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GROWTH ORDERS OF CESARO AND ABEL MEANS
OF FUNCTIONS IN BANACH SPACES

Jeng-Chung Chen, Ryotaro Sato and Sen-Yen Shaw*

Abstract. For continuous vector-valued functions, we discuss relations among
exponential and polynomial growth orders of the v-Cesaro mean (v > 0) and
of the Abel mean. In general, the Abel mean has growth order not larger
than those of Cesaro means, and a higher-order Cesaro mean has a smaller
growth order than a lower-order Cesaro mean. But, for a positive function in
a Banach lattice, the Abel mean and all y-Cesaro means with v > 1 (but not
with 0 < v < 1) have the same polynomial growth order. The possibility of
non-equal growth orders for these means is illustrated by some examples of
Cy-semigroups and cosine operator functions.

1. INTRODUCTION

Let uw € C([0, 00), X) be a continuous function with values in a Banach space
X. For v > 0, t > 0, the y-th order Cesaro mean (or (C,~)-mean) ¢, of u over
[0, ¢] is defined as ¢] := u(0) and, for ¢ > 0,

{ u(t) if vy=0,

1 T — () =
) N (I PR

= (kw—kl(t))_l(kw xu)(t),
where kg := dy, the Dirac measure at 0, and k. (t) := ¢7=!/T'(y) for v > 0. For
A € C with Re) > 0 the Abel mean a) of « is defined as

o0 t
2 ay = ay(u) := )\/ e Mu(s)ds = )\tlim e Mu(s) ds
0 —Jo

Received May 13, 2009.

2000 Mathematics Subject Classification: 40E10, 40G05, 40G10, 46B99, 46B15, 47A35, 47A63.
Key words and phrases: Cesaro mean, Abel mean, Exponential growth order, Polynomial growth
order, Ch-semigroup, Cosine operator function.

*Research partially supported by the National Science Council of Taiwan.

1201



1202 Jeng-Chung Chen, Ryotaro Sato and Sen-Yen Shaw

if the limit exists. The abscissa of convergence o (u) of the Laplace integral u(\) =
JoT e M u(s) ds = limy_.o0 fot e Mu(s) ds is defined as

t
o(u) :=inf {Re)\ s lim [ e Mu(s)ds exists}.

t—o00 0
Note that if f0°° e *u(s) ds exists as a Bochner integral, then it agrees with the
definition of Laplace integral by the dominated convergence theorem. w is said to
be Laplace transformable if o(u) < co. The mapping @ : A — u(X) is called the
Laplace transform of w. It is known that if \ € C satisfies ReA > o(u), then the
Laplace integral u(A) = limy_,o0 fot e u(s) ds exists, and the Laplace transform
u: A+ u(N) is analytic on the domain {\ € C : ReXA > o(u)} (cf. [1, Theorems
1.4.1 and 1.5.1]). We mainly consider ay with A\ € R such that A > max{c(u), 0}.

For fixed u we use ¢’ and a. to denote the continuous functions ¢ — ¢} (u) and
A — ay(u), respectively. When we consider a strongly continuous operator-valued
function ¢t — T'(¢t) (¢ B(X)) on [0,00), such as a Cp-semigroup (7'(t));>o of
bounded linear operators on X, we set u(t) := T'(t)z, where z € X, and use the
notations C}'z and A,z instead of ¢ (7'(-)x) and a)(7'(-)x), respectively. Clearly,
the mapping C; : = — C] 2 becomes a bounded linear operator on X. If Ayx
exists for all x € X, then the mapping Ay : z — A,z is also a bounded linear
operator on X by the uniform boundedness principle.

One of the important issues of ergodic theory is concerned with convergence
of the Cesaro mean and the Abel mean of operator-valued functions. It is well-
known that convergence of a function implies convergence of its Cesaro mean, and
the latter implies convergence of the Abel mean (cf. [6, Theorem 18.2.1]), but not
conversely (cf. [7, pp. 115-116]). This result seems natural if one notices the fact
that the Abel mean is dominated by the Cesaro mean, and the latter is dominated
by the function itself (cf. [8, Proposition 2.1]). Recently, some papers appeared
discussing characterizations of bounded and polynomially bounded Cy-semigroups
in terms of boundedness conditions on their Abel means (cf. [3, 4, 5, 9]). In [8] we
have compared the growth orders of C} and A, for a Co-semigroup. In this paper
we continue the investigation of ¢/ (u) for all v > 0 and for a general vector-valued
function w.

We need to introduce some more definitions. The function w is said to be
exponentially bounded if |ju(t)|] < Me™* for some M > 1, w € R and all ¢ > 0.
In this case, we can define the exponential growth order (or bound):

wo(u) :=inf{fw € R : |Ju(t)| = O(e™) (t — o)} < oo.
Clearly, [° e *u(t) dt exists as a Bochner integral for all A with ReA > wp(u).

It follows that o(u) < wg(u). If wo(u) < 0, then u is said to be sub-exponential.
If o(u) <0, then one can define the growth order ag(a.) of a. at 0 as

3) ao(a) == inf{a € R : [lay]| = OA™) (A ] 0)}.
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One can also define the polynomial growth order of v as
(4) ap(u) :=inf{a e R : |lu(?)|| = O(tY) (t — c0)}.

If ap(u) < oo, then w is said to be polynomially bounded.

It would be interesting to find the relations among wq(u) and wp(c¢”) (0 < v <
o), and the relations among ag(u), ap(c’) (0 < v < 00), and ap(a.). The aim of
this paper is to investigate various growth phenomena of functions.

Section 2 is concerned with general relations among growth orders and the
abscissa of convergence. In particular, both max{wy(c”), 0} and max{o(c’),0} are
non-increasing functions of ~ on [0, o0), and max{wy(¢?),0} = max{o (¢’ '), 0}
for all ¥ > 1 (Theorems 2.2 and 2.3). Moreover, if u # 0 is a positive function in
a Banach lattice, then we have (Remark under Theorem 2.6)

wo(¢?) > wo(c!) = wo(¢?) = o (<7 ) = max{o(u),0}

forall 0 < 8 < 1 and v > 1, where the first inequality may be strict, and it may
happen that wo(c!) = 0 > wo(c) = wo(u) > o(u). Regarding the polynomial
growth orders, we see that if o(u) < 0 then the inequalities

(5) ap(a.) < max{ag(c?'), =1 — '} < max{ag(c?), =1 — v}

hold for all 0 < v < v’ < oo (Corollary 2.8). In addition, if u is a positive function
in a Banach lattice then the equivalence

(6) sup [A%ay|| < oo & sup ||t/ < o
A>0 t>0
holds for all v > 1 whenever o« > —2 (Corollary 2.10).

Two questions come up naturally: (A) When do the inequalities in (5) become
equalities and for what examples will some of the inequalities become strict? (B)
Does the equivalence in (6) hold for 0 < v < 1? To answer these questions, we turn
to consider in Sections 3 and 4 growth orders of means of a Cy-semigroup (7'(¢) ):>0
of bounded linear operators on a Banach space X. In Section 3 we see that for
each integer k& > 1 there exists a Cy-semigroup (7'(t))¢>o such that ||CF|| ~ tF—"
(t — o0)formn =0,1,....0k, |[C]]| ~ ¢t (t = o0) forall vy > k+1,
| Al ~ A (A L 0), sup;~ [|C/ || < oo for all v > k, and sup,~ ||C} || = oo for
all v with 0 <~ < k (Theorems 3.4 and 3.5). Here, a(t) ~ b(t) (t — oo) [resp.
(t | 0)] means that both the ratios a(t)/b(t) and b(t)/a(t) are bounded in some
interval (4, c0) [resp. (0,d)]. In Section 4 we see that for any 0 < v < 1 there
exists a Cp-semigroup (7'(t)):>o of positive linear operators on an L;-space such
that sup,~ ||C}|| = oo, but sup,~ HCfH < oo for all 5 > ~ and, in particular, the
Abel means of (T'(t)):>o are uniformly bounded (Theorem 4.2).
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2. EsTimaTES OF GROWTH ORDERS

In this section we compare growth orders of the Cesaro means ¢/, with v > 0,
and the Abel means a) (A > max{o(u),0}) of a function v € C(]0, ), X). To
do this we start with the following

Lemma 2.1. For all 4 > 0, the Laplace transform of k., satisfies k. (\) =
A7, A > 0, and therefore k., = k.ks so that k, x ks = k.5 for all r;s > 0,
where k, x ks denotes the convolution of &, and k.

Proof. If v =0, then ko()) := Jo e ddo(t) =1 = A0 for all A > 0. Next,
if v > 0, then
1

Ey(X) = /0 e M (1) dt:W /0 e Mt = AT

for all A > 0. Hence, for all A > 0 and r, s > 0, we have
Frs(N) = A7 = A7 07 = Bk = (B % ko) (V),

so that, by the uniqueness of the Laplace transform, k, x ks = k. |

We first state results on exponential growth orders and their relations to the
abscissa of convergence.

Theorem 2.2. Let u € C([0,00), X') and v > 0. Then the following hold.
(i) [l < sup ||c2|| for all 3> 0 and ¢ > 0.
0<s<t

(i) If ||c]|| < Mev* for some M > 0 and w > 0 and all ¢ > 0, then ||c] ™| <
Me*t for all 3> 0 and ¢ > 0. Thus max{wo(c?™),0} < max{wo(c?),0},
that is, the function v — max{w(c”), 0} is non-increasing on [0, oo).

Proof. (i) Using Lemma 2.1 and (1), we can write

19720 = (a8 (K < ) O
= (e ()7 ks = by 5 ) (1)
= (ke () (ks (a0
< (ke ()™ iy * k) (0) sl

I
w0
c
IAD
fA
Al
2=
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(ii) Note that ||c/|| = O(e"") (t — o0) is equivalent to ||c/|| < Me™* for some
M > 0 and all ¢ > 0 because « is assumed to be continuous on [0, co).
Hence the assertion follows immediately from (i). |

Theorem 2.3. Let u € C([0, c0), X). Then the following hold.
(i) Forall v > 0 we have

21) max{c(c)),0} = max{o(ky *u),0}
= max{wo (k41 * u), 0} = max{wp(c7 1), 0}.

Thus the function v — max{o(c”), 0} is non-increasing on [0, o).
(i) The identities

(2.2) ay = At /0 e M (ky % u)(t) dt = ANV /0 e M (t)e] dt

hold for all v > 0 and A € C with ReA > max{o(u), 0}.

Proof. (i) We first see that if p is a measurable function on (0, co) such that
wo(p) = wo(1/p) = 0 then

(2.3) wo(pu) = wo(u)

for all v € C([0,00),X). In fact, it follows from wy(p) = 0 that wo(pu) <
wo(p) + wo(u) = we(u). Similarly, wy(u) < we(pu) follows from wy(1/p) = 0.

