) Pn(v) :=
∑
|i|=n

Diϕ(0)
i!

vi

and the relations

(2.31)

α1,2n(v) = P2n+1(v)−
n−1∑
k=1

f
(2k+1)
1 (0)
(2k + 1)!

α2k+1,2n(v)

+
n−1∑
i=1

P2n−2i+1(v)
i∑

k=1

f
(2k+1)
2n−2i+1(0)

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i(v)
i∑

k=1

f
(2k+1)
2n−2i (0)
(2k)!

α2k,2i+1(v)

and

(2.32)

α1,2n+1(v) = P2n+2(v) −
n∑

k=1

f
(2k+1)
1 (0)
(2k + 1)!

α2k+1,2n+1(v)

+
n∑

i=1

P2n−2i+2(v)
i∑

k=1

f
(2k+1)
2n−2i+2(0)

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i+1(v)
i∑

k=1

f
(2k+1)
2n−2i+1(0)

(2k)!
α2k,2i+1(v).
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We also observe that (2.17) can be written as

(2.33) αm,n(v) =
∑

i1+···+im=n

α1,i1(v) · · ·α1,im(v), 1 ≤ m ≤ n, n ∈ N.

Comparing the coefficients, we get

(2.34) α1,1 = P2(v) =
∑
|i|=2

Diϕ(0)
i!

vi

which is an even polynomial in v and

(2.35) α1,2 = P3(v) =
∑
|i|=3

Diϕ(0)
i!

vi

which is an odd polynomial in v. Thus (2.33) yields:

α2,3(v) = 2α1,1(v)α1,2(v) = 2P2(v)P3(v),

that is (a) is verified for n = 3. Also, (2.33) implies that

α2,2(v) = α1,1(v)2 = P2(v)2 and α3,3(v) = α1,1(v)3 = P2(v)3,

and (2.16) gives

α1,3(v) = P4(v) +

[
f

(3)
2 (0)
2!

− f
(3)
1 (0)
3!

]
P2(v)3,

that is (b) is verified for n = 3.
Now, assume that (a) and (b) hold for all 1 ≤ n ≤ m, we will show that they

hold for n = m + 1. It is clear from (2.15) and (2.16) that our assumption implies
that α1,2m+2(v) is odd and α1,2m+3(v) is even in v.

Claim: α2k−1,2m+2(v) is odd polynomial in v for 1 ≤ k ≤ m + 1.
Let Sm,n denote the set of all partitions of n into m parts i.e.,

(2.36) Sm,n := {(i1, . . . , im) ∈ N
m : i1 + . . . + im = n}.

Then, from (2.33)we can write,

α2k−1,2m+2(v) =
∑

(i1,...,i2k−1)∈S2k−1,2m+2

α1,i1(v) · · ·α1,i2k−1
(v)

Now observe that for 2 ≤ k ≤ m, a partition (i1, . . . , i2k−1) ∈ S2k−1,2m+2 can be
obtained from an (j1, . . . , j2k−1) ∈ S2k−1,2m in either of the following ways:
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(i) il = jl + 2 for some l and js = is for all s 
= l;or
(ii) il = jl + 1, ir = jr + 1 with l 
= r and is = js for all s 
= l, r

In case (i), if il is an odd number (resp. even number) then so is jl. Hence
by induction, α1,il(v) and α1,jl

(v) are both respectively even polynomial or an odd
polynomial.

In case (ii), if jl is an odd number and jr is an even number, then il will be
even and ir will be odd. If both jl and jr are even(resp.odd), then both il and ir
are odd(resp. even).

In either case (i) or (ii), we must have the product α1,i1(v) · · ·α1,i2k−1
(v) to be

an odd polynomial of v for such (i1, . . . , i2k−1) ∈ S2k−1,2m+2 with 2 ≤ k ≤ m,
and hence α2k−1,2m+2(v) is an odd polynomial for 2 ≤ k ≤ m.

For k = m + 1, the only possible partition is il = 2 for some l and ir = 1 for
r 
= l and so in this case α2m+1,2m+2(v) = (2m + 1)P2(v)2mP3(v) which is odd.

The remaining cases can be dealt with similarly. This completes the proof.

In view of Theorem 2.2, Lemma 2.1, Lemma 2.3, Lemma 2.4 and using the fact
that f 2k+1

j = (−j)k, we have

Proposition 2.5. With notations of Theorem 2.2,

(2.37) σ(x, r) =
1
2

+
∞∑

n=0

σ2n+1r
2n+1

where

(2.38)

ωNσ2n+1

= −
∫

SN−2

{∑
k

= 0n
f2k+1
N−2 (0)

(2k + 1)!
α2k+1,2n+1(v)

}
dSv

=
∫

SN−2

{
(N − 2)P2n+2 − [−(N − 2)]n + (−1)n(N − 2)

(2n + 1)!
P 2n+1

2

+
n∑

i=1

P2n−2i+2

i∑
k=1

[−(2n − 2i + 2)]k

(2k)!
α2k,2i(v)

+
n−1∑
i=1

P2n−2i+1

i∑
k=1

[−(2n − 2i + 1)]k

(2k)!
α2k,2i+1(v)

−
n−1∑
k=1

[−(N − 2)]k + (−1)k(N − 2)
(2k + 1)!

α2k+1,2n+1(v)

}
dSv.

To see relations with curvature invariants, recall the parametrisation (x, ϕ(x))
of the hypersurface described before the proof of Theorem 2.2. We had assumed
x = 0, ϕ(0) = 0 and ∇ϕ(0) = 0. Moreover, after change of variables we may
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assume that the Hessian matrix of ϕ at 0 is the diagonal matrix diag(κ1, . . . , κN−1)
where the κj ’s denote the principal curvatures of ∂Ω at x. Thus

(2.39) ∆ϕ(0) = −(N − 1)H(x)

where H(x) denotes the mean curvature at point x. Also, recall that

P2(v) :=
∑
|i|=2

Diϕ(0)
i!

vi =
1
2

< Hessϕ(0)v, v > .

Hence

(2.40) ωNσ1(x) = −
∫

SN−2

P2(v) dSv =
ωN−1

2
H(x)

which gives us the definition (1.3). Observing that α2n+1,2n+1 = P 2n+1
2 it can be

seen that

(2.41)

[−(N − 2)]n + (−1)n(N − 2)
(2n + 1)!

P 2n+1
2

=
ωN−1[−(N − 2)]n + (−1)n(N − 2)

(2N + 8n − 2)(2n+1)

∑
|i|=2n+1

(2i)!
(i!)2

κi

where we use the multi index notation i = (i1, . . . , iN−1), κ := (κ1, . . . , κN−1)
and κi = κi1

1 · · ·κiN−1

N−1 . It can be further verified that

(2.42)
∫

SN−2

P2n+2(v) dSv =
ωN−1

(2N + 4n + 2)(n+1)(n + 1)!
∆(n+1)ϕ(x).

Note that we can compute ∆(n+1)ϕ(x) by successively differentiating the mean
curvature equation

(2.43)
(1 + |∇ϕ(x)|2)∆ϕ(x)

− < Hess.ϕ(x)∇ϕ(x),∇ϕ(x) >= (N − 1)H(x)(1 + |∇ϕ(x)|2)3/2.

In particular, for n = 2 and dimension N = 3, σ3 coincides with the expression
given in Nitsche ([8] pg.61). Thus, in special situations the above series can be
used to derive geometric conditions on the hypersurface.
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