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ON THE REGULARITY OF SOLUTION OF THE SECOND INITIAL
BOUNDARY VALUE PROBLEM FOR SCHRÖDINGER SYSTEMS

IN DOMAINS WITH CONICAL POINTS

Nguyen Manh Hung and Nguyen Thi Kim Son

Abstract. Some results on the unique solvability and the regularity of solution
of the second initial boundary value problem for strongly Schrödinger systems
in finite and infinite cylinders with the bases containing conical points are
given.

1. INTRODUCTION AND NOTATIONS

The first initial boundary value problem for Schrödinger systems was considered
in the finite cylinders QT = Ω × (0, T ), T < +∞ (see [3]) and in the infinite
cylinder Q∞ = Ω× (0, +∞) ( see [4,5]).

The second initial boundary value problems have been dealt with for the class
heat equations (see [2]) and for general second order parabolic equations in [12]
in domains with edges. This problem in domains with conical points has been
investigated for general hyperbolic system in [6]. In this paper, we consider such
problem for general strongly Schrödinger systems in finite and infinite cylinders
QT = Ω × (0, T ) where 0 < T � +∞ and Ω is a domain containing conical
points. Our main purpose is to study the regularity of solution of the mentioned
problem.

As we have known, the second initial boundary value problem is absolutely dif-
ferent from and more difficult than the first initial boundary value problem because
we do not have the Garding inequality and general Neumann boundary condition can
not always be written as clearly as general Dirichlet boundary condition. Moreover
the general Hardy’s inequality, that always holds for u ∈

o
Hm(Ω) for all integer
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number m, is not true for u ∈ Hm(Ω) for m arbitrary. So in oder to receive
our main results we have to prove some auxiliary lemmas (Lemma 1.1, Lemmas
3.1, 3.2, 3.3). In which we give some conditions to have an inequality that plays
a similar role to the Garding inequality. Moreover, by dividing m to 3 cases:
m < n

2 , m = n
2 , m > n

2 , where n is the dimension of Ω, we manage to apply the
general Hardy’s inequality to serve our purpose. With the help of these lemmas,
we can apply the results for elliptic boundary value problem to deal with the regu-
larity with respect to both of time (Theorems 2.1) and spatial variables of solution
(Theorems 3.1, 3.2).

Suppose that Ω is a bounded domain in R
n, Ω and ∂Ω denote the closure and

the boundary of Ω in R
n. We suppose that Γ = ∂Ω\{0} is a smooth manifold and

Ω coincides with the cone K = {x : x
|x| ∈ G} in a neighborhood of the origin

point 0, where G is a smooth domain on the unit sphere Sn−1 in Rn. We begin
by introducing some notations and functional spaces which are used fluently in the
rest.

Denote QT = Ω × (0, T ), ST = Γ × (0, T ), for some 0 < T � +∞; x =
(x1, ..., xn) ∈ Ω, u(x, t) = (u1(x, t), ..., us(x, t)) is a vector complex function;
α = (α1, ..., αn)(αi ∈ N, i = 1, .., n) is a multi-index; |α| = α1 + · · · + αn,

Dα = ∂|α|/∂xα1
1 · · ·∂xαn

n , |Dαu|2 =
s∑

i=1

|Dαui|2, utj = (∂ju1/∂tj, ..., ∂jus/∂tj),

r = |x| =
√

x2
1 + ... + x2

n, Cs
k =

k!
s!(k − s)!

(0 � s � k).

In this paper we will use usual functional spaces: C∞(Ω), L2(Ω), Hm(Ω),
H l,k(QT ) when T < +∞ and m, l, k ∈ N (see [4,5] for the precise definitions).
Denote by Hl

β(Ω) the space of all measurable complex functions u(x, t) that satisfy

‖u‖H l
β(Ω) =

( ∑
|α|�l

∫
Ω

r2(β+|α|−l)|Dαu|2dx
) 1

2
< +∞.

Moreover, when 0 < T � +∞ we define:
Hm,l(e−γt, QT ) (γ > 0)- the space of all measurable complex functions u(x, t)
that have generalized derivatives up to order m with respect to x and up to order l
with respect to t with the norm

‖u‖Hm,l(e−γt,QT ) =
( ∫

QT

[ ∑
|α|�m

|Dαu|2 +
∑
j�l

|utj |2
]
e−2γtdxdt

) 1
2

< +∞.