Next, we see that if p is a differentiable function such that w(p) = wo(p’) = 0
and if [} ||p(s)u(s)|| ds < oo, then

(2.4) o(pu) < o(u).
In fact, the assumption implies that fol e Mp(s)u(s) ds exists for any \. Take

any A > o(u). Then u(Xg) exists at some \g € (o(u),\), so that the function
v(t) := fot e~20%u(s) ds is bounded on [0, o). Using integration by parts, we have

te_ks s)u(s)ds = te_(’\_’\o)s s)e % (s) ds
/1 p(s)u(s)d /1 p(s) (s)d
= O (py(t) — e AN p(1)0(1)

+(A—Xo) /lt e~ A203p(s)u(s) ds

t
— /1 e~ A0y ()u(s) ds
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for all ¢ > 1 Since v is bounded and wy(p) = we(p’) = 0, it follows that
[ e p(s)u(s) ds exists and

Hence (pu) (M) exists. This shows o (pu) < o(u).
Since wo(kg) = wo(1/kg) = wo(k/ﬂ) = wo((1/kﬂ)/ =0, [y |lka(s)u(s)| ds <
oo and fo |(kg—1 * u)(s)/kg(s)||ds = fo 127 ds < oo for all 3 > 1 and

u € C([0,00), X), applications of (2.3) (with p = k.,11) and (2.4) (with p = k44
and p = 1/k41) yield that

(2.5) wo(c?) = wo(ky+1¢7) = wo(ky * u),

26)  o(c?) = o ((ky * 1) /kys1) < (ke * 0) = o(kyr16?) < o(c?)

for all v > 0.

It is known (cf. [1, Theorem 1.4.3]) that w is Laplace transformable if and only
if 1w is exponentially bounded (i.e. o(u) < oo if and only if wy(1*u) < oc), and
o(u) <A< we(lxu) < A (if A > 0), that is, max{o(u),0} = max{wo(l xu),0}.
By this, together with (2.5) and (2.6), we deduce (2.1). Since max{wg(c” 1y, 0} is
known to be non-increasing on [0, oo) (by Theorem 2.2(ii)), max{c(c’), 0} is also
non-increasing on [0, co).

(if) Since the case v = 0 is trivial, we consider the case v > 0. Let A € C be
such that ReA > max{c(u),0}. Then ReX > o (k. * u), and so

/ My wu)() dt = )\/ M (1 (k%)) () dt
0 0
_ ) / M (1 5 ) (8) dt

0
(cf. the proof of Theorem 1.4.3 of [1]). Since ReA > max{o(u),0} > wp(1 * u)
implies

[ e s wl d < o
0

we then apply Fubini’s theorem to obtain that
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)\/OO M (o ) (8) dt = )\/OO M+ (1% u))(t) dt

0 0

oot
= )\/0 /0 e_’\(t_s)ky(t —5)e (1 xu)(s) dsdt

~ /0 M (1) dt - /0 T e (1 k) (s) ds

= A AT A2, = A0 Dg,

Hence -
/ M (k% u)(t) dt = A~ gy,
0
and this completes the proof. |

Remark. There exists a « such that the function max{c(c¢”),0} is strictly

decreasing in the sense that max{coo(c?),0} > max{coo(c? ), 0} for some 7/ > v >
0. For example, if u(t) = €' sine + €% cos e, then

(1% u)(t) = e'sine’ —sinl, (kg *u)(t) = —cose’ —tsinl+ cosl.
Thus wo(u) = 2, wo(c!) = wo(l*u) =1 = o(u) = o(c?), and

wo(c?) = wo(ky ¥ u) = 0 = (1% u) = o(c!), sup || < oo, sup t|c}| < oco.
>0 >0
It follows that o(¢?) = 1 > o(c!) = 0.

Theorem 2.4. Let u € C([0, c0), X). Then the following hold.

(i) If0 < o(u) <w < oo, then sup,,, [[ar]] < oo.
(i) If o(u) <0, then supy-q A tan]] < oo and supy.g [lax]| < oc.

Proof. (i) Choose 6 € R such that o(u) < 6 < w. Then 6 > o(u) =
max{o(u),0} = max{wg(k; *u),0}, and so there exists Ms > 0 such that ||(k; *
w)(t)]| < Msed for all ¢ > 0. Put ui(t) = xj1,00)(B)u(t), Fi = fol u(s) ds, and
M(l) = maxo<¢<1 Hu(t)” Then

0 if 0<t<1,
(k1 xup)(t) = {

(kl *u)(t)—Fl if t>1.

Thus, for all A\ > w,

00 1 00
aA:A/)e*%uﬁh:A</}+/))e*%uﬂh:I+IL
0 0 1
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where )
1] < )\/ ML) dt < M(1),
0

and by Theorem 2.3(ii)
I = )\/ e Muy(t) dt = )\2/ e M (ky % up)(t) dt
0 0

a2 /100 M ((y +u)(t) — Fy) dt,

whence

e—>\

|11]| < )\2/ e~ AN dt + | Fy || X2 -
1

)\2
< M5 3— e LA™ 50 as A — oo

Therefore, lim sup,_., [|ax|| < co. On the other hand, since

laxll = A%

/0 My u)(t)dtH

< Ms)? / e A=t = MsA2(\—0)7 1,
0

it follows that lim sup, |, [lax|| < Msw?(w — §) . Hence, supy.,, [lax] < oo.
(ii) If o(u) < 0, then, by Theorem 2.3(ii),

iy = A / e Mu(t) di = A2 / M 5 u) (1) dt
0 0

for all A > 0. Since the hypothesis o(u) < 0 implies that lim; oo (1 * u)(t) =
Jo~ u(s) ds exists, it follows that M := sup,~q ||(1 % u)(t)|| < co. Hence

axll < )\2/ e MM dt = M\
0

for all A > 0. By this and the proof of (i) we also have sup,- [lax]| < oc.
The proof is complete. ]

Remarks. (1) The hypothesis 0 < o(u) < w < oo cannot be sharpened as
0 < o(u) = w < oo in Theorem 2.4(i). To see this, let Ay > 0 and define
u(s) := e*o%s for s > 0. Then o(u) = g and, for all A > \g, we have

x xD A
a) = )\/ e Mu(s) ds = )\/ e A A)sggg — 7
0 (=) 0 (A= X0)2
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Since limy |y, A(A — Ag) ™2 = oo, it follows that sup, -, [[ax]| = oo.

(2) As for Theorem 2.4(ii) we note that op(a.) < —1 cannot be expected in
general. To see this, let u(t) := max{2 — ¢, 0} for ¢ > 0. Then u € C([0, c0), R)
and wo(u) = ap(u) = —oo. Since u(t) > 1 on [0, 1], it follows that a) >
A [ e dt for all X > 0. Since limy g [) e > dt = 1, it follows from Theorem
2.4(ii) that ag(a.) = —1. (See also Corollary 2.10(ii).)

We will see that if u € C([0,00), X) is a positive function in a Banach lattice
X, then the function v — max{o(c”), 0} is constant on [0, oo) (Theorem 2.6). To
prove this we use the following lemma, which is stated in more general form than
needed here.

Lemma 2.5. Let X be a Banach lattice, and u : (0, c0) — X be a positive
X -valued strongly measurable function on (0, co) such that f;’ lu(t)|| dt < oo for

all 0 < a<b<ooand [ u(t)dt:=limey [ u(t)dt exists. Let A > 0, v > 0
and z € X. Then

oo b
/ e Mu(t) dt <:: lim / e Mu(t) dt) =z
0 b—c0 Jo

A7 / e M (ky x u)(t) dt = x.
0

Hence max{c(u),0} = max{o(k, * u),0}.

if and only if

Proof. It is immediate that (k. * u)(t) exists for almost all ¢ > 0 and the
mapping ¢ — (k. *u)(t) becomes a positive X -valued strongly measurable function
on (0, co0). In order to prove the lemma it is necessary to show thatfol(kw*u)(t) dt =
lim, o fj(k7 * u)(t) dt exists. To do this, let 0 < § < e. Then we have

/ (k) (8) dt
)

= /6E {/Ot ky(t — s)u(s)ds p dt
= 17;?8 ; {/nt oy (t — s)u(s)ds} dt

~ tim ; {/5 ko (t— s)dt} u(s) ds—i—/; {/ o (= s)dt} u(s) ds

(by Fubini’s theorem)

_ /06{/;1{7(75—3)@} uls) ds—i—/; {/:kw(t— ) dt} u(s) ds.
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For any n > 0 we can choose €~ > 0 so that

~

/ ky(s)ds <n and
0

~

/ u(s)ds
0
Then, for 0 < § < € < €~ we have

/06 {/; ky(t —s) dt} u(s) ds
T
/05 u(s) ds /;u(s) ds

This implies that || [ (ky * w)(t)dt| — 0 as e | 0 with 0 < § < e. Hence
Jo (ke %) (t) dt = lime o [ (ks * u)(s) ds exists.
Suppose [;° e~ *u(t) dt = x. We first prove that

<.

/(:(k7 ) (t)dtH <

<n +1 <22

b
weak- lim )\7/ e M (ky x u)(t) dt = x.
0

b—o0

Let x* be any element of X*, where X* denotes the dual space of X. It suffices
to show that

00 b
v e M * 1 z* = lim \7 e M * U z* = (z, ).
W [y ), dr = i X[k )0, 0%) e = (o, 0%

b—oo 0

Here, if necessary, we may consider the real part of z* without loss of generality.
Thus we may assume that =* is a real-linear functional on X. Then z* can be
written as z* = x} — x5, where z7 and x% are positive real-linear functionals on X.
Therefore, from the first, we may assume that x* is a positive real-linear functional
on X. Then, since (u(t), z*) > 0forallt > 0and [;° e~ (u(t), z*) dt = (z, z*),
Fubini’s theorem implies that

¥ / M (k) 5 u) (), ) dt
0
00 t
= )\7/ / e_’\(t_s)ky(t — s)e ¥ (u(s), z*) dsdt
o Jo
:)\7/ e M (t) dt-/ e (u(s), z*) ds
0 0

=T\ /000 e M (u(s), 2*) ds = (x, z*).
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Hence \7 fob e M(ky xu)(t)dt < x forall b> 0, and
b
weak- blim )\7/ e M (ky % u)(t) dt = .
— OO 0

By this together with the fact that the weak closure and the strong closure of a
convex subset of X are identical, given e > 0 and G > 0, we can choose b; > G
and ¢; >0 (j=1,2,...,n)such that 3°7_, ¢; = 1 and

x—mz / Hky % u)(t) dt|| < e

Then, for all b > max{by,bs, ... ,b,}, we have
b
A”ch/ bk *u()dtﬁ)ﬂ/ e M (ky * u)(t) dt < z,
0

and thus

x—)ﬂ/ Ak, *u)()dt“< x—)\Wch/ Fky * u) (1) dt|| < e,

which proves that A7 [ e (k « u)(t) dt = .
The converse implication is also proved by the same argument, and hence we
omit the details. m

Theorem 2.6. Let X be a Banach lattice and 0 # u € C([0, c0), X) be a
positive X-valued function. Then o(¢”) = o(u) for all v > 0 if o(u) > 0, and
o(c¢’)=0forall vy >0 if o(u) <0.

