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ON THE DISCOUNTED PENALTY AT RUIN
IN A JUMP-DIFFUSION MODEL

Yu-Ting Chen* and Yuan-Chung Sheu

Abstract. In this paper, we study the discounted penalty in a perturbed com-
pound Poisson model with two sided jumps. We prove second-order regularity
of this function and investigate its asymptotic behavior at infinity. Next, based
on Boyarchenko and Levendorskii (2002), we justify an integro-differential
equation for the discounted penalty.

1. INTRODUCTION

Consider a family of real-valued processes X = (Xt, Px) and let τ be the first
exit time of X from the interval (0,∞)(i.e., τ = inf{t ≥ 0, Xt ∈ R−}.) For every
bounded nonnegative Borel function g : R− → R+, we consider the discounted
penalty function

Φ(x) = Ex

[
e−rτg(Xτ)

]
.(1.1)

Here r ≥ 0 and Ex[Z] =
∫

Z(ω)dPx(ω) for a random variable Z. (We follow
the convention that e−r·∞ = 0 and write P for P0.) In the insurance literature, if
Xt stands for the surplus process of an insurance company, we see that the ruin
probability is a special case of (1.1) by taking g ≡ 1 and r = 0.

Gerber and Landry (1998) considered the discounted penalty in a general per-
turbed compound Poisson model with no positive jumps. The basic assumption on
the discounted penalty which leads to a renewal equation as a tool to investigate its
analytic properties is that it enjoys sufficient second-order regularity. Although the
regularity of the discounted penalty was not studied in Gerber and Landry (1998),
it was studied in subsequent literatures. For example, Cai and Yang (2005) showed
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that in a jump-diffusion model, the ruin probability under stochastic interest rate in-
deed satisfies second-order continuous differentiability. They gave a rigorous proof
of the integro-differential equation for ruin probability. However, the result of Cai
and Yang (2005) did not cover the case of general discounted penalty functions.
Hence, the theoretical question remains unanswered whether the regularity, not just
continuous differentiability, for discounted penalty assumed in Gerber and Landry
(1998) and others does hold. (We refer to Wang and Wu (2000) and Cai (2004) for
related works).

In this paper, in a perturbed compound Poisson model with two sided jumps, we
study the regularity of the discounted penalty and investigate its asymptotic behav-
ior at infinity. Then we justify an integro-differential equation for the discounted
penalty. As a demonstration for possible applications of our results, we calcu-
late the discounted penalty when the jump distribution is exponential (see Theorem
C below.) For other applications in financial mathematics, see Mordecki (2002),
Hilberink and Rogers (2002), Asmussen et al. (2004), Chen et al. (2007), and many
others.

Throughout this paper, we assume that on a probability space (Ω,F , P), there
are a standard Brownian motion W = (Wt; t ∈ R+) and a compound Poisson
process Z = (Zt; t ∈ R+) with Zt =

∑Nt
n=1 Yn. Here N = (Nt; t ∈ R+) is

a Poisson process with parameter λ > 0 and Y = (Yn; n ∈ N) are independent
and identically distributed with distribution F . We assume that W, N and Y are
independent.

For every x ∈ R, let Px be the law of the process

Xt = X0 + ct + σWt − Zt, t ≥ 0,(1.2)

where c ∈ R, σ > 0 and X0 = x. Then X is a Lévy process. To study the
function Φ for X , we may without loss of generality assume that

∫
{0} dF = 0 by

Lévy-Khintchine formula.
We write Φ ∈ Ck

b (R+) if Φ(i)(x), 0 ≤ i ≤ k, are continuous and bounded on
R+. (Here, for a function h defined on R+, h(i)(0) is the right-hand i-th derivative
of h at 0.) Also we write Φ ∈ Ck

0 (R+) if Φ ∈ Ck
b and Φ(i)(x), 0 ≤ i ≤ k, tend to

zero as x goes to infinity.
The main results of the paper are stated in the followings.

Theorem A. We have Φ ∈ Cb(R+). Moreover, if we assume that

the jump distribution F has a density,(1.3)

then we have the following additional regularity of Φ:
(1) Φ ∈ C2

b (R+),
(2) Φ ∈ C2

0(R+) whenever limx→∞ Φ(x) = 0.
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Proposition 2.1 and Corollary 2.1 below give conditions under which limx→∞
Φ(x) = 0.