Hk(e−γt, QT ) (γ > 0)- the space of all measurable complex functions u(x, t)
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satisfying

‖u‖Hk(e−γt,QT ) =
( ∫

QT

∑
|α|+j�k

|Dαutj |2e−2γtdxdt
) 1

2
< +∞.

H l,k
β (e−γt, QT )- the space of all measurable complex functions u(x, t) with the

norm

‖u‖
H l,k

β (e−γt,QT )
=

[ ∫
QT

( l∑
|α|=0

r2(β+|α|−l)|Dαu|2+
k∑

j=1

|utj |2
)
e−2γtdxdt

]1
2

< +∞.

H l
β(e−γt, QT )-the weighted space with the norm

‖u‖H l
β(e−γt,QT ) =

( ∑
|α|+j�l

∫
QT

r2(β+|α|+j−l)|Dαutj |2e−2γtdxdt
) 1

2
< +∞.

L2(e−γt, QT )- the space of all measurable functions u(x, t) that satisfy

‖u‖L2(e−γt,QT ) =
( ∫

QT

|u|2e−2γtdxdt
) 1

2
< +∞.

L2(e−γt, (0, T ))- the space of all measurable functions u(t) with the norm

‖u‖L2(e−γt,(0,T )) =
( T∫

0

|u|2e−2γtdt
) 1

2
< +∞.

Denote by L∞(0, T ; L2(Ω)) the space of all measurable functions u : (0, T ) −→
L2(Ω), t �−→ u(t) with the norm ‖u‖∞ = ess sup

0<t<T
‖u(t)‖L2(Ω) < +∞.

For convenience, in the rest of this paper we say that u(x, t) belongs to some
spaces if all of its components belong to that one.

We now introduce a 2mth-order differential operator:

L(x, t, D) =
m∑

|p|,|q|=0

Dp(apq(x, t) Dq),(1.1)

where apq are s × s - matrices of bounded measurable complex functions defined
on QT , apq = (−1)|p|+|q|a∗qp (a∗qp denotes the transposed conjugate matric of aqp).
Suppose that apq are continuous in x ∈ Ω uniformly with respect to t ∈ [0, T ) if
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|p| = |q| = m. Moreover, we assume that the operator L satisfies a hypothesis that
given as follow (see for example [6, 9]).

Hypothesis (H). For all (x, t) ∈ QT and (ηp)|p|=m ∈ Cs.m∗
1 \ {0}, we have∑

|p|=|q|=m

apq(x, t)ηqηp � C0

∑
|p|=m

|ηp|2,

where C0 is a positive real number, independent of (η p)|p|=m; m∗
1 =

∑
|p|=m

1.

Setting ηp = ξpη with ξ ∈ R
n\{0}, ξp = ξp1

1 · · · ξpn
n and η ∈ C

s\{0}, it follows
from hypothesis (H) that

∑
|p|=|q|=m

apq(x, t)ξpξqηη � C0|ξ|2m|η|2, (x, t) ∈ QT ,

which is equivalent to the strong ellipticity of the operator L. However, one can see
easily that the condition of strong ellipticity of the operator L does not imply the
hypothesis (H).

In cylinder QT , 0 < T � +∞, we consider the second initial boundary value
problem for the Schrödinger system

i(−1)m−1L(x, t, D)u− ut = f(x, t), (x, t) ∈ QT ,(1.2)

with initial condition

u(x, 0) = 0, x ∈ Ω,(1.3)

where L(x, t, D) is the operator in (1.1); u, f are vector functions.
The function u(x, t) is called generalized solution in the space H m,0(e−γt, QT )

of the second initial boundary value problem for the Schrödinger system (1.2) and
initial condition (1.3) if and only if u(x, t) ∈ Hm,0(e−γt, QT ), satisfying

(−1)m−1i

m∑
|p|,|q|=0

(−1)|p|
∫
Qτ

apq(x, t)Dqu(x, t)Dpη(x, t)dxdt+
∫
Qτ

u(x, t)ηt(x, t)dxdt

=
∫
Qτ

f(x, t)η(x, t)dxdt(1.4)

for each 0 < τ < T and all test functions η(x, t) ∈ Hm,1(Qτ ), η(x, τ) = 0.
For u(x, t) ∈ Hm,0(e−γt, QT ) set

B[u, u](t) =
m∑

|p|,|q|=0

(−1)|p|
∫
Ω

apq(x, t)Dqu(x, t)Dpu(x, t)dx.