Proof. Suppose o(u) > 0. Then it follows from (2.6) and Lemma 2.5
that o(¢!) = o(ky *u) = o(u) > 0 for all v > 0. Next, suppose o(u) < 0
and v > 0. Then, since u # 0 by hypothesis, it follows that [ e *u(t) dt >
JoZ e Ptu(t)dt > 0 for all 8> X > 0. Therefore Lemma 2.5 yields

/OOO e Mu(t) dtH =

which proves that o (¢!) = o (k, * u) = 0. [

lim

A0 ALO

/000 e—/\'f(k7 * u)(t) dtH ~lim A
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Remark. Let v # 0 be a positive function. Then, by Theorems 2.6 and 2.3,
max{wg(c!),0} = max{o(u),0} = o(<?"') = max{wo(c?),0} for all v > 1.
Further, there exists & > 0 such that fOK u(s)ds > 0. Thus, if 0 <y <1, then

ol t y t v K
¢/ (t —s) tu(s)ds > o A / u(s)ds > ?/ u(s)ds #0
0 0

=7
for all ¢ > K, which implies wq(c?) > 0. By a similar calculation, if v > 1 then
wo(¢?) > 0. Thus, by Theorem 2.2, the function v — wq(c”) is non-increasing on
(0, 00), and wo(c?) = max{c(u),0} for all v > 1. (It may happen that wp(c!) =
0 > wo(c?) = wo(u) > o(u) for some positive u # 0.) Here we note that, for any
given 0 < « < 1, there exists a positive u # 0 such that o(u) =1 — 1/ < 0, and

27 wo(c@):{ 1-8/y if0<B<y,

0 if B8>n~.
We give an example showing this.
Example 1. Let N : N — N be a strictly increasing function such that

. n . Nn+1)
2.8 1 =0 d lim ————+=1
29 AN =" TN

(e.9. N(n) = n? satisfies (2.8)). For n € N, define §,, with 0 < §,, < 1 by

N(n)

(2.9) / (N(n) —s)"tesds = 1/2™.
N(n)—6én

A simple calculation yields that

(2.10) 50 ~ exp{~(N(n) +nln2)/7} (n>1),

where a(n) ~ b(n) (n > 1) means again that both the ratios a(n)/b(n) and
b(n)/a(n) are bounded on N.

Define
A= U [N(n) — 6, N(n)), and wu(s):=xa(s)e’® (s>0).
n=1

Thus w is a nonnegative function on [0, co). Although  is not a continuous function,
cf = cf(u) can be defined as in (1) for all 3> 0 and ¢t > 0. First we prove that «
satisfies (2.7). The following is a sketch of the proof.
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Since 7! is a non-increasing function on [0, cc), it follows from (2.9) that for
N(n) <t < N(n+1) we have

1

n+1 N (k) 1
/ (N(k) —s) " tefds = l — < v ,

%
=1/ N (k)= Y o1 2 a

+

¢ <

T2

~
i

which tends to 0 as ¢ — oo. Hence wo(c?) = 0, and s0 wo(c”) = 0 for all 3 > .
On the other hand, w(¢®) = wo(u) = 1 is obvious from the definition of
Suppose 0 < 3 < 7. For N(n) <t < N(n+ 1) we have

n+1 N (k)
(2.12) )P Z/ — 5)P71es ds,

where by (2.10)

N(k)
/ (N (k) —s)PLedds ~ eN(k)(Slf
N(k)—5,

Nexp{N(k)<<1—g> —g-N’Zk) ln2>} (k>1),

and by (2.8)

i (1) 2 s =120

Thus, if D > 1— 3/~ is fixed, then for all sufficiently large %

N §7 < exp(N(k)D).

Therefore )
n+ N(k)
@Z/ " (N (k) —s)Les ds
/8 N(n+1

:0(1)-N(n)ﬂ Z eF

<o) N(i)ﬂ %exp{( (n+1)+1)D}

:0<1).exp{tD.W}_
Since

fim MDA NeEDHL 0 08)),

t—o0 t n—00 N(n)



1214 Jeng-Chung Chen, Ryotaro Sato and Sen-Yen Shaw

it follows from (2.11) that wo(c.ﬁ) < D forall D>1— /v so that

wo(c’) < 1— B/.

Similarly the reverse inequality follows, and hence (2.7) follows for . By (2.10) we
also have [ e "u(s)ds =Y o, ]S[((??))_(Sn e=ms ds < oo if (1—n)—1/v <0,
and [ e "u(s) ds = oo if (1—n) —1/y > 0. Thus o(u) =1 —1/~. By using
this, it is now easy to find a continous « on [0, co) satisfying o(u) =1 — 1/~ and
(2.7). We may omit the details.

Next we turn to polynomial growth orders.

Theorem 2.7. Let u € C([0,00), X') and v > 0. Then the following hold.

(i) If there exist M > 0 and o > —1 — ~y such that ||} || < M¢* for all ¢ > 0,
then

Fv+a+1) T(y+B8+1)
F'y+1) I'(v+B8+a+1)

for all 5> 0 and ¢t > 0; for the case « > 0, the right hand side of (2.12) is
less than or equal to Mt®.

(2.12) ) < M

(if) If, in addition to the assumption of (i), o(u) < 0, then, for all A > 0,

F'y+a+1)

AT
L(y+1)

(2.13) lax]] < M

Proof. (i) Since the assumption implies

t7 I'v+a+1
b O < e = MO

S M =My e

for all £ > 0, it follows that

Hcf“ﬂH = [|(kyspr1(8) " (kg * (kyr1¢?))()]|  (cf. the proof of Theorem 2.2(i))

MF(”y—i—Oc—i—l)F(’y—i—ﬂ—i—l)
- I'(v+1) o

(kg * kyyat1)(t)

F(7+a+1)F(7+ﬁ+1)k ;
F('y—l— 1) B ’Y+ﬂ+o¢+1( )

Fy+a+1) T(H+p+1) s
F'v+1) T'(y+B+a+1)
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for all ¢ > 0.
Since f(-) :=InT'(-) is a convex function on the interval (0, oo) (cf. e.g. [2],
[13, p. 251]), for «, 3,y > 0, we obtain

m<N&§iBD>Sm<H&ti;i;D)

Since In(-) is an increasing function, it follows that

Fy+a+1) Ply+B8+1)
M+ ThtptatD <! (@F720)

which implies that the right hand side of (2.12) is less than or equal to Mt* when
a > 0.

(ii) Since o(u) < 0, we can apply Theorem 2.3(ii) and then use ||c/|| < Mt~
for all ¢ > 0 to obtain the following estimation for all A > 0:

lax]| = A7

[ nwda <00 [T i) a
0 0

Fy+a+1) [ _
— v+1 7\1 At t
A T(y+1) /0 e Vhytatr(t)d

— )\7+1Mr(7+a+1))\_(7+a+1) :MF(7+Q+1)A—Q m

L(y+1) L(y+1)

Corollary 2.8. Let v > 0 and u € C([0, c0), X). Then the following hold.

(i) fa>—1—~and ||c]|| = O(t%) as t — oo, then ||¢}' || = O(t%) as t — oo
for all 4" > ~; in addition, if o(u) <0, then |la)|| = O(A~%) as A | 0.
(i) If o' > ~, then

(2.14) ap(¢?) < max{ag(c?), =1 —~}.
In addition, if o(u) < 0, then

(2.15) ap(a.) <max{ag(c)), -1 —~}.

Proof. (i) Let+’ > ~. By the assumption we can choose two constants M > 0
and A > 0 so that ||| < Mt~ for all t > A. Then, putting B = [|¢/ x[0, 4] ()]0
(< oo because u is assumed to be continuous on [0, o)), we have

(2.16) ]|l < Mt + Bx(o, 4)(t) (t >0).
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Noting the identity ¢}’ = (kyry1(8)) "My —y # (kyg1¢?)](t), and using (2.16) to-
gether with the proof of Theorem 2.7(i), we have
67 11 < (B (8) ™ Ry 5 (R €7 1D](2)
Fv+a+1) T +1) s
- F'y+1) TI'v+a+1)
'y +1) /t (t— 3)7/_7_137
" Jo (v = T(v+1)
Iy +1) BAtH!
' T =7y +2)
2T'(y' + 1) BAY !
Ly = )Ty +2)

+ Bx(o, 4)(8)ds

< Myt® + (- A

< Mit® + t=771 (for all t > 2A).

Since o > —1 — +, this shows that HcZ/H =O0(t") ast — oo.
Next, suppose o(u) < 0. Using (2.16) together with the proof of Theorem
2.7(ii), we obtain

F'(y+a+1)

al| < M

A
A" 4 \TLB / K1 (t) dt
0

for all A > 0, where

A
B [ () (0) dt = Bl sa(4).
0
Since a4+ + 1 > 0 implies A= > \7*! for 0 < A < 1, it follows that

Joall < (=2 o)A 0<a<).

(i) This is an immediate consequence of (i). ]

Remarks. (1) The existence of M > 0 and o > —1 —~ such that ||c] || < Mt*
for all ¢ > 0 does not imply o(u) < 0, when ~ > 1. For example, the function «
as considered in the Remark under Theorem 2.3 satisfies ||cZ|| < M for all ¢ > 0,
but o(u) = 1. On the other hand, it follows from Theorems 2.2 and 2.3 that if
0<vy<1land ||| =O0(t*) as t — oo, then o(u) < 0.

(2) When u # 0 is a positive function in a Banach lattice X, the condition
]| = O(t*) as t — oo, where a € R, does imply o(u) < 0, and thus the
assumption o (u) < 0 can be omitted from Theorem 2.7 and Corollary 2.8. For, the



Growth Orders of Means of Functions in Banach Spaces 1217

condition ||¢/|| = O(t*) as ¢ — oo implies wo(c’) < 0, and thus, by the Remark
under Theorem 2.6,

o(u) < max{o(u), 0} = wo(c?™) < wo(c?) < 0.
(3) Inequalities (2.14) and (2.15) are sharp. Here is an example:

Example 2. Define a positive function v € C([0, o), R) by u(t) := max{1 —
t, 0} for t > 0. Then wy(u) = ap(u) = —oo; and by an easy calculation together
with the binomial expansion (1+¢)7™ = 1452 (v +1)7y...(y+1—n+1)t"/n!
for t € C with |¢| < 1, we obtain that, for all v > 0 and ¢ > 1,

=L l(t — )1 —s)ds =1+ L{u — 1/t - 1},

" Jo y+1
v 1
==-—(140(1)) as t— oo,
2t
and )
ay = )\/ eM(1—s)ds=1—(1—e?)/x forall X\>0.
0
It follows that wo(¢”) = 0 and ag(c?) = —1 for all v > 0. Since limy o A~ a,

limyjp A1 — (1 — e7*)A=2 = 271, it also follows that ay = 27*A(1 + o(1)) as
A | 0, and hence ap(a.) = —1. Thus, both (2.14) and (2.15) become ao(c7/ =
ap(a.) = =1 = max{ap(c’), =1 —~} forall 4/ > v > 0.

(4) Let Ao > 0. Then the function u;(¢) := tro—1 for ¢ > 0 satisfies

t
¢/ (u1) = % ; (t—s)7 tsrolds

1
= ~thol / (1—s)"1sr ds = 41271 B(y, \o)
0
for all ¥ > 0 and ¢ > 0. Further we have
ax(ur) = A / e Mot gy = \~(o~D) / e dt = \~Comhp()\)
0

0

for all A > 0. Thus we have ag(¢”(u1)) = ap(u1) = Ao — 1 = ap(a.(uq)) for all
v > 0. Of course this is a special case. In general the function v — ag(c”) is not
constant on [0, oo). To understand this situation, we give the following example.

