TAIWANESE JOURNAL OF MATHEMATICS
Vol. 14, No. 5, pp. 2073-2089, October 2010
This paper is available online at http://www.tjm.nsysu.edu.tw/

ALGORITHMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT
PROBLEMS APPROACH TO MINIMIZATION PROBLEMS

Y. Yao, Y. C. Liou and M. M. Wong*

Abstract. In this paper, we introduce two algorithms for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed
points of a nonexpansive mapping in a real Hilbert space. Furthermore, we
prove that the proposed algorithms converge strongly to a solution of the
minimization problem of finding z* € T" such that ||z*|| = minger ||z|| where
T stands for the intersection set of the solution set of the equilibrium problem
and the fixed points set of a nonexpansive mapping.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm || -||, respectively.
Let C' be a nonempty closed convex subset of H. Recall thata mapping A : C' — H
is called a-inverse-strongly monotone if there exists a positive real number « such
that

<A(I,‘ - Ay,(II - y> > (XHAII,' - AyH27vx7y eC.

It is clear that any «-inverse-strongly monotone mapping is monotone and %
Lipschitz continuous. Let f : C — H be a p-contraction; that is, there exists
a constant p € [0,1) such that || f(z) — f(y)|| < pllz — y| for all z,y € C. A
mapping S : C' — C is said to be nonexpansive if || Sz —Sy|| < ||z —vy||,Vz,y € C.
Denote the set of fixed points of S by Fiz(S).

Let A: C' — H be a nonlinear mapping and F' : C' x C' — R be a bifunction.
Now we concern the following equilibrium problem is to find z € C' such that

(1.1) F(z,y) + (Az,y—2) > 0,Vy € C.
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The solution set of (1.1) is denoted by EP. If A = 0, then (1.1) reduces to the
following equilibrium problem of finding z € C such that

(1.2) F(z,y) > 0,Vy € C.

If F" =0, then (1.1) reduces to the variational inequality problem of finding z € C
such that

(1.3) (Az,y —z) > 0,Vy € C.

The equilibrium problem (1.2) and the variational inequality problem (1.3) have
been investigated by many authors. Please see [6]-[18], [21-29] and the references
therein. The problem (1.1) is very general in the sense that it includes, as spe-
cial cases, optimization problems, variational inequalities, minimax problems, Nash
equilibrium problem in noncooperative games and others. See, e.g., [1], [3], [4].
[5].

For solving equilibrium problem (1.1), Moudafi [5] introduced an iterative algo-
rithm and proved a weak convergence theorem. Further, Takahashi and Takahashi
[3] introduced another iterative algorithm for finding an element of EP N Fix(S)
and they obtained a strong convergence result.

It is our purpose in this paper that we introduce two algorithms for finding an
element of EP N Fixz(S) in a real Hilbert space. Furthermore, we prove that the
proposed algorithms converge strongly to a solution of the minimization problem of
finding »* € EP N Fix(S) such that ||z*|| = minge gpnriz(s) |7

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout
this paper, we assume that a bifunction F' : C' x C — R satisfies the following
conditions:

(H1) F(z,x) =0 forall z € C;
(H2) F is monotone, i.e., F(x,y) + F(y,z) <0 for all z,y € C;
(H3) for each z,y, z € C, limy o F(tz + (1 — t)x,y) < F(z,y);
(H4) for each z € C, y — F(z,y) is convex and lower semicontinuous.
The metric (or nearest point) projection from H onto C is the mapping FP¢ :

H — C which assigns to each point z € C' the unique point Pcxz € C satisfying
the property

|z — Pox| = inf ||z — y|| =: d(z, C).
yeC
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It is well known that P is a nonexpansive mapping and satisfies
(2.1) (& —y, Pox — Pey) 2 || Pox — Poyl*, Yz, y € H.

Moreover, Py is characterized by the following properties:

(2.2) (x — Pox,y — Pox) <0,
and
(23) |z —ylI* > |le — Pox|® + [ly — Pex|?,

forallz € H and y € C.
We need the following lemmas for proving our main results.

