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A CLASS OF SMALL DEVIATION THEOREMS FOR THE
SEQUENCES OF NONNEGATIVE INTEGER-VALUED

RANDOM VARIABLES

Liu Wen

Abstract. In virtue of the notion of likelihood ratio the limit properties
of the sequences of dependent nonnegative integer-valued random vari-
ables are studied, and a class of small deviation theorems are obtained.
In the proof an approach of applying the tool of generating function to-
gether with the method of splitting intervals to the study of the strong
laws is proposed.

1. Introduction

Let {Xn, n > 1} be a sequence of nonnegative integer-valued variables
defined on the probability space (Ω,F , P ) with the joint distribution

fn(x1, · · · , xn) = P (X1 = x1, · · · , Xn = xn) > 0, xk ∈ S, 1 ≤ k ≤ n,(1)

where S = {0, 1, 2, · · ·}. Let

(pk(0), pk(1), · · ·), k = 1, 2, · · · ,(2)

be a sequence of probability distribution on S, and let

qn(x1, · · · , xn) =
n∏

k=1

pk(xk), xk ∈ S, 1 ≤ k ≤ n,(3)

be the product distribution generated by (2). The random variable
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rn(ω) = qn(X1, · · · , Xn)/fn(X1, · · · , Xn) =

[
n∏

k=1

pk(Xk)

]
/fn(X1, · · · , Xn)(4)

is called the likelihood ratio, which is of fundamental importance in the theory
of testing statistical hypotheses (cf. Karlin and Taylor, 1975, p. 245; Laha
and Rohatgi, 1979, p. 388; Billingsley, 1986, p. 483).

In the above definition fn(x1, · · · , xn) is the joint distribution of {Xk, 1 ≤
k ≤ n}, and qn(x1, · · · , xn) is called the reference distribution.

In this paper we use the likelihood ratio rn(ω) as a measure of the de-
viation between {Xk, 1 ≤ k ≤ n} and the sequence of independent random
variables with the product distribution (3). A subset of sample space is deter-
mined by restricting rn(ω), and on this subset a class of strong limit theorems
represented by inequalities, which we call the small deviation theorems, are
established. The usual strong limit theorems represented by equalities are
special cases of the corresponding small deviation theorem.

2. Main Results

Let

mk =
∞∑

i=1

i pk(i) < ∞,(5)

Pk(s) =
∞∑

i=0

pk(i)si(6)

be, respectively, the mathematical expectation and the generating function of
a random variable with distribution (2).

Theorem 1. Let {Xn, n ≥ 1}, rn(ω), mk, Pk(s) be given as above, and
c ≥ 0 a constant. Let

D(c) = {ω : lim inf
n

(1/n) ln rn(ω) ≥ −c}.(7)

Then

lim inf
n

(1/n)
n∑

k=1

(Xk −mk) ≥ α(c) a. e. ω ∈ D(c),(8)

where

α(c) = sup{ϕ(s), 0 < s < l},(9)
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ϕ(s) = lim inf
n

(1/n)
n∑

k=1

[ln Pk(s)/ ln s−mk] + c/ ln s, 0 < s < 1.(10)

Remark 1. It will be shown below that

lim sup
n

(1/n) ln rn(ω) ≤ 0 a.e.(11)

Hence the inequality lim inf
n

(1/n) ln rn(ω) ≥ −c in (7) may be looked upon
as a restriction to the deviation between {Xn, n ≥ 1} and the sequence of
independent random variables with distribution (3). The smaller is c, the
smaller is the deviation. The theorems we obtained assert that under the
restriction in (7) the ratio (1/n)

∑n
k=1(Xk−mk) is restricted correspondingly,

and formulas (8) and (30) give respectively an estimation of the lower and
upper bounds of its inferior and supperior limits corresponding to c. (49) and
(61) assert that under appropriate conditions the bounds given by (46) and
(58) tend to zero as c → 0. This means that the behaviour described above
is similar in some sense to that described in the theorems on the stability of
solutions of differential equations.

Remark 2. By the definition of a.e. convergence on a measurable set
(8) holds trivially if P (D(c)) = 0. This case goes beyond the scope of small
deviation.