Example 3. Define ua(t) := x[o,2x)(t)sint for t > 0. Then ag(a.(u2)) =
—2 = ap(c? (ug)) for all v € [0,00) \ {0, 1} and o (c®(uz)) = ap(ct(ug)) = —oo.
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To see this we first notice from the definition of us that ag(c%(u2)) = ap(cl(ug)) =
—o0. Next by an elementary calculation we obtain

)\(1 _ e—27r>\)
M) ="
for all A > 0. It follows that limy o A~2a) = 27 and ap(a.(u2)) = —2. Since

ao(ct(uz)) = —oo, it then follows from Corollary 2.8 that ag(c” (ug)) = —2 for all
~ > 1. Finally, suppose 0 < v < 1. Then, for all ¢ > 27, we have

—y 27
—c/(ug) = 7 . (t—s) 'sinsds

— " <(t — 3)7_1 —(t—m— 3)7_1> sin s ds

t7 Jo
<2 OW{(t—w—s)v—l—(t—s)v—l}ds
- %{Q(t—w)V—(t—Qw)V—ﬂ} — 91— /t) — (1— 20/t) — 1

= (- D (L +e(1) a5 t— oo

Similarly, if 0 < 6 < /2, then

T—0
—c/(ug) > % siné/é {(t s (- 3)7_1} s

= (m by (2w 0)) — (-0 -t o)))

tY

= Ay~ (r — 20)sind 5 (1+0(1)) 8 t = ox.

Hence it follows that cg(c”(uz)) = —2 forall 0 < v < 1.

It is interesting to note that if us(¢) := sint for ¢ > 0, then ap(a.(u3g)) = —1 =
ao(c!(us)) for all v > 1 and ap(c!(u3)) = —v for all 0 < v < 1. This can be
proved by a similar calculation.

Theorem 2.9. Let X be a Banach lattice and u € C([0, c0), X) be a positive
X-valued function. Let v > 1 and « > —1 — . Then
(i) supys [|t7¢] || < oo if and only if o(u) < 0 and sup - [|A\%ay]| < oo;
(ii) ||c]|| = O(t*) as t — oo if and only if o(u) < 0 and [lay| = O(A~*) as
Ao
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Proof.  Each of the first conditions of (i) and (ii) implies o(u) < 0, as was
observed in the above Remark (2), so that the necessity parts of (i) and (ii) follow
from Theorem 2.7(ii) and Corollary 2.8(i), respectively.

To show the sufficiency part of (i), suppose A\*|jay|| < M for all A > 0. By
Theorem 2.3(ii) for all A > 0 we have

A%ay = )\O"w/ e (ky—1 % u)(s) ds.
0

Since w is positive, it follows that
t
A%ay > )\O"w/ e (ky_y * u)(s) ds
0

> AP Mk xu)(t) = XTe M4 (1)) > 0.

Here, fix any ¢ > 0 and let A\ = 1/¢. Then we obtain that ¢t~%||¢/|| < MeI'(y + 1)
for all ¢ > 0, i.e., that sup,~ ||t"%¢/|| < oc. This proof also shows the sufficiency
part of (ii), since A = 1/t | 0 is equivalent to t — oo. ]

Corollary 2.10. Let X be a Banach lattice and v € C([0, o), X) be a positive
X -valued function. Then the following hold.

(i) If v > 1and o > —2, then

sup [[t7%¢]|| < oo < sup ||t ™%t || < oo < o(u) <0 and sup ||A\“ay|| < oco.
t>0 t>0 A>0

(i) If u#0and o(u) <0, then ap(c’) = ap(a.) > —1 for all v > 1.

Proof. (i)This is direct from Theorem 2.9(i).

(i) For all A > 0 we have

o) K K
ay = )\/ e~ Mu(t) dt > )\/ e Mu(t) dt > )\e_’\K/ u(t)dt >0,
0 0 0

and the hypothesis u # 0 implies

K K
lim e & / u(t) dt = / u(t) dt > 0
0 0

20

for some K > 0. Thus it follows that ap(a.) > —1. By this and Theorem
2.9(ii), we see that ag(c!) = ap(a.) > -1 forall v > 1. [
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Remark. If the positivity of u € C([0, co), X) is not assumed, then Theorem
2.9 and Corollary 2.10 do not hold. This can be seen in Section 3. Further, we note
that the hypothesis v > 1 is essential in Theorem 2.9 and Corollary 2.10. This can
be seen in Section 4.

3. GROWTH ORDERS OF MEANS oF Cj-SEMIGROUPS

In this section we consider the case u(t) = T'(t)x, where (T'(t)):>0 is a Co-
semigroup of bounded linear operators on a Banach space X and x € X. We
recall that in this case the notations C;z and A,z are used instead of ¢/ (7'(-)x)
and a)(T(-)x), respectively. Further we use the notations C; and A, to denote
bounded linear operators on X defined as C} := T'(t) (¢t > 0), Cy := T(0), and
for v, t >0, z € X,

t t
Clz=~t™" </ (t — )71 (s) ds) x = fyt_w/ (t — )T (s)z ds,
0 0
and for A € C with ReX > 0,

o0 t
Ayz = A </ e T (s) ds) z:=Alim [ eMT(s)zds (z€ X)
0

t—o00 0

if the limit exists for all z € X. The abscissa of convergence o (7'(-)) of the Laplace
integral ([;° e T(s) ds) z = limy_.oc fot e T (s)xds of (T(t))i>o is defined
as

t
31) o(T(:)) := inf {Re)\  lim [ e T(s)x ds exists for all € X}

t—oo [
= sup{o(T()z) : x € X}.

It follows from the uniform boundedness principle that | T'(¢)|| = O(e*?) as t — oo
if and only if [|T'(t)z|| = O(e"") as t — oo for all z € X, whence

(3.2) wo(T'(+)) = sup{wo(T(-)z) : = € X}.

Similarly, ||T'(¢t)|| = O(t¥) as t — oo if and only if | T(¢t)z| = O(t*) as t — oo
for all x € X; and

(3.3) ap(T(+)) =sup{ap(T()x) : x € X}.

If o(T'()) <0, then ||[Ay]] = O(A~%) as A | 0 if and only if ||Axz|| = O(A™%) as
Al Oforall x € X;and

(3.4) ap(A.) =sup{ap(A.x) : z€ X}
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It is clear that o (T'(+)) < wo(T(-)). We also note (see e.g. [1, Section 5.1]) that if
A € C satisfiesReA > o(T'(+)), then A— A is mvertlble and (A\—A) ! is a bounded
operator on X (i.e. A € p(A)), and (A — A)~t = [ e T (s) ds, where A and
p(A) denote the generator of (7'(¢));>0 and the resolvent set of A, respectively.
Thus if ReA > max{o(T(-)), 0}, then A\(A — A)~! = A,. We mainly consider A,
with A € R such that A > max{c(T(-)), 0}.

We are interested in the question when one of the inequalities in (5) becomes
an equality and for what examples it is a strict inequality. First, a consequence of
Theorem 2.2(ii) and Corollary 2.8(ii) is stated as follows.

Theorem 3.1. The following hold for all 0 < v < v’ < 0.
(i) max{wo(CT"), 0} < max{wy(CY), O}.

(i) ao(CY) < max{ag(C?), —1—~}; in addition, if o (T(-)) < 0, then ag(A.) <
max{ao(C7), =1 —~}.

Remark. By Theorem 2.4, together with the uniform boundedness principle, (i)
if o(T(-)) = 0, then supy~,, [[Ax]] = supy=y XX — 4)7] < oo for all w > 0;
(i) if o(T(-)) < 0, then sup, - [[(1+ A)(A— A)~!|| < oo. As for (i) we note that
the inequality sup,-,, [[Ax]| < oo may fail to hold when w > 0 is repalced with
w = 0. A counterexample can be found in the proof of Proposition 2.5 of [8].

Theorem 3.2. Suppose dim X = 2. Then for a Cy-semigroup (7'(¢)):>o0 on X
such that o(7'(-)) < 0, the following hold.

(i) [|T(t)]| = O(t) as t — oo, ||C}]| = O(t) as t — oo, and ||Ax]| = O(A71)
as \ | 0.

(i) If 0 < a < 1, then ||C}]| = O(t*) as t — oo is equivalent to ||A,| =
O(A~%) as A | 0, which is also equivalent to ||C/|| = O(t*) as t — oo
for any v > 1. Hence, in particular, (T'(t)):>o is Abel-mean-bounded if and
only if it is y-Cesaro-mean-bounded for any v > 1.

Proof. Since dim X = 2 implies wo(7(:)) = o(7T'(-)) < 0, (i) and the
first part of (ii) have been proved in Proposition 2.5 of [8]. Also it follows from
Corollary 2.8(i) that, for all v > 1,

IC/ I = O(t*) (t — 00) = |7 || = O(t*) (t — o0),

and
ICY I = O@%) (t — 00) = [|Ax]| = O(A™*) (A | 0).

Hence the proof is complete. ]

Remark. It is interesting to note that if dim X = 1, or (T'(¢)):>0 is an eventually
norm-continuous Cp-semigroup of normal operators on a Hilbert space, or (7'(t) ):>o
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is an eventually norm-continuous Cy-semigroup of hermitian operators on a Banach
space, then o(T'(-)) < 0 is equivalent to ||T'(¢)|| < 1 for all £ > 0. This follows
from the fact that, in each of the above cases, wy(7T(-)) = o(T(-)) < 0 and
|T(t)|| = r(T(t)) = et (T for all t > 0. (See Corollary 2.2 of [8].)

Theorem 3.3. Let (7'(t)):>0 be a Cp-semigroup on X with generator A and
let v > 0. Then the following hold.

(i) If A is bounded, then max{wo(C7*), 0} = max{wy(C7), 0}, ap(CT) <
max{ao(C7) + 1,0}, and ag(C7™) > max{ao(C7), 0} — 1.

(i) 1f 0 € p(A), then ao(CT) < max{ag(C7), 0} — 1.
(iii) If A is bounded and 0 € p(A), then

(v DIAITCT =Tl < IC7H ) < (y+DIIATICT =TI (2> 0),
and
ao(CT) = max{ag(C7),0} — 1.
Proof. We first show the following identity for all v > 0:
(3.5) ACTT = (v+ DHC) = 1), t> 0.

The case v = 0 is trivial. Now suppose v > 0. Then, since A is a closed operator,
we have, for all z € X,

t
ACT e = (v + 1)75_7_114/ (t—s)"T(s)xds
0

= (v+ 1)t—7—1A/0t(t —5)7d </08T(u)x du) ds
— (414 /tfy(t gyt (/0 T(u)z du) ds

0

~ (! /0 Y (t — )1 N(T(s) — D ds

= (y+ Dt Iyt /t(t — )T (s)xds — (v + 1)tz
0

= (y+ D)t — (v 4+ 1)t e
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(i) F A=0,then T(t) = I = C forall t, 8 > 0, so0 that wo(C”) = 0 and

(i)

ao(C.ﬂ) = 0 for all 3 > 0. Next, suppose A # 0 is bounded. Then for all
t > 0 we have

(v + DICTI < HIANICT I+ (v + 1)

50 that max{wo(C7), 0} < max{wo(CT*h), 0} < max{w(C7), 0} (Theo-
rem 3.1(i)), and ao(C?) < max{ao(C7™) +1,0}. Also from the inequality

IANCE = (v + e CF =111, ¢ >0,

it follows that ao(C7 ™) +1 > ag(CY — I) = max{an(C7),0}.
If 0 € p(A), then

1 — —
I < (r+ DIIATHICT = it >0,

and 50 ap(C7) < max{a(C7),0} — 1.