Lemma 2.1. ([2]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F': C xC' — R be a bifunction which satisfies conditions (H1)-(H4).
Let » > 0 and x € C. Then, there exists z € C such that

1
F(z,y)—f—;(y—z,z—@ Zovvyec

Further, if T.(z) = {z € C : F(z,y) + 2(y — 2,z — x) > 0,Vy € C}, then the
following hold:

(i) T, is single-valued and T’ is firmly nonexpansive, i.e., for any =,y € H,
1Tz — Toy|? < (Thx — Ty, @ — y);
(if) EP is closed and convex and EP = Fix(T,).

Lemma 2.2. ([8]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the mapping A : C — H be a-inverse strongly monotone and » > 0
be a constant. Then, we have

1T = r )z — (I — rA)y|l? < o — gl + r(r — 20) | Az — Ay|]?, ¥z, y € C.
In particular, if 0 < r < 2q, then I — r A is nonexpansive.

Lemma 2.3. ([19]). Let {z,} and {y,} be bounded sequences in a Ba-
nach space X and let {3, } be a sequence in [0,1] with 0 < liminf,, . B, <
limsup,, o Bn < 1. Suppose z,+1 = (1 — Bn)yn + Bnay for all n > 0 and
lim sup,,_, o (|4n+1 — Ynll — l|Zn+1 — znl]) < 0. Then, limy, o0 ||yn — zn|| = 0.

Lemma 2.4. ([10]). Let C be a closed convex subset of a real Hilbert space
H and let S : C — C be a nonexpansive mapping. Then, the mapping I — S is
demiclosed. That is, if {x,} is a sequence in C such that z,, — =* weakly and
(I — S)x, — y strongly, then (I — S)z* =y.
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Lemma 2.5. ([20]). Assume {a,} is a sequence of nonnegative real numbers
such that

Gnp+1 < (1 - P)/n)an + 5n7n7

where {~,,} is a sequence in (0,1) and {4, } is a sequence such that

(1) > opZ1 Y = 00;
(2) limsup,, ., 6, < 0 0F %%, [8,7] < o0.

Then lim,,_, a, = 0.

3. MAIN RESULTS

In this section we will introduce two algorithms for finding the minimum norm
element z* of T := Ep N Fixz(S). Namely, we want to find the unique point x*
which solves the following minimization problem:

(3.2) ¥ = argmin ||z||.
zel

Let S : C' — C be a nonexpansive mapping and A : C — H be an a-inverse
strongly monotone mapping. Let F': C' x C' — R be a bifunction which satisfies
conditions (H1)-(H4). In order to find a solution of the minimization problem (3.1),
we construct the following implicit algorithm

(3.2) xy = SPo[(1 = )T, (zy — rAxy)], Vt € (0, 1),

where T, is defined as Lemma 2.1. We will show that the net {z,} defined by (3.2)
converges to a solution of the minimization problem (3.1). As matter of fact, in this
paper, we will study the following general algorithm.

Let f : C — H be a p-contraction. For each ¢ € (0,1), we consider the
following mapping W, given by

Wix = SPoltf(z) + (1 —t)T.(I —rA)x],Vz € C.

Since the mappings S, Pc, T, and I — r A are nonexpansive, then we can check
easily that [|W,z — Wiy|| < [1 — (1 — p)t]||lz — y| which implies that TV, is a
contraction. Using the Banach contraction principle, there exists a unique fixed
point x; of W; in C, i.e.,

(3:3) 2= SPltf () + (1 — )T (w — rAy)].

In this point, we would like to point out that algorithm (3.3) includes algorithm
(3.2) as a special case due to the contraction f is a possible nonself mapping.
Now we show our main results.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S : C' — C be a nonexpansive mapping and A : C — H be an
a-inverse strongly monotone mapping. Let F': C x C — R be a bifunction which
satisfies conditions (H1)-(H4). Let f : C — H be a p-contraction and » > 0 be
a constant with » < 2a. Suppose I' # (). Then the net {x;} generated by the
implicit method (3.3) converges in norm, as ¢ — 0, to the unique solution x * of
the following variational inequality

(3.4) zrel, (I-fla*,z—2")>0, zel.

In particular, if we take f = 0, then the net {z,} defined by (3.2) converges in
norm, as t — 0, to a solution of the minimization problem (3.1).