Proof. In what follows we shall use the method of splitting interval pro-
posed by the author (see Liu Wen, 1990) together with the tool of generating
functions. It is different from the traditional probabilistic method. The crucial
part is the application of Lebesgue’s theorem on differentiability of monotone
function to the study of a.e. convergence.

Throughout this paper we deal with the underlying probability space
(Ω,F , P ), where Ω = [0, 1), F is the class of Borel measurable sets in the
interval [0, 1), and P is the Lebesgue measure. For the sake of completion,
we first give, in the above probability space, a realization of non-negative
integer-valued random variable sequence with distribution (1).

Split the interval [0, 1) into countably many right-semiopen intervals Ix1(x1

= 0, 1, 2, · · ·) according to the ratio f1(0) : f1(1) : · · ·, i.e.,

Io = [0, f1(0)), I1 = [f1(0), f1(0) + f1(1)), · · · .

These intervals will be called the I-interval of the first order. Proceeding
inductively, suppose the nth order I-intervals {Ix1···xn , xi ∈ S, 1 ≤ i ≤ n} have

293



294 Liu Wen

been defined. Then split the right-semiopen interval Ix1···xn into countably
many right-semiopen intervals

Ix1 ···xn0, Ix1 ···xn1, · · ·
according to the ratio fn+1(x1, · · · , xn, 0) : fn+1(x1, · · · , xn, 1) , the I-intervals
of (n + 1)th order are created. It is easy to see that for n ≥ 1,

P (Ix1 ···xn) = fn(x1, · · · , xn).(12)

Define, for n ≥ 1, a random variable Xn : [0, 1) → S as follows:

Xn(ω) = xn, if ω ∈ Ix1···xn .(13)

By (12) and (13),

{ω : X1 = x1, · · · , Xn = xn} = Ix1 ···xn ;(14)

P (X1 = x1, · · · , Xn = xn) = P (Ix1···xn) = fn(x1, · · · , xn),(15)

hence {Xi, 1 ≤ i ≤ n} has distribution (1).
For the need of the proof, we first construct an auxiliary function. Let the

radius of convergence of (6) be Rk, R = inf{Rk, k = 1, 2, · · ·}. Since Pk(s) is
a probability generating function, R ≥ 1. Let s ∈ (0, R) ∪ {1}, and put

Pk(s, i) = [1/Pk(s)]pk(i)si, i = 0, 1, 2, · · · .(16)

In a similar way we can create the J-intervals by splitting the interval [0,
1) successively as follows: Split [0, 1) into countably many right-semiopen
intervals

Jo = [0, P1(s, 0)), J1 = [P1(s, 0), P1(s, 0) + P1(s, 1)), · · · .
These intervals will be called the J-intervals of the first order. Suppose the
nth order J-interval Jx1···xn has be defined. Then split it into countably many
right-semiopen intervals Jx1···xnxn+1(Xn+1 = 0, 1, 2, · · ·) according to the ratio
Pn+1(s, 0) : Pn+1(s, 1) : · · ·, the J-intervals of (n + 1)th order are created. It
is easy to see that

P (Jx1···xn) =
n∏

k=1

Pk(s, xk) =
n∏

k=1

[1/Pk(s)]pk(xk)sxk .(17)

Let I−x1···xn
and I+

x1···xn
be, respectively, the left and right end-points of Ix1···xn ;

define J−x1···xn
and J+

x1···xn
similarly. Let Q be the set of end-points of I-intervals

of all orders. Define a function gs : [0, 1] → [0, 1] as follows:
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gs (I−x1···xn
) = J−x1···xn

, gs (I+
x1···xn

) = J+
x1···xn

;(18)

gs(x) = sup{gs(t), t ∈ Q ∩ [0, x)}, x ∈ [0, 1]−Q.(19)

Let

tn(s, ω) =
gs(I+

x1···xn
)− gs(I−x1···xn

)
I+
x1···xn − I−x1···xn

, ω ∈ Ix1···xn .(20)

We have by (4), (13), (15) and (17),

tn(s, ω) = P (JX1···Xn)/P (IX1···Xn) = rn(ω) s

n∑
k=1

Xk n∏

k=1

[1/Pk(s)].(21)