(iif) This follows immediately from the above proofs of (i) and (ii). |

Theorem 3.4. Let £ > 1 be an integer, and let (7'(¢)):>0 be a Cp-semigroup
on X with generator A = ail + N, where N is a bounded nilpotent operator on
X of order k + 1 (i.e., N¥ # 0 and N**! = 0) and a € R. If a # 0, then the
following hold.

(i)

|CP|| ~ =" (t — o0) for n. = 0,1,...,k, and ||CP| ~ ¢! (t — oo) for

all integers n > k + 1. Therefore

k—n forn=0,1,...,k;
(3.6) ap(Cl) = _
-1 for all integers n > k + 1.
(i) JAxll ~ A (A1 0), and supyq ||Ax]| < oo. In particular, ag(A.) = —1.
Proof. (i) Since CY = T(t) = e = e%tetN = e¥t(SF_ (17 /nl)N™), we
have
k m tk i k—1 m
ST SN 2 IEP) = N = 3 N
n=0 n=0
Therefore
cy 1
(3.7) lim 1621 _ IN¥|| > 0.

t—oo th H
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Hence ||CY| ~ t* (t — oc), and ag(C?) = k. Since A is bounded and 0 € p(A)
(because 0 # a € R), it follows from Theorem 3.3(iii) together with an induction
argument that ||C|| ~ t*=™ (t — oo) and ao(C") =k —n forall n =0,1,..., k.

To see that ||[CFH| ~ t~' (t — o), take z € X such that ||z = 1 and
NFkg £ 0. Then the set {z, Nz, ..., N*x} is lenearly independent. To show
this, suppose that S5 b; N7z = 0. Then, since N*+1 = 0, it follows that

boNkz = N’f<2f:0 ijjx> = 0, and hence by = 0. Next we have b;Nkz =

N’“‘1<Zf:1 ijjx> = 0, and hence b; = 0. By continuing this process, it

follows that by = by = ... = by = 0, whence the set {x, Nz, ..., N¥z} is
linearly independent. Now, for all v > 0 and ¢ > 0, we have

t t A
Clz = *yt‘”/ (t—s)"7" T (s)xds = vt </ (t — )7 Ledisy ds)
0 0

ais n

k t
+'Yt_’yz </ (t — 8)7_16 n'S N"x ds) .
n=1 0 :

Since 0 # a € R, it follows that lim, . vt~ ([ (t — s)7~'e%*z ds) = 0. Thus

liminf ||C] = I|| > liminf||C}z — z|| > 0.
t—00 t—00

Using this for v = k, together with the fact that ||CF| ~ t° (t — oo) (so that
lim sup,_, ., ||CF — I|| < o) and Theorem 3.3(iii), we obtain

|CEFY ~ 7! (t— 00), and ao(CFT) = —1.

It is now obvious from Theorem 3.3(iii) and an induction argument that ||C}"|| ~
t=1 (t — o0) and ap(C™) = —1 for all integers n > k + 1.
(if) We have

k
: : =Mt ait n
limyjo ||[Ax|l/A = 1/\1?61 H/o e Ve (nEO n!N )dtH

S NED)

(3.8)

)

k
1
= i H — N7
A0 RZ% (h— ai)ntl

which is positive because

() () == () T =
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Hence ||Ax]] ~ A (A | 0), and thus «g(Ay) = —1. It is direct from the above
calculation that sup || Ax|| < co. (This also follows from Theorem 2.7(ii) since
supyq | CF|| < 00.) .

When k& > 1, it follows from Theorem 3.4 and Corollary 2.8 that, for the
Co-semigroup (7'(t)):>o in Theorem 3.4, a(C”) is a non-increasing function of
v € [0, 00) and satisfies

OCQ(CO) =k >Oé0(C,1) =k—-1> --->(X0(C,k)=0

(3.9)
>—1= CYQ(C’Y) = OéQ(A.)

forally > k+ 1.
It also follows (cf. Theorem 3.4(i), Theorem 2.2(i)) that

(3.10) Jim |C/]|=00 forall y€[0,k— 1], sup ||C] || <oc forall v € [k, k+1),
—00 t>0

and |CY|| ~ ™t (t — oo) forall vy >k + 1.

So far the situation on the interval (k — 1, k) is not clear. We will see from the
proof of the following theorem that sup,~ ||C}|| = oo for all v € (k — 1, k).

Theorem 3.5. Let £k € N. Then there exists a Cy-semigroup (7'(¢))+>0 [resp.
a strongly continuous cosine operator function (C(t)) +>0] of bounded linear oper-
ators on X such that sup,., [|CF|| < oo, but sup;~, ||C7|| = oo for all v with
0<y<k.

We need first to prove the following key lemma.

Lemma 3.6. Let 0 <~ < 1. Then for every integer k£ > 0 we have

1
(3.11) lim n/ (1 —5)7"Ls¥ cos(2ns) ds = oo,
n—oo 0
and
1
(3.12) lim n/ (1 —5)""1s*sin(2nns) ds = —oc.
n—oo 0

Proof.  For simplicity we set, for n > 0,

1 1
(3.13) a, := / (1—s)""Ls¥ cos(2mns) ds, by ::/ (1—s)""1s* sin(27ns) ds;
0 0
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and
(3.14) f(s):=s"11 -5k  (se]o,1]).

We first prove that a,, > 0 > b, for all n > 1. By a change of variable we have
1 1
an = / 7711 —s)* cos(27mns) ds, and —b, = / $77H(1 — s)*sin(27ns) ds,
0 0

whence

n = Z/ f(s) cos(2mns) ds (by (3.14)),
j=17/0G-1)/

and furthermore

1/n

1/4n
(s) cos(2mns) ds = /0 {f(s) = f((1/2n) + s)} cos(2mns) ds

0

1/4n
_/0 {f((1/2n) — s) = f(1/n) — s)} cos(2mns) ds

1/4n
= [ - s+ 9y - (a2 - )
—f((1/2n) + (1/2n) — s)}} cos(2mns) ds.

Since f is positive, strictly decreasing and convex on the interval (0,1), if 0 < s <
1/4n then we have

L) = £(1/20) +9)) = (F((1/20) = ) = F((1/20) + (1/20) — )} } > 0.

Since cos(2mns) > 0 on the interval (0, 1/4n), we conclude that

1/n
(s) cos(2mns) ds > 0.
0

By the same argument we see that f(i/fl)/n f(s) cos(2mns)ds > 0 for each 1 <
i < n. Consequently, a, > 0 for all n > 1. It is similar and easier to prove that
—b, = fol f(s)sin(27ns) ds > 0 for all n > 1; hence we may omit the proof.

We next prove that

1—(7/8n)
(3.15) /1/8 f(s)sin(2mns) ds > 0 (n>1).

To do this, write
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1—(7/8n) n—1  .j/nt+1/8n
/ f(s)sin(2mns) ds = Z/ f(s)sin(27ns) ds.
1/8n =1 (j—1)/n+1/8n

By an elementary calculation

1/n+1/8n
/ f(s)sin(27ns) ds
1/8n

- | A 2m) — 5) = £(1/2m) + ) sin2ns) ds
= [ =9 = ) + )y sinons) ds

- | L2 = ) (/20 + 90} - (1) —5)
—f((1/n) + s)}} sin(2mns) ds

3/8n
+/1 {F((1/2n) — 5) — £((1/2n) + 5)} sin(2rns) ds.

/8n
As before, if 0 < s < 1/8n, then

1227

{1701 /20) =)= F((1/20)+)} = {F((1/n)=5) = F((1/n)+5)} | sin(27ns) > 0.

On the other hand, it is immediate that if 1/8n < s < 3/8n, then
{f((1/2n) —s) — f((1/2n) + s) } sin(27ns) > 0.

Therefore it follows that

1/n+1/8n
/ f(s)sin(27ns) ds > 0.
1/8n

By the same argument we have
j/n+1/8n
/ f(s)sin(2mns) ds > 0 (1<ji<n-1).
(j—1)/n+1/8n
This proves (3.15). We then note that

1/8n 1/8n -1 k
Jo " f(s) sin(2mns) ds = / sT7H(1 — s)" sin(2mns) ds
0

> <8n ) —/ s (27mns) ds
(3.16) 8n ) mJo
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Here, since limg;; f(s) = 1 (when k = 0) or 0 (when k& > 1), it follows that

<[ peas=nt-0m = o),
1—(7/8n)

1
/ f(s)sin(27ns) ds
1

—(7/8n)

so that, combining (3.15) and (3.16), we obtain

1
(=n)b, = n/o f(s)sin(27ns) ds

1/8n 1—(7/8n) 1
=n / —|—/ —|—/ f(s)sin(27ns) ds
0 1/8n 1—(7/8n)

1/8n 1
> n(/ —|—/ >f(s)sin(27ms)ds—>ooas n — oo.
0 1—(7/8n)

This proves (3.12).
To prove (3.11), we note that

1 1/n
(3.17) an = /0 f(s) cos(2mns) ds > ; (s) cos(2mns) ds > 0,

and that there exists a unique constant ¢,,, with 0 < ¢,, < 1/4n, such that

1/n
(3.18) (s) cos(2mns) ds = 0.
Write
1/n
(3.19) I(n):= (s) cos(2mns) ds.
1/2n

Since f is positive and strictly decreasing on the interval [0, 1], it follows that

1 1
I(n) = % » f(s/n)cos(2ms)ds =n"" /1/2 7711 — s/n)" cos(2ms) ds < 0,

and by (3.18)

/2n /
0<—I(n)= /1 i f(s) cos(2mns)ds =n"" /1 257_1(1 — s/n)k cos(2ms) ds.

Cn
Using these facts we obtain

1 1/2
0< —/ Y1 — s/n)* cos(27s) ds = / 7711 — s/n)* cos(2ms) ds
1/2 nen
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for all n > 1. Now, by Lebesgue’s convergence theorem,
1 1
lim 7711 — s/n)* cos(27s) ds = / s771 cos(2ms) ds < 0.
n=ee J1/2 1/2
Thus
1/2 1
lim Y1 — s/n)* cos(27s) ds = —/ §77 ! cos(2ms) ds > 0;
1

=00 Jnep /2

and since fol 5771 cos(27s) ds > 0 and cos(27s) > 0 on the interval (0, 1/4), there
exists a unique constant ¢, with 0 < ¢ < 1/4, such that

1/2 1
/ s771 cos(2ms) ds = — / s771 cos(27s) ds.
c 1/2

Therefore we have

1/2 1/2
lim 7711 — s/n)* cos(27s) ds = / s771 cos(27s) ds > 0.