To consider the problem we need to prove the important following lemma.
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Lemma 1.1. If the hypothesis (H) holds and apq is bounded in QT for all
|p|, |q| � m, then there exist two constants µ0 > 0 and λ0 such that the following
inequality

(−1)mB[u, u](t) � µ0‖u‖2
Hm(Ω) − λ0‖u‖2

L2(Ω)

is valid for all u ∈ H m,0(e−γt, QT ), γ > 0 and almost all t ∈ (0, T ).

Proof. It follows from the hypothesis (H) that

(1.5)
∑

|p|=|q|=m

∫
Ω

apq(x, t) DquDpudx � C0

∑
|p|=m

‖Dpu‖2
L2(Ω)

for all u(x, t) ∈ Hm,0(e−γt, QT ), almost t ∈ (0, T ), with C0 is a constant, inde-
pendent of u. Using Cauchy’s inequality and (1.5) one has

C0

∑
|p|=m

‖Dpu‖2
L2(Ω) �

∑
|p|=|q|=m

∫
Ω

apq DquDpudx

= (−1)mB[u, u](t)− (−1)m
∑

|p|+|q|<2m
|p|,|q|�m

(−1)|p|
∫
Ω

apq DquDpudx

� (−1)mB[u, u](t) + C(ε)‖u‖2
Hm−1(Ω) + ε

∑
|p|=m

‖Dpu‖2
L2(Ω),

where 0 < ε < C0, C(ε) > 0. This implies

(1.6) ‖u‖2
Hm(Ω) � C1(−1)mB[u, u](t) + C2‖u‖2

Hm−1(Ω), where C1, C2 > 0.

In another way, because Ω coincides with the cone K in a neighborhood of the
origin point 0 and ∂Ω\{0} is a smooth manifold, it follows from [1] that for all
ε > 0, there is a constant C(ε) such that the following inequality∑

|p|=k

‖Dpu‖2
L2(Ω) � ε

∑
|p|=m

‖Dpu‖2
L2(Ω) + C(ε)‖u‖2

L2(Ω)

holds for all u ∈ Hm(Ω), k = 1, 2, . . . , m− 1. This implies that for all 0 < ε < 1,
there exists C3 = C3(ε) such that ‖u‖2

Hm−1(Ω) � ε‖u‖2
Hm(Ω) + C3‖u‖L2(Ω) for all

u ∈ Hm,0(e−γt, QT ). Hence, from (1.6) we have

‖u‖2
Hm(Ω) � C1(−1)mB[u, u](t) + C2[ε‖u‖2

Hm(Ω) + C3‖u‖2
L2(Ω)]

for all 0 < ε < min{1, C0,
1

C2
}. Therefore we obtain

(−1)mB[u, u](t) � µ0‖u‖2
Hm(Ω) − λ0‖u‖2

L2(Ω),
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where µ0 > 0, λ0 are constants independent of u. This proves the lemma.
From Lemma 1.1, using the transformation u(x, t) = eiλ0tv(x, t) if necessary,

we can assume that for all u(x, t) ∈ Hm,0(e−γt, QT ) the operator L(x, t, D) satis-
fies

(1.7) (−1)mB[u, u](t) � µ0‖u‖2
Hm(Ω), t ∈ (0, T ).

2. EXISTENCE, UNIQUENESS AND SMOOTHNESS WITH RESPECT TO

TIME VARIABLE OF SOLUTIONS

In this part of the paper, we will show that the second initial boundary value
problem for the Schrödinger system (1.2) − (1.3) is solved uniquely in the space
Hm,0(e−γt, QT ) for some γ > 0. Moreover, we will prove that the smoothness with
respect to time variable of solution of this problem only depends on the smoothness
of the coefficients and the right side of the systems, but does not depend on the
smoothness of the boundary of domains. Indeed, denote by m∗ the number of multi-
indexes which have order not exceeding m. Let µ0 be the constant in (1.7). We
have the following result.

Theorem 2.1. Suppose that

(i) sup{|∂apq

∂t
|, 0 � |p|, |q| � m, (x, t) ∈ QT} = µ < +∞

|apq,
∂kapq

∂tk
| � µ1, µ1 = const > 0 for 2 � k � h + 1,

(ii) ftk ∈ L∞(0, T ; L2(Ω)), for k � h + 1,

and if h � 1 then ftk(x, 0) = 0, for k � h − 1.