Theorem B. Assume that the characteristic exponent Ψ of X admits an analytic
continuation into a tube domain R + iO, where O is an open set in R containing
0, and that (1.3) is satisfied. Then the discounted penalty Φ satisfies the integro-
differential equation

(1.4)

σ2

2
Φ′′(x) + cΦ′(x) + λ

∫ x

−∞
Φ(x− y)dF (y)

+λ

∫ ∞

x
g(x− y)dF (y)− (λ + r)Φ(x) = 0, x > 0.

Theorem C. Assume the jump distribution F is exponential with parameter η.
Then for every r > 0 and every nonnegative function g such that

∫ 0
−∞ g(y)ηeηydy <

∞, the discounted penalty Φ is given by the formula

(1.5)

Φ(x) =

[
(λ + r)g(0)− λ

∫ 0
−∞ g(y)ηeηydy

]
−

(
σ2

2 ρ2
2 + cρ2

)
g(0)

σ2

2 (ρ2
1 − ρ2

2) − c(ρ2 − ρ1)
eρ1x

+

[
(λ + r)g(0)− λ

∫ 0
−∞ g(y)ηeηydy

]
−

(
σ2

2 ρ2
1 + cρ1

)
g(0)

σ2

2 (ρ2
2 − ρ2

1) − c(ρ1 − ρ2)
eρ2x

x ∈ R+.

Here ρ1 < ρ2 < 0 are the two strictly negative zeros of the characteristic polynomial
of the operator

A =
σ2

2
d3

dx3
+

(
c +

ησ2

2

)
d2

dx2
+ (cη − λ − r)

d

dx
− ηr.(1.6)

The paper is organized as follows. In Section 2 we use the distribution of
Brownian motion stopped at an independent exponential time to give an integral
equation satisfied by Φ of simple structure. In Section 3, based on this integral
equation, we prove Theorem A. To prove Theorem B, we recall in Section 4 a result
of Boyarchenko and Levendorskii (2002) which shows that the discounted penalty
for a large class of Lévy processes is a weak solution to an integro-differential
equation. Then we prove Theorem B by showing that if the discounted penalty is
twice continuously differentiable, it is a strong solution. When the jump distribution
is exponential, by Theorem B, we derive an ODE for the discounted penalty. By
solving the ODE and using Theorem A, we prove Theorem C in Section 4.
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2. PRELIMINARIES

In this and the next sections, to prove the desired regularity of Φ under the
general assumptions that F is an arbitrary distribution on R with

∫
{0} dF = 0 and

that c ∈ R, it is plain that we may without loss of generality assume that σ = 1. A
simple change-of-variable argument will lead to the integral equations satisfied by
functions Φ with general σ > 0. Set X c

t = X0 + ct + Wt for all t ∈ R+, and write
J as the first jump time of the process X .

Proposition 2.1. limx→∞ Φ(x) = 0 whenever any of the following conditions
holds:

(1) r = 0 and limt→∞ Xt = ∞ almost surely,
(2) r > 0.

Proof. Write Φ(x) = E [e−rτxg(x + Xτx)], where τx = inf{t ≥ 0; ct + Wt −
Zt ≤ −x}. First consider the case that r = 0 and limt→∞ Xt = ∞ almost surely.
The assumption that limt→∞ Xt = ∞ almost surely implies that almost surely
values of X are bounded below and hence τx = ∞ for all large x. By Dominated
Convergence Theorem, we get that limx→∞ Φ(x) = 0. Next, consider the case that
r > 0. Note that τx is nondecreasing and unbounded. This implies that τx ↑ ∞ as
x → ∞ P−a.s. By Dominated Convergence Theorem again, the result follows.

Corollary 2.1. If r = 0 and EX1 > 0, then limx→∞ Φ(x) = 0.

Proof. This follows from the fact that by the Law of Large Numbers for Lévy
processes(see Sato (1999) pages 246-247) limt→∞ Xt = ∞ almost surely.

Next we show that Φ satisfies an integral equation. First, we compute some
functionals of τ and Xτ .

Lemma 2.1. For x > 0, we have Ex [e−rτ ; τ < J] = e−(Γ+c)x and

Ex

[
e−rτg(Xτ); τ ≥ J

]
=

∫
dF (y)

∫ ∞

0

dwΦ(w − y)[
λ

Γ
ec(w−x)−|w−x|Γ − λ

Γ
ec(w−x)−(w+x)Γ

]
.