—
n—oo J,.

This shows that ¢ = lim,,_,o, nc,, and thus

ney,

C
lim 7711 — s/n)* cos(2ms) ds = / s771 cos(2ms) ds > 0.
0

n—oo 0

Consequently, from (3.17) and (3.18), we see that
nay > n/ocn f(s) cos(2mns) ds
= pl™7 /Oncn 7711 — s/n)* cos(2ms) ds — oo
as n — oo. This proves (3.11), and the proof is complete. ]

Proof of Theorem 3.5. Case 1. First we consider the semigroup case. As in
Theorem 3.4, we take (7'(t)):>0 to be the Cy-semigroup

kN

n!
=0

(3.20) T(t) := ellial+N) — ciat (t>0),

where N is a bounded nilpotent operator on X of order £ + 1 and a € R\ {0}.
Since we have already observed that sup,- ||CF|| < oo (cf. (3.10)), it only remains
to prove that sup,- ||C} || = oo for all v € [0, k).
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Suppose k — 1 < v < k. Applying (3.5) we have
AC) = G 1= 07+ D,
where || D} || = |[t~1vI|| = O(t™!) as t — oo; and
-1
A2C) = %C}‘Q + D2,

where || D?|| = O(t~') as t — oo. Continuing this process we find

k—1 Yy—=1)... (v —k+2) k+1
(3.21) Akl = o oy 4 DY,

where ||D]|| = O(t™!) as t — oo; and

_ —k+1 [
o an i / (t = $)~FT(s) ds

A
(3.22) Z Zv ,ﬁfn,l ( /0 (t— s)w—ksnemsds) A
_ Z (v— 12 + 1)t" ( /01 (1 sy—Fgneatis ds) N
n=0 :
Hence

th—k+1 k n—k+1 1 i .

_ - n _atis n

CETES= E T(/O(l—s)7 s"e ds)N
n=0

t 1 ,
= </ (1 — 5)1~kgkeatis ds) N*
* \Jo
k-1 tn—k+1 1 )
+ Z o </ (1 — s)7 Fgneatis ds) N"
: 0

n=0

= Bl(t) + BQ(t)v

where || Bz(t)|| = o(1) as t — oo, because

1

lim (1 —s)77ksme® ds = 0
t—oo Jo

for every n > 0 by the Riemann-Lebesgue theorem. On the other hand, since
—1 < v—k < 0, we can apply Lemma 3.6 to infer that lim sup;_, || B1(t)|| = oo
Therefore we have limsup, . [[t=*=C)**!|| = o0, and so

limsup || A*1CY || = oo
t—o0
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by (3.21). This implies sup, ||C;|| = oo. Hence, by Theorem 2.2(i), sup;~q [|C/ ||
= oo for all v with 0 <~ < k.

Case 2. Next we consider the cosine operator function case. Let N : X — X
and a € R\ {0} be the same as in Case 1. Then define C(¢) : X — X by

1 A A
C(t) _ 5 {et(zaI—I—N) + e—t(zaI—I—N)}

(323) k iatyn —ia n
_ Z%(e b +e2 t(—t) )N” (t>0).

Then, as is easily seen, (C(t)):>o is a strongly continuous cosine operator function
on X with generator B = (ial + N)? (cf. Sova [12]). The Cesaro mean C; of
(C(t))¢>0 of order v > 0 can be written as

= 1/t(t— $710(s) ds
0

Y
3.24 = Z/ Ll /1(1—3)7_13” cos(ats)ds | N"
( ) ) n! 0
0<n<k
nAth [ 1 1 .
+Z — z/ (1—15)"""s"sin(ats)ds | N",
o<n<k 0

where >0, <. [resp. Y0,,<; ] means that the summation is taken for all  such
that 0 < n < k, and n is even [resp. odd].
It is known (see e.g. [10], [12]) that

(a+2)(a+1)

(325) C¢™BcC BCM? = 2

and, since wo(C(+)) =0,

[Cy — I (t>0, a>0);

(3.26) NN -B)t=2) / h e C(s)ds  (Rex > 0).
0

For a moment we assume that k£ = 2{ for some integer [ > 1. Using the above
considerations we see as in Case 1 that
k!
(3.27) BlcF = Ot + EF,
where ||Ef|| = O(t72) as t — oo. Thus, by (3.23), sup,~o || B'C¥|| < oo and
hence

(3.28) sup ||CF |l < sup | BT||B'CF < oc.
t>0 t>0
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Next suppose 2l — 1 < v < 2] = k. Then we see that

—1)...(v=2l+3 _
(329) Bl—lc? — ,7(,7 ) t2l£,‘2y + )Cz 2042 +E;/,

where ||E]|| = O(t72) as t — oo. Write § =~y — 2+ 1. Thus 0 < § < 1, and

— 20 +2 !
o2 Z’ Yo AL, (/0 (1 — 5)°s" cos(ats) ds) N

|
0<n<k v
noy—=20+2 !
+ Z ut” <1/ (1 — 5)°s" sin(ats) ds) N™.
n! 0
0<n<k

Now we apply integration by parts to get that
(i) if n is an even integer such that 0 < n < 2] = k, then

1
/ (1 — 5)°s" cos(ats) ds
0
(3.30) - 1
== ; (1 — 5)° s sin(ats) ds + z o(1) (t— o0);

(it) if n is an odd integer such that 0 < n < 2] = k, then

1
/ (1 — 5)°s" sin(ats) ds
0

(3.31) - 1
= (1 —5)°"1s" cos(ats) ds + z o(1) (t— o0).
0
Since
1 o 1 oy =2042 (! " .
t2l_2(§’? 242 oI Z — </0 (1 —5)°s" cos(ats) ds | N
0<n<k
— 2042 !
+ Z” %t” <1/0 (1 — 5)%s" sin(ats) ds) N"
0<n<k
= N(t) + I2o(1),
where )
—2l+2
L(t) = u# (1 —5)°s* cos(ats) ds | N2,
(20)! 0
and

1 2142
I(t) == tQZ—QCZ N,
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we obtain, by applying (3.30), (3.31) and Lemma 3.6, that limsup,_,, ||[1(¢)|| =
oo, and that lim;_, ||Z2(t)]| = 0. Hence it follows from (3.29) that sup,~, ||C/||

= oo. Since this holds for any v with 21 — 1 < ~v < 2l = k, it follows from
Theorem 2.2(i) that sup, ||C/|| = oo for all v with 0 < < k.
Assume next that & = 2] + 1 for some integer [ > 0. Then as before we have

k!
(3.32) H@:ﬁ@+ﬁ,

where || EF|| = O(t~2) as t — oo, and
1 rotr ! n n mtt ! n o n
C, = Z o / s"cos(ats)ds | N + Z ] z/ s"sin(ats)ds | N".
0<n<k 0 0<n<k 0
We have:

(i) if n is an even integer such that 0 < n < 2]/ + 1 = k, then

sin at

1
/ s" cos(ats) ds = +o(t™) (t — o0);
0 at

(ii) if n is an odd integer such that 0 < n <20+ 1 =k, then

1
t
/ s"sin(ats) ds = ek o(t™) (t — o0).
0

—at

Thus || B'CF|| = O(1) as t — oo, and hence as before
sup ||CF|| < sup [|B™'|| - | B'CF| < cc.
>0 >0
Finally, let v > 0 be such that 21 < v < 2l + 1 = k. Then

Ty =1...(y=20+1) o
(3.33) B'C) = o1 Cy Y+ F,

where ||F}|| = O(t72) as t — oo. Write § =~ — 2[. Thus 0 < § < 1, and

-2 — Z/ v 2ltn 1(1 - 3)5_13” cos(ats)ds | N"
t o n! 0

0<n<k

-9 1
+ Z” 7 " lt” <z/0 (1 — 5)°"Ls"sin(ats) ds) N™.

0<n<k

From Lemma 3.6 and (3.33) we see that limsup,_,, ||B'C]|| = co. Therefore,
supsso ||C; || = oo. Since this holds for any v with 21 < v < 21 +1 = k, it follows
as before that sup,- [|C} || = oo for all v with 0 <~y < 2[+1 = k.
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This completes the proof of Theorem 3.5. |

Remark. Let (C(t)):>0 be a strongly continuous cosine operator function on
X with generator B. If X # {0}, then 0 < o(C(-)) < wo(C(-)) < oo, where
o(C(+)) is defined analogously to o(T'(-)) (cf. (3.1)). To see this we first note
that wo(C(+)) < oo by [12], and o(C(-)) < we(C(-)) is obvious. Thus it suffices
to prove that o(C(-)) > 0. Suppose K := o(C(:)) < 0. Then an elementary
calculation (see e.g. [12, pp. 24-25]) shows that if A £ 0 satisfies ReA > K, then
A2 € p(B) and [;°e MC(t)dt = A(A* — B)~'. On the other hand, since the
operator-valued function X — [ e~MC(t) dt (defined strongly) is analytic on the
domain € := {\ : ReX > K} (cf. the proof of Theorem 1.5.1 of [1]), it follows

" /0 e MC(t) H / C(t)dt

lim [A(A— B)"![ = lim )\/Oooe_’\tC(t) dtH _

[A|—0 [A|—0
and thus, 0 € p(B) by Theorem 3.1 of [11]. Then, since lim ;o [[A\(A>—B) || =
0, we have

[ o] =

which implies [ C(t)zdt = 0 for all z € X, ie., lim_.o fo s)xds = 0 for
all x € X. Thus, by Theorem 2.3 of [11], we must have X = {0}, a contradlctlon.

lim < 0.

[A]—0

Hence

/ e_’\tC(t) dt“ = lim H)\(AQ — B)_1H =0,
0 [A|—0

The above proof of Theorem 3.5 turns up the following result.