Let A(s) be the set of points of differentiability of gs. Then P (A(s)) = 1 by the
theorem on the existence of derivative of monotone function (cf. Billingsley,
1986, p. 424). In virtue of a property of derivative (cf. Billingsley, 1986, p.
423) we have

lim
n

tn(s, ω) = a finite number, ω ∈ A(s).(22)

This implies that

lim sup
n

(1/n) ln tn(s, ω) ≤ 0, ωA(s).(23)

We have by (21) and (23),

lim sup
n

(1/n) [ln rn(ω) +
n∑

k=1

Xk ln s] ≤ lim sup
n

(1/n)

·
n∑

k=1

ln Pk(s), ω ∈ A(s).
(24)

Letting s = 1 in (24) we obtain

lim sup
n

(1/n) ln rn(ω) ≤ 0, ω ∈ A(1).(25)

Since P (A(1)) = 1, (11) follows from (25). We have by (24) and (7),

lim sup
n

(1/n)
n∑

k=1

Xk ln s ≤ lim sup
n

(1/n)
n∑

k=1

ln Pk(s) + c,

ω ∈ A(s) ∩D(c).
(26)

Assume 0 < s < 1. Dividing the two sides of (26) by ln s, we obtain
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lim inf
n

(1/n)
n∑

k=1

(Xk −mk) ≥ lim inf
n

(1/n)
n∑

k=1

[ln Pk(s)/ ln s−mk] + c/ ln s = ϕ(s),

ω ∈ A(s) ∩D(c).

(27)

From (9), there exist si ∈ (0, 1), i = 1, 2, · · ·, such that

lim
i

ϕ(si) = α(c).(28)

Let A =
∞⋂
i=1

A(si). We have by (27) and (28),

lim inf
n

(1/n)
n∑

k=1

(Xk −mk) ≥ α (c), ω ∈ A ∩D(c).(29)

Since P (A) = 1, (8) follows from (29). The theorem is proved.

Remark. Since the probability-theoretic properties of any family {Xt, t ∈
T} of random variables can be expressed in terms of the distributions of its
finite subfamilies (cf. Loeve, 1977, p. 174), we may use a special realization
of {Xn, n ≥ 1} to prove our theorems without loss of generality.

Theorem 2. Let R be defined as above, and suppose that R > 1. Then
under the hypotheses of Theorem 1 we have

lim sup
n

(1/n)
n∑

k=1

(Xk −mk) ≤ β(c) a.e. ω ∈ D(c),(30)

where

β(c) = inf{ψ(s), 1 < s < R},(31)

Ψ(s) = lim sup
n

(1/n)
n∑

k=1

{[ln Pk(s)]/ ln s−mk}+ c/ ln s, 1 < s < R.(32)

Proof. Assume 1 < s < R. Dividing the two sides of (26) by ln s, we
obtain

lim sup
n

(1/n)
n∑

k=1

[Xk −mk ≤ lim sup
n

(1/n)
n∑

k=1

{ln Pk(s)]/ ln s−mk}

+c/ ln s = ψ(s), ω ∈ A(s) ∩D(c).
(33)
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From (31), there exist si ∈ (1, R), i = 1, 2, · · ·, such that

lim
i

ψ(si) = β(c).(34)

Let A =
∞⋂
i=1

A(si). By (33) and (34) we obtain

lim sup
n

(1/n)
n∑

k=1

(Xk −mk) ≤ β(c), ωA ∩D(c).(35)

Since P (A) = 1, (30) follows from (35). The theorem is proved.

Corollary 1. Let {pk(i)}(i = 0, 1, 2, · · ·) in the definition of rn(ω) be the
Poisson distribution with parameter λk > 0, and let

λ = lim sup
n

(1/n)
n∑

k=1

λk < ∞.(36)

Then

lim sup
n

(1/n)
n∑

k=1

(Xk − λk) ≤ 2
√

λc + c a.e. ωD(c);(37)

and for 0 ≤ c < λ

lim inf
n

(1/n)
n∑

k=1

(Xk − λk) ≥ −2
√

λc a.e. ω ∈ D(c).(38)

Proof. In this case Pk(s) = eλk(s−1), mk = λk, let

gn(s) = (1/n)
n∑

k=1

[ln Pk(s)/ ln s−mk] + c/ ln s

= [(s− 1)/ ln s− 1](1/n)
n∑

k=1

λk + c/ ln s, s ∈ (0, 1) ∪ (1, R).
(39)

We have by (39), (32) and the inequality 1− 1/s ≤ ln s ≤ s− 1(s > 0).