Here

Γ =
√

c2 + 2(λ + r),(2.1)
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Proof. Fix x > 0. Write Tα,β = inf{t ≥ 0; αt+Wt = β} and let h(s; α, β) be
the density of Tα,β under P. (See Borodin and Salminen (2002) page 295 formula
2.0.2.) Clearly we have Ex [e−rτ ; τ < J] = E

[
e−rTc,−x ; Tc,−x < J

]
. Hence, by

independence of W and J and the fact that J is an exponential random variable
with mean 1

λ , we get

Ex

[
e−rτ ; τ < J

]
=
∫ ∞

0
dtλe−λt

∫ t

0
dse−rsh(s; c,−x)=

∫ ∞

0
dse−(r+λ)sh(s; c,−x)

=E0

[
e−(r+λ)Tc,−x

]
= exp

{
−cx − x

√
c2 + 2(λ + r)

}
,

where the last equality follows from Borodin and Salminen (2002) page 295 formula
2.0.1. This proves the first equation.

To prove the second equation, we observe that {τ ≥ J} ⊇ {mins≤J Xc
s > 0}.

Also,

Px

[
τ ≥ J, min

0≤s≤J
Xc

s ≤ 0
]

=Px

[
τ ≥ J, min

0≤s≤J
Xc

s = 0
]

=Px [τ ≥ J, Xc
J = 0] ≤ Px [Xc

J = 0] = 0,

by the independence of J and W . These imply {τ ≥ J} = {mins≤J Xc
s > 0},

Px−a.s. From this and Strong Markov Property, we have

Ex

[
e−rτg(Xτ); τ ≥ J

]
=Ex

[
e−rJΦ(XJ); τ ≥ J

]
=Ex

[
e−rJΦ(Xc

J − Y1); min
s≤J

Xc
s > 0

]
.

By the independence of W , J and Y1, this gives

(2.2)

Ex

[
e−rτg(Xτ); τ ≥ J

]
=

λ

λ + r

∫
dF (y)

∫ ∞

0
dt(λ + r)e−(λ+r)t

Ex

[
Φ(Xc

t − y); min
s≤t

Xc
s > 0

]
=

λ

λ + r

∫
dF (y)Ex

[
Φ(Xc

J ′ − y); min
s≤J ′ X

c
s > 0

]
,

where J ′ is an exponential random variable with mean 1
λ+r and is independent of

Xc.
To complete the proof, we calculate the density of λ

λ+rPx

[
mins≤J ′ Xc

s > 0, Xc
J ′

∈ dw]. First, note that Px

[
mins≤J ′ Xc

s > 0, Xc
J ′ ≤ z

]
= 0 for all z ≤ 0. Second,
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observe that Px

[
mins≤J ′ Xc

s ≤ 0, Xc
J ′ ≤ 0

]
= Px

[
Xc

J ′ ≤ 0
]
. Hence for all z > 0,

(2.3)

λ

λ + r
Px

[
min
s≤J ′ X

c
s > 0, Xc

J ′ ≤ z

]
=

λ

λ + r

(
Px [Xc

J ′ ≤ z] − Px

[
min
s≤J ′ X

c
s ≤ 0, Xc

J ′
1
≤ z

])
=

λ

λ + r

(
Px [0 < Xc

J ′ ≤ z]− Px

[
min
s≤J ′

Xc
s ≤ 0, 0 < Xc

J ′ ≤ z

])
=

∫ z

0

[
λ

Γ
ec(w−x)−|w−x|Γ − λ

Γ
ec(w−x)−(w+x)Γ

]
dw,

where the last equation follows from Borodin and Salminen (2002) page 250 formula
1.0.5 and page 252 formula 1.2.5 and Γ is given by (2.1). The last equation then
gives us the desired density on R+ and hence on R. Plugging this density into (2.2)
gives the desired equation.

Note that Φ(x) = g(0)Ex[e−rτ1(τ < J)] + Ex [e−rτg(Xτ)1(τ ≥ J)]. By
Lemma 2.1, we obtain an integral equation for Φ.