Then for every γ >
m∗µ
2µ0

, the second initial boundary value problem for (1.2) −
(1.3) has exactly one generalized solution u(x, t) in the space H m,0(e−γt, QT ).
Moreover, u(x, t) has generalized derivatives with respect to t up to order h in the
space Hm,0(e−(2h+1)γt, QT ) and the following estimate holds

‖uth‖2
Hm,0(e−(2h+1)γt,QT )

� C

h+1∑
k=0

‖ftk‖2
∞,(2.1)

where the constant C does not depend on u, f .

Proof. The uniqueness of solution of this problem can prove easily by using
the Ladyzhenskaya’s method [see 4, 8].
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Now, we establish the existence of generalized solution of the mentioned problem
by Galerkin’s approximate method. Let {ϕk(x)}∞k=1 be a basic of H m(Ω), which
is orthonormal in L2(Ω). We find an approximate solution uN(x, t) in the form

uN (x, t) =
N∑

k=1

CN
k (t)ϕk(x), where {CN

k (t)}N
k=1 satisfy

(−1)m−1i

m∑
|p|,|q|=0

(−1)|p|
∫

Ω
apqD

quNDpϕldx−
∫

Ω
uN

t ϕldx =
∫

Ω
fϕldx,(2.2)

CN
l (0) = 0, l = 1, . . . , N.(2.3)

It follows from i), ii) and (2.2)− (2.3) that coefficients CN
k (t) is defined uniquely

and uN (x, 0) = 0 for all N = 1, 2, . . .

Multiplying (2.2) by dCN
l (t)
dt , taking sum with respect to l from 1 to N , we get

(−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Ω
apqD

quNDpuN
t dx − i

∫
Ω

uN
t uN

t dx = i

∫
Ω

fuN
t dx.(2.4)

After adding (2.4) with its complex conjugate, integrating with respect to t from 0
to τ , 0 < τ < T, and then integrating by parts, we arrive at

(−1)mB[uN , uN ](τ) =(−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

∂apq

∂t
DquNDpuNdxdt

− 2Im
[ ∫

Ω
f(x, τ)uN(x, τ)dx−

∫
Qτ

ftuNdxdt
]
.

This implies by Cauchy’s inequality and (1.7) that for all 0 < ε < µ0

‖uN(x, τ)‖2
Hm(Ω) �

m∗µ+ε

µ0−ε
.

∫ τ

0
‖uN(x, t)‖2

Hm(Ω)dt+
1

ε(µ0−ε)
[‖f‖2

∞+τ‖ft‖2
∞

]
.

Applying Gronwall-Bellman’s inequality, one gets

‖uN(x, τ)‖2
Hm(Ω) � C1

[
‖f‖2

∞ + ‖ft‖2
∞

]
e

m∗µ+ε
µ0−ε

τ
,(2.5)

where C1 = max{ m∗µ
µ0−ε , 1

ε(µ0−ε)
} > 0.

For each γ > µm∗
2µ0

= inf
ε∈(0,µ0)

m∗µ+ε
2(µ0−ε) we can choose ε ∈ (0, µ0) such that

γ > m∗µ+ε
2(µ0−ε) , i.e, −2γ + m∗µ+ε

(µ0−ε) < 0. Multiplying (2.5) with e−2γτ , then integrating
with respect to τ from 0 to T , we obtain

‖uN‖2
Hm,0(e−γt,QT ) � C

[‖f‖2
∞ + ‖ft‖2

∞
]
,(2.6)



1892 Nguyen Manh Hung and Nguyen Thi Kim Son

where C > 0 is independent of N . Since the sequence {uN} is uniformly bounded
in Hm,0(e−γt, QT ), we can take a subsequence, denoted also by {uN} for conve-
nience, which converges weakly to a vector function u(x, t) in Hm,0(e−γt, QT ).
We will prove that u(x, t) is a generalized solution of the problem. Since M =
∞⋃

N=1
{

N∑
l=1

dl(t)ϕl(x), dl(t) ∈ H1(0, τ), dl(τ) = 0, l = 1, 2, ..., N} is dense in

the space of test functions Ĥm,1(Qτ )= {η(x, t)∈Hm,1(Qτ ), η(x, τ)= 0} for all
0 <τ < T so it suffices to show that u(x, t) satisfies (1.4) for all η(x, t) ∈ M 1.
Taking η(x, t) ∈ M arbitrarily, there exists N0 such that η can be written in the

form η(x, t) =
N0∑
l=1

dl(t)ϕl(x), dl(t) ∈ H1(0, τ), dl(τ) = 0, l = 1, .., N0. Multi-

plying (2.3) (with N � N0) by dl(t), taking sum with respect to l from 1 to N ,
then integrating with respect to t from 0 to τ , we obtain

(−1)m−1i

m∑
|p|,|q|=0

(−1)|p|
∫

Qτ

apqD
quNDpηdxdt−

∫
Qτ

uN
t ηdxdt =

∫
Qτ

fηdxdt.