Proof.  First, we prove that {z;} is bounded. Set u; = T).(z; — r Az;) for all
t €(0,1). Take z € I". Itis clear that z = T;.(z — rAz). Since T, is nonexpansive
and A is a-inverse-strongly monotone, we have from Lemma 2.2 that

lue — 2||* < ||z —rAze — (2 = rAz)|
(3.5) < lze — 2| +7(r — 2a)|| Azy — Az|]?
< Jlze — 2%
So, we have that
lur = 2| < [lws — =]
It follows from (3.3) that
|z — 2|l = [ISPetf(z) + (1 = t)u] — SPez||

< [E(f (@) = 2) + (1 = £) (ug — 2|

< tlf () = FRIN+ L (2) =2l + (1 = ) flue = 2]]
tpllee — 2l + | f(2) — zll + (L= 1) |l¢ — 2]|

= [1= (= p)t]llze — 2zl + ¢l f(2) — =,

IN

that is,
1f(2) — 2|

— < WA 7
e =2l < M
So, {x;} is bounded. Hence {u;} and {f(z.)} are also bounded. Now we can
choose a constant M > 0 such that

sup {21 () — 2l = 2|+ 11 (ze) = 2P, 2z — ], e — F)|*} < M.
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From (3.3) and (3.5), we have

e — 212
< Q=) (ue = 2) + t(f(2e) = 2)|
(368) = (1—1)%flue — 2| + 2t(1 = )(f(we) — 2, ue — 2) + 2] f(2e) — 2|2

< ug — 2||* + tM

< g — 2|2 + r(r — 2a) || Azy — Az||* + tM
that is,

r(20 — 7)||Azy — Az||? <tM — 0.
Since r(2a.— r) > 0, we derive
3.7) lim || Az, — Az]| = 0.
From Lemma 2.1, Lemma 2.2 and (3.3), we obtain
lue — 217 = | T(we — rAze) — Tr(z — rA2)|

< ((zp—rAxy) — (2 —rA2),us — 2)

1

= 5 (I = raz) = (2 = A2 + g = 2
(@i = 2) = r(Azy - A2) = (w - 2)|1?)

1
2
1 2 2 2

= 5 (e = 211 + e = 2112 = e —

+2r (s — ug, Axy — Az) — 2| Azy — AzHQ),

(e = 2117 + llue = 2117 = (e — w) = r(Az, - A2)|2)

which implies that
e — 2]
< e — 2|2 = ||lze — ue)|? + 2r (2 — ug, Axy — Az) — 72| Axy — Az|)?
< e = 2* = oe — wel|* + 2r|lwe — e[| Aze — Az
< e = 2* = ze — wel|* + M| Aze — Az

By (3.6) and (3.8), we have

(3.8)

lze =21 < [l — 2] + tM
< lwe = 2% = llwe — wel|* + (|| Aze — Azl| + ) M.



Algorithms for Equilibrium Problems and Fixed Point Problems 2079

It follows that
lze — uel? < (|| Azy — Az|| + ) M.
This together with (3.7) imply that
lim [|z¢ —ue || = 0.

It follows that

e = Sae|| = [[SPeltf(x:) + (1 = H)us] — SPoa|

(3.9)
<t f(@e) =zl + (1 = t)lug — 2] — 0.

Next we show that {z;} is relatively norm compact as t — 0. Let {¢t,} C (0,1)
be a sequence such that t,, — 0 as n — oo. Put z,, := x4, and u, := uy,. From
(3.9), we get

(3.10) |xn, — Sxy,|| — 0.
By (3.3), we deduce
lwe — 21> = |SPo[tf(xe) + (1 = thue] — SPo|
< lug — 2z — tug + tf(xt)H2
= |lus — 2% — 2t{ug, ur — 2) + 2t(f (1), ue — 2) + 2| ug — fa)]||?
= |lus — 2||* = 2t{us — 2z, us — 2) — 2t(z, us — 2)
F24(f (we) = f(2),u = 2) + 26(f (2), up = 2) + ¥ [Jug — f(a)]?
< [1=2(1 = p)t[lare — 2|1 + 26(f (2) = 2,0 — 2)
2 ur — f(20)].