Theorem 2.1. For x ≥ 0, Φ satisfies the following integral equation

Φ(x)=e−(Γ+c)xg(0)+
λ

Γ
H(x)−λ

Γ
e−(c+Γ)x

∫
dF (y)

∫ ∞

0
dwΦ(w−y)ecw−Γw(2.4)

where Γ is given by (2.1) and

H(x) =
∫

dF (y)
∫ ∞

0
dwΦ(w − y)ec(w−x)−|w−x|Γ.(2.5)

3. PROOF OF THEOREM A

To prove Theorem A, we need the following lemmas.

Lemma 3.1. Suppose that (1.3) holds. Then x 	→ ∫
dF (y)Φ(x− y) is contin-

uous on R.

Proof. The proof is merely an application of the fact that the convolution of an
integrable function and a bounded function is continuous. The proof of the latter
fact follows from a slight modification of the proof of Stein and Shakarchi(2005)
Proposition 2.2.5, and we omit the details.
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Lemma 3.2. Suppose (1.3) holds. Then the function H(x) defined in (2.5) is
twice continuously differentiable on R + = [0,∞). Moreover, its first order and
second order derivatives satisfy the following integral equations:

(3.6)
H ′(x) = −(c + Γ)e−(c+Γ)x

∫ x

0
dw

∫
dF (y)Φ(w − y)ecw+Γw

−(c − Γ)e−(c−Γ)x

∫ ∞

x
dw

∫
dF (y)Φ(w − y)ecw−Γw

and

(3.7)

H ′′(x) = (c + Γ)2e−(c+Γ)x

∫ x

0
dw

∫
dF (y)Φ(w − y)ecw+Γw

+(c− Γ)2e−(c−Γ)x

∫ ∞

x
dw

∫
dF (y)Φ(w − y)ecw−Γw

−2Γ
∫

dF (y)Φ(x− y).

Proof. Using the definition of H and Fubini’s Theorem, we write

H(x) = e−(c+Γ)x

∫ x

0

dw

∫
dF (y)Φ(w− y)ecw+Γw

+e−(c−Γ)x

∫ ∞

x
dw

∫
dF (y)Φ(w− y)ecw−Γw.

By Lemma 3.1, w 	→ ∫
dF (y)Φ(w−y) is continuous on R. Hence, by Fundamental

Theorem of Calculus, H is differentiable on (0,∞) and its first order derivative is
given by (3.6). Similarly, by (3.6), H′ is continuously differentiable on (0,∞) and
its derivative is given by (3.7). Note that H′(0+) and H ′′(0+) can be calculated
directly by definition and we omit the details.

Lemma 3.3. If limx→∞ Φ(x) = 0 and (1.3) holds, then

lim
x→∞ e−(c−Γ)x

∫ ∞

x
dw

∫
dF (y)Φ(w− y)ecw−Γw = 0

and
lim

x→∞ e−(c+Γ)x

∫ x

0
dw

∫
dF (y)Φ(w− y)ecw+Γw = 0.

Proof. By the integral equation (2.4) and Lemma 3.2, we deduce that Φ is a
continuously differentiable function on R+. In addition, note that c±Γ ≷ 0. Hence,
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by L’Hôspital’s rule and Fundamental Theorem of Calculus,

lim
x→∞ e−(c−Γ)x

∫ ∞

x
dw

∫
dF (y)Φ(w− y)ecw−Γw

= lim
x→∞

−e(c−Γ)x
∫

dF (y)Φ(x − y)
(c − Γ)e(c−Γ)x

= 0,

where the last equality follows from the assumption that limx→∞ Φ(x) = 0 and
Dominated Convergence Theorem. The proof of the second equality follows simi-
larly.

Proof of Theorem A. By (2.4) and the boundedness of Φ, we obtain that Φ ∈
Cb(R+). Next, assume that (1.3) holds. Clearly we have

e−(Γ+c)x − λ

Γ
e−(c+Γ)x

∫
dF (y)

∫ ∞

0
dwΦ(w − y)ecw−Γw ∈ C2

0(R+).

By (2.4), to prove (1), it suffices to show that H defined in (2.5) is in C2
b (R+).