ψ(s) = lim sup
n

gn(s) = [(s− 1)/ ln s− 1]λ + c/ ln s

≤
[

s− 1
1− 1/s

− 1
]
λ +

c

1− 1/s

= λ(s− 1) + c/(s− 1) + c = g(s), s ∈ (1, R).

(40)
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It is easy to see that g(s) attains, at s = 1 +
√

c/λ, its smallest value v(c) =
g(1 +

√
c/λ) = 2

√
λc + c on the interval (1, R) if c > 0 and λ > 0, and (40)

implies that v(c) ≥ β(c). Hence (37) follows from (30). Similarly, we have

ϕ(s) = lim inf
n

gn(s) = [(s− 1)/ ln s− 1]λ + c/ ln s

≥
[

s− 1
1− 1/s

− 1
]
λ +

c

s− 1

= λ(s− 1) + c/(s− 1) = h(s), s ∈ (0, 1).

(41)

It is easy to see that h(s) attains, at s = 1 − √
c/λ, its largest value u(c) =

−2
√

λc on the interval (0, 1) if 0 < c < λ, and (41) implies that u(c) ≤ α(c).
Hence (38) follows from (8). Obviously, α(0) = β(0) = 0, and α(c) = β(c) = 0
if λ = 0. Hence in the case c = 0 or λ = 0, (37) and (38) are also true.

Theorem 3. Let

qk(i) =
∞∑

j=i+1

pk(j), i ∈ S;(42)

Qk(s) =
∞∑

i=0

qk(i)si(43)

be, respectively, the tail probability and the tail probability generating functions
of the distribution (2). If there exists a sequence of positive numbers {q(i), i ≥
0} such that

qk(i) ≤ q(i), i ≥ 0, k ≥ 1;(44)

∞∑

i=0

q(i) = m < ∞,(45)

then under the assumption of Theorem 1 we have

lim inf
n

(1/n)
n∑

k=1

(Xk −mk) ≥ α∗(c) a.e. ω ∈ D(c),(46)

where

α∗(c) = sup{ϕ∗(s), 0 < s < 1},(47)

ϕ∗(s) = lim inf
n

(1/n)
n∑

k=1

[s Qk(s)−Qk(1)] + c/ ln s, 0 < s < 1.(48)
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Moreover, α ∗ (c) ≤ 0, and

lim
c→0+

α∗(c) = α∗(0) = 0.(49)

Proof. Applying the inequality 1 − 1/x < ln x < x − 1(0 < x < 1) and
the property of generating function

Qk(s) = [1− Pk(s)]/(1− s), |s| < 1; Qk(1) = mk(50)

(cf. Hunter, 1983, p. 39), we obtain from (27),

lim inf
n

(1/n)
n∑

k=1

(Xk −mk)

≥ lim inf
n

(1/n)
n∑

k=1

[
Pk(s)− 1
1− 1/s

−mk

]
+ c/ ln s

= lim inf
n

(1/n)
n∑

k=1

[s Qk(s)−Qk(1)] + c/ ln s

= ϕ∗(s), 0 < s < 1, ω ∈ A(s) ∩D(c).

(51)

From (47), there exist si ∈ (0, 1), i = 1, 2, · · ·, such that

lim
i

ϕ∗(si) = α∗(c).(52)

Let A =
∞⋂
i=1

A(si). We have by (51) and (52),

lim inf
n

(1/n)
n∑

k=1

(Xk −mk) ≥ α∗(c), ωA ∩D(c).(53)

Since P (A) = 1, (46) follows from (53).
For 0 < s < 1, s Qk(s)−Qk(1) < 0, and ϕ(s) < 0. Hence α(c) ≤ 0. Let

Q(s) =
∞∑

i=0

q(i)si(54)

be the generating function of {q(i), i ≥ 0}. We have by (42) and (43),
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(1/n)
n∑

k=1

[s Qk(s)−Qk(1)]

= [(s− 1)/n]
n∑

k=1

Qk(s) + (1/n)
n∑

k=1

∞∑

i=0

qk(i)(si − 1)

≥ (s− 1)Q(s) + Q(s)−Q(1)

= s Q(s)−Q(1), 0 ≤ s ≤ 1.