It follows that

o =2l < T2t 1), = w) + g e = fw)
S 1ip<z_f(z)7z_ut>+2(1t_p)M
In particular,
1 ln
(3.11) |2zn — 2|2 < 1_p<z—f(z),z—un>+mM, zeTl.
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Since {x,} is bounded, without loss of generality, we may assume that {z,}
converges weakly to a point z* € C. Also u,, — x* weakly. Noticing (3.10) we
can use Lemma 2.4 to get z* € Fiz(S5).

Now we show z* € EP. Since u,, = T,.(z,, — rAx,), for any y € C' we have

1
F(up,y)+ ;<y — Un, Up, — (Tp — TATy)) > 0.

From the monotonicity of F', we have

1
—(y — Uun, up — (2, — rAzy,)) > F(y, uy),Vy € C.
,

Hence,

(3.12) (Y — Un,, @ + Azy) > Fly, up,), Yy € C.

Put z; = ty + (1 — t)a* for all t € (0,1] and y € C. Then, we have z; € C. So,
from (3.12) we have

Uy, — T,
<Zt - univ AZt> Z <Zt - univ Azt> - <Zt - univ T + Axnz>
+F (2, un,)
(3.13)
= (2t — Up,, Azt — Aup,) + (2t — Up,, Auy, — Axy,)
Uy, — T,
—(2t = Up;, ——2) + F(2¢, up,).

Note that || Aun, — Azp, || < L||u,, — 2, || — 0. Further, from monotonicity of 4,
we have (z; — up,, Azy — Auy,,) > 0. Letting i — oo in (3.13), we have

(3.14) (2t — x*, Az) > F (2, z%).
From (H1), (H4) and (3.14), we also have
0 = F(z,2t) <tF(2t,y) + (1 — ) F (2, 2%)
< tF(z,y) + (1 —t)(z — z™, Azy)
= tF(z,y) + (1 - )t{y — 2™, Az)
and hence
(3.15) 0<F(z,y)+ (1 —=t)(Az,y — z¥).
Letting t — 0 in (3.15), we have, for each y € C,

0< F(z*,y)+ (y — z*, Ax™).
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This implies that * € EP. Therefore, 2* € T
We substitute z* for z in (3.11) to get

(x* — f(a*), 2" —up) + tn M.

l—p 2(1=p)
Hence, the weak convergence of {w,} to «* implies that z,, — =* strongly. This
has proved the relative norm compactness of the net {z;} as ¢t — 0.

Now we return to (3.11) and take the limit as n — oo to get

lzn — 2** <

1
(3.16) |z* — 2|2 < 1_p<z—f(z),z—x*>, zel.

In particular, z* solves the following variational inequality
zrel, (I-f)z,z—z%)>0, z€T
or the equivalent dual variational inequality
el (I- flz*,z—2") >0, z€T.

Therefore, * = (Prf)z*. Thatis, 2* is the unique fixed point in I" of the contrac-
tion Prf. Clearly this is sufficient to conclude that the entire net {z;} converges
in norm to z* as ¢t — 0.

Finally, if we take f = 0, then (3.16) is reduced to

|z* = 2||> < (2,2 —2*), z€T.
Equivalently,
|z*)|? < (z%,2), =zeTl.
This clearly implies that

[l <=, zeT.

Therefore, z* is a solution of minimization problem (3.1). This completes the
proof. |

Next we introduce an explicit algorithm for finding a solution of minimization
problem (3.1). This scheme is obtained by discretizing the implicit scheme (3.3).
We will show the strong convergence of this algorithm.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S : C' — C be a nonexpansive mapping and A : C — H be an
a-inverse strongly monotone mapping. Let F': C x C — R be a bifunction which
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satisfies conditions (H1)-(H4). Let f : C — H be a p-contraction and » > 0 be
a constant with » < 2a. Suppose T' # (). For given xo € C arbitrarily, let the
sequence {z,,} be generated iteratively by

(3.17) xpy1 = Bnxn+ (1= Bn)SPolanf(zn) + (1 —ap) Ty (zy, —rAxy,)],n > 0,

where {«,} and {f,} are two sequences in [0, 1] satisfying the following condi-
tions:

(1) limy oo 0 = 0 @nd y_>° ;i = 00;
(if) 0 < liminf, . B, <limsup, ., B < 1.