Note that Γ − c > 0. Hence, by Lemma 3.2, for all x ∈ R+,

(3.8)

|H ′(x)|

≤ (c + Γ)‖Φ‖∞e−(c+Γ)x

∫ x

0

dwe(c+Γ)w

+(Γ − c)‖Φ‖∞e−(c−Γ)x

∫ ∞

x
dwe(c−Γ)w

= ‖Φ‖∞
[
e−(c+Γ)x

(
e(c+Γ)x − 1

)
+ e−(c−Γ)xe(c−Γ)x

]
≤ 3‖Φ‖∞ < ∞.

This shows that H(x) ∈ C 1
b (R+). Since

∣∣∫ dF (y)Φ(x− y)
∣∣ ≤ ‖Φ‖∞ for all

x ∈ R+, we deduce from the above estimate and (3.7) that H ∈ C2
b (R+) as well.

This gives (1).
Assume further that limx→∞ Φ(x) = 0. By Lemma 3.3 and Eq. (3.6), we get

that H ∈ C1
0(R+). Similarly, by Lemma 3.3 and Equations (3.6) and (3.7), we get

that H ∈ C2
0 (R+) and (2) is proved. The proof is complete.

4. PROOFS OF THEOREM B AND THEOREM C

First we recall a result of Boyarchenko and Levendorskii (2002) in the setting of
general Lévy processes. Consider a family (Xt, Px) of Lévy processes on R

d. Here
under Px, X0 = x a.s.. Then for every t ∈ R+, E

[
ei〈z,Xt〉] = e−tΨ(z) , z ∈ Rd,

where the characteristic exponent Ψ of X is of the form:

Ψ(z) =
1
2
〈z, Az〉 − i〈γ, z〉+

∫
Rd

(
1 − ei〈z,y〉 + i〈z, y〉1{y;|y|≤1}(y)

)
ν(dy).(4.1)
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Here γ ∈ R
d, A is a symmetric nonnegative definite d× d matrix, and ν is a Borel

measure on R
d satisfying ν({0}) = 0 and

∫
Rd(|x|2 ∧ 1)ν(dx) < ∞. We assume

further that the resolvent kernel are absolutely continuous. (For details, see Bertoin
(1996).)

The infinitesimal generator L of X has a domain containing C2
0(Rd) and for any

f ∈ C2
0(Rd),

(4.2)

Lf(x) =
1
2

d∑
j,k=1

Ajk
∂2f

∂xj∂xk
(x) +

d∑
j=1

γj
∂f

∂xj
(x)

+
∫

Rd

f(x + y) − f(x) −
d∑

j=1

yj
∂f

∂xj
(x)1{y;|y|≤1}

 ν(dy).

Moreover, we write

(4.3)

L̃f(x) =
1
2

d∑
j,k=1

Ajk
∂2f

∂xj∂xk
(x) −

d∑
j=1

γj
∂f

∂xj
(x)

+
∫

Rd

f(x − y)− f(x) +
d∑

j=1

yj
∂f

∂xj
(x)1{y;|y|≤1}(y)

 ν(dy).

(In fact L̃ is the infinitesimal generator for the dual process X̃ = −X).
Let B be a closed set in Rd. Set TB = inf{t ≥ 0; Xt ∈ B}, the first entrance

time of B. Define for any g ∈ L∞(B) and r ≥ 0,

P r
Bg(x) = Ex

[
e−rTBg(XTB

)
]
.(4.4)

(Clearly, if d = 1 and B = (−∞, 0], then Pr
Bg(x) = Φ(x). ) To give the following

definition, we write 〈f1, f2〉 =
∫

f1(x)f2(x)dx. Also put φ ∈ C∞
c (Rd) if φ is

infinitely differentiable and has a compact support. We say that a bounded Borel
measurable function h : R

d → R is a weak solution of the boundary value problem:{
(r − L)h = 0, in Bc,

h = g, on B,
(4.5)

if h(x) = g(x) for any x ∈ B and, for any φ ∈ C∞c (Bc), 〈h, (r − L̃)φ〉 = 0. Also,
we say that h is a strong solution of the boundary problem (4.5) if h(x) = g(x) for
all x ∈ B, h ∈ C2(Bc) and (r − L)h = 0 on Bc .

The following theorem is taken from Boyarchenko and Levendorski (2002).
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Theorem 4.1. Assume that the characteristic exponent Ψ of X admits an an-
alytic continuation into a tube domain R

d + iO, where O is an open set in R
d

containing 0. Let B be a closed set in R
d. Then for any r ≥ 0 and g ∈ L∞(B),

P r
Bg is a weak solution of the boundary value problem (4.5).