(55)

By (47), (48) and (55),

α∗(c) ≥ ϕ∗(1−
√

c) ≥ (1−√c)Q(1−√c)−Q(1)+c/ ln(1−√c), 0 < c < 1;(56)

α∗(0) ≥ ϕ∗(1− 1/n) ≥ (1− 1/n)Q(1− 1/n)−Q(1), n ≥ 2.(57)

Since α∗(c) ≤ 0, it is obvious that (56) and (57) imply (49). The theorem is
proved.

Theorem 4. Let R be the radius of convergence of (54), and suppose that
R > 1. Then under the hypotheses of Theorem 3 we have

lim sup
n

(1/n)
n∑

k=1

(Xk −mk) ≤ β∗(c), ω ∈ D(c),(58)

where

β∗(c) = inf{ψ∗(s), 1 < s < R},(59)

ψ∗(s) = lim sup
n

(1/n)
n∑

k=1

[s Qk(s)−Qk(1)] + c/ ln s, 1 < s < R.(60)

Moreover, β∗(c) ≥ 0, and

lim
c→0+

β∗(c) = β (0) = 0.(61)

Proof. It is easy to see that the hypotheses of the theorem imply that the
radiuses of (6) and (43) are not less than R, and

Qk(s) = [1− Pk(s)]/(1− s), 1 < s < R. (cf. Hunter, 1983, p. 39)(62)

Applying the inequality 0 < 1− 1/x < ln x < x− 1(x > l) and the property
(62) of the generating function, we obtain from (33),



A Class of Small Deviation Theorems 301

lim sup
n

(1/n)
n∑

k=1

(Xk−mk)≤ lim sup
n

(1/n)
n∑

k=1

[sQk(s)−Qk(1)]+c/ ln s

= ψ∗(s), 1 < s < R, ω ∈ A(s) ∩D(c).
(63)

From (59), there exist si ∈ (1, R), i = 1, 2, · · ·, suth that

lim
i

ψ∗(si) = β∗(c).(64)

Let A =
∞⋂
i=1

A(si). By (63) and (64) we obtain

lim sup
n

(1/n)
n∑

k=1

(Xk −mk) ≤ β∗(c), ω ∈ A ∩D(c).(65)

Since P (A) = 1, (58) follows from (65). Imitating the proof of (49), (61) can
be established. The theorem is proved.

Corollary 1. Under the hypotheses of Theorem 3 we have

lim
n

(1/n)
n∑

k=1

(Xk −mk) = 0 a.e., ω ∈ D(0).(66)

Proof. Letting c = 0, (66) follows from (46) and (58) immediately.

Corollary 2. Let {Xn, n ≥ 1} be independent and have the distribution
(2). Then under the hypotheses of Theorem 3 we have

lim
n

(1/n)
n∑

k=1

(Xk −mk) = 0 a.e.(67)

Proof. In this case rn(ω) ≡ 1, and D(0) = [0, 1). Thus (67) follows
immediately from (66).

3. An Open Problem

We have seen that in the deriving of (30) and (58) the condition R > 1
is essential. On the other hand, it is well-known that for the strong law
of large numbers of a sequence of independent and identically distributed
random variables the first moment is the only one assumed in the hypothesis.
This motivates the following problem: under the conditions of Theorem 4
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except the assumption R > 1, does there exsist a nondecreasing function
β : [0,∞) → [0,∞) satisfying the following condition?

lim
c→0+

β(c) = β(0) = 0(68)

such that for each c ≥ 0,

lim sup
n

(1/n)
n∑

k=1

(Xk −mk) ≤ β(c) a.e., ω ∈ D(0).(69)
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