Then the sequence {z,} converges strongly to =* which is the unique solution
of variational inequality (3.4). In particular, if f = 0, then the sequence {z,}
generated by

Tn+l1 = ﬁnxn + (1 - ﬁn)SPC[(l - an)Tr(xn - TA(L‘n)], n > 07
converges strongly to a solution of the minimization problem (3.1).
Proof.  First, we prove that the sequence {x,,} is bounded.

Let z = Po(z — rAz). Set u, = T,(x, — rAzx,) forall n > 0. From (3.17),
we get

lun — 2| = | Tr(xp — TAxy) — T (2 — 1 AZ)||
< flzn — 2,
and
[Znt1 = 2l = [|Bu(zn — 2) + (1 = Ba) (SPolanf(zn) + (1 — an)uy] — 2)
< Balln =2l + (1 = Bu)llan(f (xn) = 2) + (1 — an) (un = 2)||
< Balln =2l + (1 = Bu)lom|[ f(@n) = F(2)[| + anllf(2) — =]
+(1 = an)|Jun — 2]
< Bullzn =2l + (1 = Bo)lanpllan — 2|l + o f(2) — 2]
+(1 = an)||zn — 2]
= [ =1 =p)(1 = Bn)an]l|lzn — 2l + an(l = Bo)[| f(2) — =]
o L=,

_|_
_|_

< max{||z, —

By induction, we obtain, for all n > 0,

rmn—zHSHMX@mo ,

RLEEEN]

p
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Hence, {x,} is bounded. Consequently, we deduce that {u,}, {f(z,)} and {Az,}
are all bounded. Let M > 0 be a constant such that

Sup {HunH + 1 @n)lls 2lwn = F(@a)lllun — 2] + lun = f(za)lI?,

(lzn = 20+ i1 = 20, 202 — wa| } < M.

Next we show lim,, . ||un — Su,| = 0.
Define x,,11 = Bnzn + (1 — Bn)vy, for all n > 0. It follows from (3.17) that

[vn1 = vnll = [[SPolomsr f(@ns1) + (1 = ang1)tnga]
—SPolomf(zn) + (1 — an)u]|
< g1 f(ang1) + (1= ang1)unts — an fan) — (1 — an)ua||
< Junt1 = unll + anpa (lunsll + 1 (@ns) 1)
+an(luall + £ (@a))
< |NTr(xps1 — rAxpy1) — To(xn — 1Az || + M (g1 + o)
< [lznt1 = zall + M(ant1 + om).

This together with (i) imply that

lim sup <an+1 —Up | = |Tny1 — an> <0.

n—oo

Hence by Lemma 2.3, we get lim,,_, ||v, — || = 0. Consequently,

lim @41 — zp|| = lm (1 = 8,)||vn — 2| = 0.
n—oo n—oo

By the convexity of the norm || - ||, we have
|1 — 2|

= [|Bn(n — 2) + (1 = Bn) (va — 2)|I
< Bullzn — 21 + (1 = Ba)on — 2|
(318) < Bullzn — 217 + (1 = Bo)llun — 2 — an(un — f(n)|?
= Ballen — 2l + (1 = Ba) [llun — 2l1° = 20 (un — f (@), un — 2)
+ap |un — f ()]
< Bullwn — 2% + (1 = B) lun — 2[* + an M.
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From Lemma 2.2, we get
lun = 2|1* = T (20 — rAwn) = To(2 — rA2)|?
(3.19) < |(zn — rAzy) — (2 — rA2)|?
< lzn = 2| +7(r — 20) || Az, — Az||*.
Substituting (3.19) into (3.18), we have
lznt1 — 2|
< Bullzn — 217 + (1= Ba)llzn — 21> +r(r — 2a) || Azy — Az|*] + an M
= ||lzn — 2|2 + (1 = Bo)r(r — 2a)|| Az, — Az|]? + i, M.
Therefore,
(1= Bo)r(2a —r)|| Az, — Az|?
< lwn = 201% = lzns — 21° + M
< (lon = 2l + l#ni1 — 2D lzn — znga | + anM
< (l#n = 2ngall + om) M.
Since liminf,, oo (1 —G,)7r(2ac—7r) > 0, ||z —2n+1|| — 0 and «,, — 0, we derive
lim ||Az, — Az|| = 0.
n—o0

From Lemma 2.1 and (3.17), we obtain

lun — 2||* = || Tr(zn — rAx,) — Tr(z — rA2)|?