It is easy to check that
∫

Qτ

uN
t ηdxdt = − ∫

Qτ

uNηtdxdt, so one has

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫
Qτ

apqD
quNDpηdxdt+

∫
Qτ

uNηtdxdt=
∫
Qτ

fηdxdt.

Passing to the limit for the weakly convergent subsequence, we get

(−1)m−1i

m∑
|p|,|q|=0

(−1)|p|
∫

Qτ

apqD
quDpηdxdt +

∫
Qτ

uηtdxdt =
∫

Qτ

fηdxdt.

Hence u(x, t) is a generalized solution of the second initial boundary value problem
for the system (2.3) − (2.4). Moreover, the weak convergence of the subsequence
of {uN (x, t)} and (2.6) imply that this solution satisfies the following inequality

(2.7) ‖u‖2
Hm,0(e−γt,QT ) � lim

N→∞
‖uN‖2

Hm,0(e−γt,QT ) � C
[‖f‖2

∞ + ‖ft‖2
∞

]
,

where C only depends on µ, µ0. This completes the proof of the existence of solution.
In the following part of the proof, we shall derive that the solution u has deriva-

tives with respect to t up to order h in Hm,0(e−(2h+1)γ , QT ).
Indeed, from i), ii), it follows that coefficients CN

k (t), defined uniquely by
(2.3), have derivatives up to order h + 1.
1The dense of the set M in the space Ĥm,1(Qτ ) can be proved easily by using Lemma 1.1 and
arguments analogous used in the first problem (see [4,5]).
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Differentiating (2.2) (k−1) times with respect to t, multiplying by
dk

dtk
(
CN

l (t)
)
,

then taking sum with respect to l from 1 to N , we obtain

−i

∫
Ω

∣∣uN
tk

∣∣2dx + (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫
Ω

apqD
quN

tk−1DpuN
tk

dx =

(−1)m−1
m∑

|p|,|q|=0

(−1)|p|
k−2∑
s=0

Cs
k−1

∫
Ω

∂k−s−1apq

∂tk−s−1
DquN

ts DpuN
tk

dx+i

∫
Ω

ftk−1uN
tk

dx.(2.8)

By using ii) and induction on k, we obtain

DpuN
tk(x, 0) = 0, k � h, |p| � m.(2.9)

Now we shall prove the following inequalities

∥∥uN
th(x, τ)

∥∥2

Hm(Ω)
� Ceλhτ

h+1∑
k=0

‖ftk‖2
∞, 0 < τ < T, N = 1, 2, . . . ,(2.10)

∥∥uN
th

∥∥2

Hm,0(e−(2h+1)γt,QT )
� C

h+1∑
k=0

∥∥ftk
∥∥2

∞(2.11)

are valid with 0 < ε < µ0, λs = (2s+1)m∗µ+ε
µ0−ε , s � h, where C does not depend

on N , f .
It implies from (2.5)− (2.6) that (2.10)− (2.11) hold for h = 0.
Now let (2.10)− (2.11) be true for h− 1, h � 1. We prove these also hold for

h. Integrating (2.8), for k = h + 1, with respect to t from 0 to τ , we get

− i

∫
Qτ

∣∣uN
th+1

∣∣2dxdt + (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫
Qτ

apqD
quN

thDpuN
th+1dxdt

= (−1)m−1
m∑

|p|,|q|=0

(−1)|p|
h−1∑
s=0

Cs
h

∫
Qτ

∂h−sapq

∂th−s
DquN

tsD
puN

th+1dxdt +i

∫
Qτ

fthuN
th+1dxdt.

Adding this equation with its complex conjugate, then integrating by parts with
respect to t, using ii) and (2.9), we obtain
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(−1)mB[uN
th , uN

th](τ) = (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫
Qτ

∂apq

∂t
DquN

thDpuN
th

dxdt

+ (−1)m2Re
m∑

|p|,|q|=0

(−1)|p|h
∫

Qτ

∂apq

∂t
DquN

thDpuN
th

dxdt

+ (−1)m2Re
m∑

|p|,|q|=0

(−1)|p|
h−1∑
s=0

Cs
h

∫
Qτ

∂h−s+1apq

∂th−s+1
DquN

ts DpuN
th

dxdt

+ (−1)m2Re
m∑

|p|,|q|=0

(−1)|p|
h−2∑
s=0

Cs
h

∫
Qτ

∂h−sapq

∂th−s
DquN

ts+1DpuN
th

dxdt

− (−1)m 2Re
m∑

|p|,|q|=0

(−1)|p|
h−1∑
s=0

Cs
h

∫
Ω

∂h−sapq

∂th−s
(x, τ)DquN

ts (x, τ)DpuN
th

(x, τ)dx

− 2Im
∫
Ω

fth(x, τ)uN
th

(x, τ)dx + 2Im
∫
Qτ

fth+1uN
th

dxdt.