Theorem 3.7. There exists a Cp-semigroup (7'(t))+>o [resp. a strongly con-
tinuous cosine operator function (C(t))+>0] of bounded linear operators on X
such that sup,., [|C/|| = oo for all v > 0, but sup,~q [|A(XA — A)7|| < o0
[resp. supy~o |[A(A — B)7}|| < oo, where A [resp. B] denotes the generator of

(T'(t))e=0 [resp. (C(t))e=0l-
Proof. Fix a € R with |a| > 2. It follows from the proof of Theorem 3.5 that,

for each k > 1, letting N, : X — X be a bounded linear operator on a Banach
space X}, such that Nf # 0, NF™ =0, and || Ny x, < 1; and defining

k
) ) Tk
(3.34) Th(t) 1= !0l Ne) = oty = NP (E20),
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we have a Cy-semigroup (Tj(t))+>0 on X, with generator Ay = ia + Nj, such
that

(335)  sup ||CfH(Tk())llx, =00, and  sup ||CF(Tk(")|lx, < oo.
t>0 t>0
Furthermore, since || Vx| x, < 1 and |a| > 2, and since
_ k
_ 1 N\ U1 ~1\"
At =(ial + N) 1 == (1+== :—§ — ) Np
k (ial + Ny) ia < * ia ) ia < ia ) ’

it follows that

k

1 1\"
(3.36) 1A X < 5 > (-) <1
ja] == \Ja]
On the other hand, as in (3.21), we have
k ok k! 0 k mtk k'n—k n k
(Ap)"Cy (Tk() = G (Th() + Dy = e Z%at Ni + Dy,

where | DF||x, = O(t7!) ast — oo. Thus there exists G, € R, with G, > (k+1)!,
such that t > G, implies || DF||x, < 1. Then by (3.36)

k
K o
(3.37) ICETH(D I < 1D St N lx, +1 forall t> Gy

n=0

If we choose NN}, in such a way that || Ny| x, is sufficiently small (in particular,
| Nkllx, <In2)and lim, . |[|[Nk| x, = 0, then we can assume that

k
ia " n
(338)  |Te(t)llx, =l Y =Nilx, <2 (0<t<Gy),
n=0
and
k Kl

(3.39) B n—;t”_kN,?HXk <1 (t>Gp > (k+1)).

n=0

Hence it follows from (3.37) that

(3.40) sup ||CF(T())llx, <2,
>0
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so that by Theorem 2.7(ii)
(3.41) sup A= Ax) " [x, = sup H)\/ MT(s) ds|| < 2.
A>0 A>0 0

Now, define

xD xD
X = {x = (@1 @) ¢ wr € X Yl < oo}, and |z == 3 [z
k=1 k=1

for x € X. Then X becomes a Banach space. If ¢ > 0, define a bounded linear
operator 7'(¢t) on X by

(342) T(t)l‘ = (Tl(t)xl, Tg(t)xg, .. ) for z= ((L‘l, o, .. ) € X.
By (3.38) we see that | T'(¢)|| < 2 forall 0 <t < 1, and hence limy | |T'(t)z —z| =

0 forall z € X. Therefore, (T'(t)):>0 is a Cp-semigroup of bounded linear operators
on X. Since || N||x, < In2, it follows that

k n k n
t
1Y =Np—Tlx, <Y Ik, < Nkl — 1 < 2t -1

n=0 s n=1

for all t > 0. Thus by (3.34)
k Tk ) )
IT5(8) = Tllx, < 11D NE = Illx, + € = 1] < (28 = 1) + [ — 1]
=0 n!

for all ¢ > 0. Hence
(3.43) lim |7(t) — 1] < lim (?:i‘f ITi(t) — quk> = 0.

It follows that (7°(t)):>0 has generator A on X, where A is defined by
Azxr = A((L‘l, o, .. ) = (AlfL'l, AQ(L‘Q, .. ) for z = ((L‘l, o, .. ) € X.

Clearly, A is a bounded linear operator on X with [|A|| < supg>y [|Akllx, =
supy>1 [lia + Nil|x, < laf + 1.

Next, suppose A > 0. Since o(7(:)) = wo(T(-)) = 0 by the definition of
(T'(t))+>0, We see that A € p(A); and furthermore

()\ — A)_lx = ()\ — A)_l((Lj, T, .. ) = ((}\ — Al)_lxl, (}\ — Ag)_lfL‘Q, .. )
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for © = (21, z9, ...) € X. Consequently

supso A= 4) 71| = sup [ /0 T (s) ds|
(3.44) >

IN

sup <sup IAA — Ak)_IHXk> < 2.
A>0 \n>1

On the other hand, if v > 0, then for all integers k& with k£ > ~+ 1 we have, by
Theorem 2.2(i) and (3.35),

(3.45) sup ||| > sup [CF | = sup |CFH(Tu()) x,, = oc.
t>0 t>0 t>0

This completes the proof for the semigroup case.

The proof for the cosine operator function case is an easy modification of the
above proof, since the cosine operator function (C(¢)):>o in Theorem 3.5 was
defined by (3.23). Hence we may omit the details here. ]

4. THEOREM 2.9 CANNOT BE EXTENDED TOTHE CASE 0 < v < 1

We first state a consequence of Theorem 2.9 and Corollary 2.10 as follows.

Theorem 4.1. (Cf. [8, Corollary 3.2].) Let (T'(t)):>0 [resp. (C(t))¢>0] be a
Cp-semigroup [resp. a strongly continuous cosine operator function] of positive
linear operators on a Banach lattice X with generator A [resp. B]. Then the
following hold.

(i) If v > 1 and @ > —1 — ~, then the boundedness of {t~*C} : t > 0} is
equivalentto o(7'(-)) < 0 [resp. o(C(+)) = 0] together with the boundedness
of {A®F(X — A)~1 + X > 0} [resp. {A“P2(A2—B)"t : X > 0}]. In
particular, (T'(t))+>o0 [resp. (C(t))¢>0] is Abel-mean-bounded if and only if
it is y-Cesaro-mean-bounded for any v > 1.

(ii) Forall y > 1 and a > =2, ||C/| = O(t¥) as t — oo is equivalent to
o(T(-)) <0 [resp. o(C(-)) = 0] together with [[A(A — A) 7| = O(A™9)
[resp. [N2(A\2 — B)7 | =0\ )] as A | 0.

(iii) 1If X #£ {0} and o(T'(-)) < 0 [resp. o(C(-)) = 0], then ao(C”) = ap(A.) >
—1 for all v > 1, where the Abel mean A, = X [;° e MT(t)dt [resp.
Ay =X [ e MC(t) dt] is defined strongly for all A > 0.

In the next two theorems, we present examples to show that the equivalence of
the Abel-mean-boundedness and the ~-Cesaro-mean-boundedness is not true for the
case 0 <~y < 1.
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Theorem 4.2. Let 0 < v < 1. Then there exists a Cy-semigroup (7'(t))+>0
[resp. a strongly continuous cosine operator function (C(t)) +>0] of positive linear
operators on an Lj-space such that sup,-, [|C} |l = oo, but sup, HCle < 00
for all 5 > ~ and, in particular, the Abel means of (T'(¢)) +>o [resp. (C(t))+>0] are
uniformly bounded.

Lemma 4.3. (a) Let fj, n; > 0, Z?:l fj =1= ?:1 M55 and fj/fj.ﬂ >
ni/nj+1 (1 <j<n—1). Then \y > Xy > ... > ), implies

S NEG =D A
j=1 j=1

(b) Letay >ag > ... > ap, and by > by > ... >b,. Then

Doabi = ajbig,
j=1 j=1
where {k(j);1<j<n}={1,2,...,n}.

Proof. We prove (a) by induction. The case n = 2 is obvious. Next,
suppose that the case k& = n is true, and we consider the case k = n + 1. Let
&.mj >0 (j =1,2,...,n+1) be such that Y74/ & = 1 = Y7/ n; and
&i/&+1 = nj/mjv1 (1 < j < n). Clearly, §—1/&n+1 = nn—1/nn41, and hence
gn—lnn-f—l Z nn—lfn—i—l; Similarly €n—1nn Z nn—lgn- Thus

gn—l(nn + nn—l—l) - nn—l(gn + gn—i—l) = gn—lnn + gn—lnn—l—l - nn—lfn - nn—lgn—l—l

= (gn—lnn—f—l - nn—lgn—i—l) + (fn—lnn - nn—lfn) > 0,

which implies &,_1/(§, + &ng1) > Mn—1/(Mn + nng1). Hence we can apply the
induction hypothesis: If Ay > Xo > ... > A\, > A\,41, then

n—1 n—1

Z )‘jgj + )‘n(gn + £n+1) > Z )‘jnj + )‘n(nn + 77n+1)-
j=1 j=1
On the other hand, by the assumptionson &;, n; (j =1,2,...,n+1), it follows
at once that &,,+1 < npy1. Since A, p1— A, <0, it follows that (A, 11 — Ap)&ng1 >
(An+1 — An)Mnt1. Therefore

n+1 n—1
Z )‘jfj = Z )\jfj + )‘n(gn + gn—i—l) + ()‘n—i—l - )‘n)fn—i—l
j=1 j=1
n—1 n+1

> Z A+ An(n + Mnv1) + Angt — M) g1 = Z)‘jnj )
i=1 i=1
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completing the proof of (a).
(b) is a part of the well-known rearrangement inequality and follows from an
easy induction argument. We may omit the proof. ]

Proof of Theorem 4.2. This is an adaptation of the argument of [8, Proposition
4.3]. Let a > 2 be the unique solution of the equation 2 = 7. For j > 1, let
4.1)

: 27 (0<s<a=1),
X; =10, a’) and w;(s) :=

29071k (gF <s<adt 0<Ek<j—1).

Fort >0, letd;; : X; — X; be the point transformation defined by ¥; +(s) := s+t
(mod @), and then put T(t) f(s) := f(¥;+(s)) for f on X, and define a measure
pi on X; by pj = w;(s)ds.

Let

(4.2) X:=|J X, (regarded as a disjoint union),
j=1

and let 1 be the measure on X defined by |x, := p; for each j > 1. For ¢ > 0,
define an operator T'(t) : Li(X,u) — Li(X,p) by (T(t)f)Ix; := T;(t)(flx;)
for j > 1. It follows that (7'(¢)):>o becomes a Cy-semigroup of positive linear
operators on L (X, p).

We will prove that sup,~q ||C|l1 = oo, and that sup;~, [|C |1 < oo for all
B > ~. To do this, let 0 < o < 1 be any real number. We consider the Cesaro
means C§* of (T'(t)):>o of order «, and define

(4.3) a(X;) == sup{[|C7 flln/I[fll1 - 0 # f € L1(X, pj); ¢ > 0}

Then it suffices to show that sup ;~; a(X;) < cofora = 3 > v, and lim; .o, a(X;) =
oo for 0 < a < .

(i) To estimate a(X;), let f5 := 5—1X[aj_5,aj) for 0 < 0 < 1. We have
If5llx =1, and

«o o’ _ ,
IC3 toll < 55 [ eI = gl .

Denoting
j—1

a’ a’ 1 )
(4.4) D; ::/ to‘_120dt+/ o totde 4+ ... +/ t*127 qt,
ai—1 al—2 0

and noting that w; is non-increasing on [0, a’), we easily see that

1 al )
(4.5) Dj — / t Lol dt < / t N T(a? —t) fs1 dt < 2D;.
0 0
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Since
p, =X [2°(a?® — al~D) 4 9(alDa _ gDy
[0
+2/7 (a* — a°) + 27a"]
L—a" 10 ja | ol (j-1)a i1 o, 050l Loj —a
= [20,3 + 2 aV + ...+ 2 —|—23a}—|——23a
[0 [0
(1—a°‘aj°‘j ajo‘ 2\’ 1
- >(5) 7 (3) &
and

(1—a ) O‘j .

1 ) 9
D;,— [ o7 1294t =
J aoc
0 k=0

it follows that

iTl g \k
(4.6 jcasih> -0y ()
k=0
and
I/ 9 2\’ 1
HCg;f(;H < 552D; _2{ (1—a* ( a) ( a) —a}
4.7) 1 Z% ’ ' '

< 2% <a_0‘>

(ii) Next, let g4 := 6 'x[4_5 ), Where0 <d <land /' <d—-d<d<d
Then ||gq4l/1 = 1, and

d
a o
(Caadl = 5 [ (= galat
:W</ / )WWW-%MMﬁ
=1+1I.