Moreover, we have the following:

Theorem 4.2. Given r ≥ 0 and B a closed set in R
d. Suppose P r

Bg is a weak
solution of (4.5) and P r

Bg ∈ C2(Bc) ∩ C(Bc). Then P r
Bg is a strong solution to

(4.5) in the following two cases:
1. g is bounded continuous on B and ν is a finite measure.
2. g is a bounded Borel measurable function on B and ν is an absolutely

continuous finite measure.

Proof. Write H(x) = P r
Bg(x). For any multi-index α = (α1, · · · , αd), set

|α| =
∑d

j=1 αj and write Dαf(x) =
(

∂
∂x1

)α1 · · ·
(

∂
∂xd

)αd

f(x). By partial in-

tegration, if φ ∈ C∞c (Bc), (−1)|α|
∫

Dαφ(x)f(x)dx =
∫

φ(x)Dαf(x)dx for all
f ∈ C |α|(Bc). From this, one immediately gets

(4.6)

∫ 1
2

d∑
j,k=1

Ajk
∂2φ

∂xj∂xk
−

d∑
j=1

γj
∂φ

∂xj

 (x)H(x)dx

=
∫ 1

2

d∑
j,k=1

Ajk
∂2H

∂xj∂xk
+

d∑
j=1

γj
∂H

∂xj

 (x)φ(x)dx.

On the other hand, we have

∫
dx

∫
ν(dy)H(x)

φ(x − y)− φ(x) + 1{y;|y|≤1}
d∑

j=1

yj
∂φ

∂xj
(x)



=
∫

ν(dy)
∫

dxH(x)

φ(x − y)− φ(x) + 1{y;|y|≤1}
d∑

j=1

yj
∂φ

∂xj
(x)



=
∫

ν(dy)
∫

dxφ(x)

H(x + y)− H(x)− 1{y;|y|≤1}
d∑

j=1

yj
∂H

∂xj
(x)

 .

Then applying the Fubini’s Theorem again gives
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(4.7)

∫
dx

∫
ν(dy)H(x)

φ(x − y) − φ(x) + 1{y;|y|≤1}
d∑

j=1

yj
∂φ

∂xj
(x)


=

∫
dx

∫
ν(dy)φ(x)

H(x + y) − H(x)− 1{y;|y|≤1}
d∑

j=1

yj
∂H

∂xj
(x)

 .

Now, combining (4.6) and (4.7) gives that 〈H, L̃φ〉 = 〈LH, φ〉. Hence 〈(r −
L)H, φ〉 = 〈H, (r− L̃)φ〉 = 0 for all φ ∈ C∞

c (Bc). This implies that (r−L)H = 0
a.s. on Bc.

To show that (r − L)H(x) = 0 for every x ∈ Bc, it suffices to show that
(r−L)H is continuous on Bc. Since H is in C2(Bc), by (4.2), we need only show
that ∫ H(x + y) − H(x)− 1{y;|y|≤1}

d∑
j=1

yj
∂H

∂xj
(x)

 ν(dy)(4.8)

is continuous in Bc. First, assume that g is continuous and ν is a finite measure.
Since H ∈ C2(Bc)∩C(Bc), H = g on ∂B by the definition of H , and g ∈ C(B), we
have H is continuous on R

d. Hence, using the assumption ν is a finite measure, we
conclude that the function in (4.8) is continuous on Bc. This proves (1). To prove
(2), we assume that g is bounded and ν is an absolutely continuous finite measure.
Then a modification of Lemma 3.1 also gives that the function

∫
H(x + y)ν(dy)

in (4.8) is continuous. This proves (2).

Proof of Theorem B. Note that the infinitesimal generator L of X in (1.2) is

LΦ(x) =
σ2

2
Φ′′(x) + cΦ′(x) + λ

∫
Φ(x− y)dF (y)− λΦ(x).

Hence Theorem B follows from Theorem 4.1 and Theorem 4.2.