< ((zp —rAzy) — (2 —1A2),up — 2)
1

= 5 (I@n = rAwa) = (2= PA2) |2 + = 2|1
(o — 2) = r(Azn — A2) = (un — 2)|)
1 2 2

< Z — —

< 5 (llan =2l + flwn = 2]

@0 = un) = r(Az, — A2)|)

1
= 5 (o = 2+ — 202 = =

421 (2 — Up, Ay — A2) — 12| Az, — AzHQ).
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Thus, we deduce
[t — 212 < [z — 2% = |20 — unl® + 27|z — un ||| Az, — Az]|
< an — 2l* = [lzn — unll® + M| Az, — Az|.

By (3.18) and (3.20), we have

(3.20)

lzns1 = 21 < Ballzn — 21 + (1 = Ba) llun — 2|* + cnM
< Bullzn — 201 + (1 = Ba)lllzn — 2* = llan — unl|?
+M| Az, — Az||] + an M
< lan = 20 = (1= Ba) |z — un® + (|| Azy — Az|| + ) M.
It follows that
(1= Ba)llzn — unl? < (|Tnsr — @nll + | Azn — A2l + ay) M.

Since liminf,, o (1 —3,) >0, @y, — 0, ||Xp+1 —2|| — 0 and || Az, — Az|| — 0,
we derive that

(3.21) lim ||z, —u,| = 0.
n—oo
Hence,
[Sun — unll = [|Sun — vn |l + [[vn — ol + (|20 — un |
= ||SPcun — SPolan f(wq) 4+ (1 — an)un]||
Hvn = 2l + |20 — un |l
< anllf(wn) = unll + [[vn — zall + || — unll — 0.
Next we prove

limsup(z* — f(z*), 2" — up) <0
n—oo
where z* = Prf(z*).
Indeed, we can choose a subsequence {u,,} of {u,} such that

limsup(z™ — f(z¥), 2" —u,) = lim (x* — f(2¥), 2" — uy,).
n—00 100

Without loss of generality, we may further assume that w,, — & weakly. By the
same argument as that of Theorem 3.1, we can deduce that z € T'. Therefore,

limsup(z™ — f(z%), 2" —u,) = (" — f(z"), 2" — &) <0.

n—oo
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From (3.17), we have

zni1 = 21 < Bullwn—2*|* + (1 = Bo)len(f(2n) = 2)+(1 —an) (un—2)|?

< Ballzn — [+ (1= Ba)[(1 — an)?[lu — 272

+205 (1 = ) (f(2n) — 2%, up — &%) + a2 || f(zn) — |
= Bullzn — 21 + (1= Ba)[(1 — an)?[lun — 2™

+200, (1 — ) (f(zp) — f(2)*, up — %)

F@) —a* un — a*) + o || f(wn) — 2*||?]

< [1=2(1=p)(L = Bp)an] |z — 2*|?

+200, (1 = ) (1 = Bo) (f(2)* — 2%, up — %) + (1 — Bp)a2 M
= (1= yn))llzn — 2*[1” + 6um,

{
{

+2a, (1 — ap)

where v, = 2(1 —p)(1 - B,)ay, and 5,/ = (1- a")<f(1‘)* — 2w, — )+ anM

2(1-p)°

It is clear that "7, ~, = oo and hmsupn_,oo 9 < 0. Hence, all conditions of
Lemma 2.5 are satisfied. Therefore, we immediately deduce that =, — x*.
Finally, if we take f = 0, by the similar argument as that Theorem 3.1, we
deduce immediately that =* is a solution of minimization problem (3.1). This
completes the proof. [ |
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