It follows immediately that

d

I<g ta_1-2dt<2.
doc .
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Letting 74 := T(d — a’~")ga, we see that hy = 6~ x(4i-1_4 ,s—1) and hence
|halli = 2. Then, since T(d — t)ga = T((d — a’ ') + &' —t)gg = T(a/ ' —
T (d—a’~Y) gy = T(a?~! — t)hg, we obtain, as in (i), that

al—1
«

1= 2 e bl dt < 1Ol
0

a ™~
a(j_l)a <A
7j—1

k
< 1) ————4AD; 1 <4) (f ) (cf. (4.7)).

k=0

1

IN

1
t YT (et = t)hglly dt+/ totg. 971 dt>
0

Consequently

J—1

9 \ ¥
(4.8) |’C§9dHl=I+II<2+4Z<a_a> _

k=0

(iii) Assume that 0 < r < d. Since ||T'(t)gql|1 < 2 for all 0 <t < 1, it follows
that if 0 < r < 1, then

a [T .-
@9 IC2gal = 5 [ 42T = gl de <2
0

Next, if 1 < r < d, then choose an integer 5/, with 1 < j’ < j, such that
Lop<al. Let0<d < 1besuchthatal ! <r—§ <r <a’, and define

1
I )
(410) 9y ‘= 2(j_j/)5,X[r—6 )"

It follows that ||g/.|[; = 1, and that

2T =il (1< t<0),
Mv—wwhs{?, oorn

IN
IN

t
Hence as in (ii)
1€ gallh

1
( to‘ T( r—t)ngldt—i—Q/ ta—12fdt)
0

g
(4.11) "la_l , bty ot
(j,_l T (r—t)gl |y dt+ [ 122" gt
0

i'=1 9\ F
(,1 4Dj/_1)<2 2+4Z<a>

k=0
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Jj—1 9\ F
<2 <2+4Z<a—a> )
k=0
This holds in particular for the case 0 < r < d = o’ and g,; = fs.

(iv) Now we estimate ||C% f5||1 for » > a/. To do this, choose an integer n > 1
such that na’ < r < (n + 1)a’/. Then we have

T r—naj
[0 _
08 folh = & (/ ) ) T ) foldt = 1114 1V,
r—nal 0
and

/ T — ) folh dt

—nal

r—(k—1)a’ .
N / YT — 1) Sl dt

— Z / =1 —kal
r—kal

r—(k—1)a’
k=1 / =1 dt
r—kal

We now estimate 777 and V. For the estimation of 771 we first note:

if 0<p<qg<w< oo, then forevery A >0

q q+A
/ et / et
p p+A
v a—1 ~ wtd '
/ S dS / Sa_l ds
q q+A

(Infact, if0<a<landif0<p<it<g<s<w< oo, then forany A > 0 we
have

(4.12)

(A+A/) < 1+ A/ < (1+ Afs) L,

and thus
q q
/ ttdt / N1+ Ag)> L dt
p p
/ 597 ds / s 14+ AJg)* N ds
q q

q+A
N 14+ A/t dt / to 1t dt
p+A

= w+A ’
so‘_l(l —|—A/$)O‘_1 ds / s 1 ds
q+A
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which completes the proof of (4.12).)
Letting s = t — (r — ka?) for r —ka? <t <r—(k—1)a?, we have 0 < s < a/,

and

IT(r—t) fsllh =T (ka’ —s) f5lli =T (a’ =) fs]1
(4.13) 2+ (0<s<a®=1orr—kd <t<r—ka’+1),
<
T 277 (al<s<att or r—ka? +al <t<r—kadl +altt, 0<1 < j-1).

Therefore

r—(k—1)a’
[ e = ol

—kal
r—(k—1)a’
/ 1 dt
r—kaJ
r—ka’ +alt! r—ka’+1
j-1 / >t / ttat
r—kal+at j—1 r—kal j+1
< r—(k—1)a’ 2 + r—(k—1)a’ 2 )
=0 / 1t / >t dt
r—kal r—kaJ
Define
1 a’
£ = (/ et dt) / Lt ),
0 0
r—ka’+1 r—(k—1)a’
m = / t*Ldt / ttdt |,
r—kaJ r—kaJ
ol al
£l 1= / t L dt / o~ tde |,
at 0
and

r—ka’ +alt! r—(k—1)a’
Nigo = / ot / et
r—kaJ+a r—kaJ

for 0 <1 < j—1. Then it follows from (4.12) that &/&.+1 > mi/mi+1. Hence we
can apply part (a) of Lemma 4.3 to infer that
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r—kal +al*? r—kal +1
i1 / t* L dt / e Lat
r—kal +al 2j—l r—ka’ ' 2j+1
r—(k—1)a r—(k—1)a’
=0 / toc—l dt / toc—l dt
r—kal r—kal
alt1! 1
j—1 / 1 dt / 1t oD
< Jal  foily | L0 |l 25
=0

al al al
/ L at / L at / L at
0 0 0

J l
Q 2
= 2Dy <23 (Z) ovas.en
=0
for each 1 < k < n. Hence

IU<3<

On the other hand we have

r—na’

IV = — t YT (r — na’ —t) fs||y dt
0

a r—na’ o
= 7"_0‘ </0 13 1dt> H r— nan(SHl
—nal j—1 k
a r—na ot 2
< </0 t dt> : <4+8§ <a_0‘> ) (by (iii)).

,
Since r_ / t>~1 dt, we deduce from these observations that
@ 0

J—1

9\ k i/ 9\k }
4.14 b =IIT+1T 4 — 2 — 7.
(@14) |C2 ol = TTT+1V < +8k2() + kZ() (r> o)

(v) Finally we estimate ||Cfg.|l1 (¢t > 0), where g.. is the function defined in
(4.10) for the case that o/’ 1 <r — ¢ <r < al, with1 < j < jand 0 < &' < 1.
If 0 <t <, then, as in (ii) and (iii), we have
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(4.15) |C&gL I < 4+8J§< ) g<4+8:§<a%)k>.
=0

And, if ¢t > r, then we write

a t t—r B
HC?gLHl:t—a</ +/0 )so‘ YTt —s)glhds =V + VI,
t—r

a [T
V< t_a/ s YT (r — s)glll1ds < |C¥gL|1

where

j'—1

k 7l g\ k
<2+4Z< ) §2+4Z<a—a> (cf. (4.8)).
k=0

On the other hand, since T'(r)g;. = (2U=)6") "L x (5 o) = 27U~ f5, it follows
that

Q t—r 3 -
VI = ) ST (t— 1 — 8)(f5 /27791 ds
< g IG forlle < 1 fsr

N

Jj—1 9 k J 9 k
4+82<a_a> +22<a_0<> ,
k=0 k=0

where the last inequality comes from (i), (iii) and (iv); in particular (iii) is applied
to the function g,; = fs.
Hence, if ¢t > r, then

J—1 J
(4.16) |Cg Hl—V+VI<6+1QZ< ) Z( )
k=0 k=0
By this and (4.15),
J 9\ F
(4.17) sup [|CF fslli < a(X;) <6+ 142 <—a>
0<6<1 o \&

for each j > 1, so that we have:
(vii) v < a < 1 implies sup;>; o(X;) < 6 + 14a*(a™ — 2)~* (since a® > 2);
(viii) 0 < a <~y implies lim; .~ a(X;) = oo (by (4. 6))
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Therefore, we conclude that

(4.18) sup |C7 1 =00, and sup [|[C|l; < oo forall 8> 1.
>0 >0

We are now in a position to consider the cosine operator function case. For
j>1, let

Yj:=[-d, a’), and w;(s):=w;(|s]) for s€Y;.

For ¢ € R, define a point transformation 7, : Y; — Y; by 7;:(s) := s + ¢ (mod
2a%), and put S;(t)f(s) := f(7;+(s)) for f on Y;. Define a measure v; on Y; by
vj = vj(s)ds.

Write

Y = U Y; (regarded as a disjoint union),
j=1

and let v be the measure on Y defined by v|y, := v; for each j > 1. For ¢t € R,
define an operator S(t) : Li(Y,v) — Li(Y,v) by (S(t)f)ly; := S;(t)(fly;) for
j > 1. Itis clear that S(-) becomes a strongly continuous one-parameter group of
positive linear operators on Ly (Y, v). Thus, if we set C(t) := 271(S(¢) + S(—t))
for ¢t > 0, then (C(t))+>0 becomes a strongly continuous cosine operator function
of positive linear operators on L, (Y, v). Then, by using part (b) of Lemma 4.3 and
the above calculations, it is now routine to check that the Cesaro means C; and Cf
of (C(t))¢>0 satisfy (4.18).

This completes the proof of Theorem 4.2. ]

The above proof of Theorem 4.2 turns up the following result.

Theorem 4.4. There exists a Cy-semigroup (7'(t))+>o [resp. a strongly continu-
ous cosine operator function (C(t)) +>0] of positive linear operators on an L ;-space
such that sup,~ | 7'(t)|| = oo [resp. sup;~q ||C(¢)|| = oc], but sup,~ ||C} || < oo
for all v > 0 and, in particular, the Abel means of (7'(t)) ¢+>o [resp. (C(t))+>0] are
uniformly bounded.

Proof. We first note that if a(v) (> 2) denotes the unique solution of
the equation 2 = a” for 0 < v < 1, then we have a(y) 1 o0 as v | 0, and
{a(y) : 0 < v < 1} = (2,00). Thus, for each k& > 1, there exists a unique
Ve, With 0 < v < 1, such that a(y;) = 4%. Since a(1/k) = 2F < 4% = a(y),
it follows that v, < 1/k. By this, together with the proof of Theorem 4.2 (see
especially (4.3), (4.17), and (vii), (viii) below (4.17)), we see that for each k& > 1
there exists a Cyp-semigroup (Tj(t)):>o of positive linear operators on Ly (2, )
such that
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(4.19) k< sup |Te(t)|ly < oo, and sup |CF/*(Te(-)|l1 < 34,
t>0 t>0

where the constant 34 comes from (vii) by putting a = a(y) = 4%, with v =
and o = 1/k. Let

(4.20) Q.= U Q. (regarded as a disjoint union),

and let ;. be the measure on €2 defined by p|q, := pu for each £ > 1. For ¢ > 0,
define a positive linear operator T'(t) : L1(Q, ) — L1(€, 1) by

(T()Nley = Ti(®)(flay) (k=1).

It follows thatif 0 < f € L1(£2, ) then0 < T'(¢) f € L1(2, p), and limy o || T(¢) f—
flli =0. Thus (T'(t))s>0 is a Cp-semigrou p on L;(€2, ), and we have
sup,so ||T(t)||1 = oo, because sup,~q [|T(t)||1 > supssg |Tx(¢)|[1 > &k for k> 1
by (4.19). On the other hand, if v > 0, then, choose n > 1 so that 1/n < ~. Then
we have by Theorem 2.2(i)

1
sup |7 | < sup 1™
t>0

< poax (sup [[Tk(t)[lr) + sup (sup 1™ (Te(-)Ih)
1<k<n ¢>0 k>n t>0

< max (Sup 1Tk (8)]]1) + sup (sup |G (T())1h)
1<k<n k>n t>0

< max (sup | Tk(t)]]1) + 34 < oo (by (4.19)).
1<k<n ¢>0

This completes the proof for the semigroup case.
The proof for the cosine operator function case is similar, and hence we may
omit the details. m
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