Proof of Theorem C. Assume that the jump distribution has the density dF (y) =
ηe−ηy1(y > 0)dy for some η > 0 . Assume first that g is bounded. Then (1.4)
becomes

(4.9)

σ2

2
Φ′′(x) + cΦ′(x) + λ

∫ x

0
Φ(y)ηe−η(x−y)dy

+λ

∫ 0

−∞
g(y)ηe−η(x−y)dy − (λ + r)Φ(x) = 0.

Differentiating both sides of (4.9) yields
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0 =
σ2

2
Φ′′′(x) + cΦ′′(x) + ληΦ(x)− λη2e−ηx

∫ x

0

Φ(y)eηydy

−λη2e−ηx

∫ 0

−∞
g(y)eηydy − (λ + r)Φ′(x).

By (4.9), we can rewrite the last equation as

0 =
σ2

2
Φ′′′(x) + cΦ′′(x) + ληΦ(x)

+η

(
σ2

2
Φ′′(x) + cΦ′(x)− (λ + r)Φ(x)

)
− (λ + r)Φ′(x).

Then Φ satisfies the ordinary differential equation AΦ = 0 on (0,∞), where A
is given in (1.6). Next, we consider the boundary conditions for Φ. By the definition
of Φ, we have Φ(0) = g(0). Also by Proposition 2.1, we have limx→∞ Φ(x) = 0.

Clearly, (4.9) gives another boundary condition: σ2

2 Φ′′(0+) + cΦ′(0+) = (λ +
r)g(0) − λ

∫ 0
−∞ g(y)ηeηydy. Then as shown in Appendix A, if r > 0, Φ(x)

is given by the formula (1.5). Now, if g is an nonnegative function such that∫ 0
−∞ g(y)ηeηydy < ∞, by approximation of g by bounded functions, we see that

(1.5) still holds for g. The proof is now complete.

APPENDIX A. SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

We consider the ordinary differential equation(ODE):

Af = 0, on (0,∞)(A.1)

subject to the boundary conditions

f(0) =K1,(A.2)

lim
x→∞ f(x) =0,(A.3)

σ2

2
f ′′(0) + cf ′(0) =K2,(A.4)

for some constants K1, K2 ∈ R. Here, A is given by (1.6).

Lemma A.1. For r > 0, the characteristic polynomial p(x) of (1.6) has three
distinct real zeros ρ2, ρ1, ρ with ρ2 < −η < ρ1 < 0 < ρ.

Proof. Set p1(x) = σ2

2 x2 + cx + λ
∫∞
0 e−xyηe−ηydy − (λ + r). First, note that

p(x) = p1(x)(x + η). Hence, on (−η,∞), p(x) and p1(x) have the same zero
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set. Using differential calculus, one sees that p1 is strictly convex on (−η,∞) with
p1(0) = −r < 0. Since limx→(−η)+ p1(x) = ∞ and limx→∞ p1(x) = ∞, there are
two distinct solutions for p1(x) in (−η, 0) and (0,∞) respectively. Similarly, there
is one solution for p(x) in (−∞,−η).

The general solution for (A.1) is given by f(x) = Aeρ1x + Beρ2x + Ceρx for
some constants A, B and C. Since limx→∞ f(x) = 0 and ρ2 < ρ1 < 0 < ρ, we
get C = 0. This gives f(x) = Aeρ1x + Beρ2x. By the boundary conditions (A.2)
and (A.4) respectively, we get

A + B = K1

and
A

(
σ2

2
ρ2

1 + cρ1

)
+ B

(
σ2

2
ρ2

2 + cρ2

)
= K2.

Simple algebra leads to

A =
K2 −

(
σ2

2 ρ2
2 + cρ2

)
K1

σ2

2 (ρ2
1 − ρ2

2) − c(ρ2 − ρ1)

and

B =
K2 −

(
σ2

2 ρ2
1 + cρ1

)
K1

σ2

2 (ρ2
2 − ρ2

1) − c(ρ1 − ρ2)
.

Hence, the solution of (A.1) with the boundary condition (A.2), (A.3) and (A.4) is
given by

f(x) =
K2 −

(
σ2

2 ρ2
2 + cρ2

)
K1

σ2

2 (ρ2
1 − ρ2

2) − c(ρ2 − ρ1)
eρ1x +

K2 −
(

σ2

2 ρ2
1 + cρ1

)
K1

σ2

2 (ρ2
2 − ρ2

1) − c(ρ1 − ρ2)
eρ2x.
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