For all ε1 > 0, using Cauchy’s inequality and (1.7), we have

[µ0 − ((2h − 1)µm∗ + 1)ε1]‖uN
th(x, τ)‖2

Hm(Ω)

� [(2h + 1)m∗µ + ((2h+1 − 2 − h)µ1m
∗ + 1)ε1]

τ∫
0

∥∥uN
th(x, t)

∥∥2

Hm(Ω)
dt

+ C
[ h−1∑

k=0

∥∥uN
tk

∥∥2

Hm,0(Qτ )
+

h−1∑
k=0

∥∥uN
tk(x, τ)

∥∥2

Hm(Ω)
+ ‖fth‖2

∞ + τ
∥∥fth+1

∥∥2

∞
]
,

where C is a constant independent of N, f. Setting ε = ((2h+1−2−h)µ2m
∗+1)ε1

where µ2 = max{µ, µ1}, one has for all 0 < ε < µ0

‖uN
th(x, τ)‖2

Hm(Ω) � λh

τ∫
0

∥∥uN
th(x, t)

∥∥2

Hm(Ω)
dt + C

[
‖fth‖2

∞ + τ
∥∥fth+1

∥∥2

∞

+
h−1∑
k=0

∥∥uN
tk

∥∥2

Hm,0(Qτ )
+

h−1∑
k=0

∥∥uN
tk(x, τ)

∥∥2

Hm(Ω)

]
.

Using the induction assumption, we get

‖uN
th(x, τ)‖2

Hm(Ω) � λh

τ∫
0

∥∥uN
th(x, t)

∥∥2

Hm(Ω)
dt + Ceλh−1τ (1 + τ)

h+1∑
k=0

∥∥ftk
∥∥2

∞.
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And then, by applying Gronwall-Bellman’s inequality and noting that λh−1 < λh,

we obtain

‖uN
th(x, τ)‖2

Hm(Ω) � Ceλhτ
h+1∑
k=0

∥∥ftk
∥∥2

∞.(2.12)

We can choose 0 < ε < µ0 such that (2h+1)γ > λh
2 for all γ > µm∗

2µ0
(because

inf
0<ε<µ0

(2h+1)m∗µ+ε
2(µ0−ε) = (2h+1)m∗µ

2µ0
< (2h + 1)γ

)
. After multiplying (2.12) with

e−2(2h+1) γ τ , then integrating with respect to τ from 0 to T , we arrive at

∥∥uN
th

∥∥2

Hm,0(e−(2h+1)γt ,QT )
� C

h+1∑
k=0

∥∥ftk
∥∥2

∞,(2.13)

where C is a constant independent of N , f . Hence (2.10) − (2.11) hold for h

and
{
uN

th

}
is bounded in Hm,0(e−(2h+1)γt, QT ). So we can choose a subsequence

which converges weakly to a vector function u(h) in Hm,0(e−(2h+1)γt, QT ).
On the other hand, it is easy to see that

∫
QT

uN
th

vdxdt = −(1)h
∫

QT

uNvthdxdt,

for all v ∈ C∞
0 (QT ). Passing N→∞, it follows

∫
QT

u(h)vdxdt = −(1)h
∫

QT

uvthdxdt,

i.e., u has generalized derivatives up to order h with respect to t and uth = u(h)

in the space Hm,0(e−(2h+1)γt, QT ). Furthermore, by passing (2.13) to the limit
for the weakly convergent subsequence, we receive inequality (2.1). The theorem
is proved completely.

3. THE SMOOTHNESS WITH RESPECT TO SPATIAL VARIABLE OF SOLUTIONS

In this part of our paper, for simplicity we assume that the coefficients apq(x, t)
of the operator L(x, t, D) are infinitely differentiable in QT . Moreover, we also
assume that apq(x, t) and all its derivatives are bounded in QT .

At first, we consider some base lemmas. Denote γk = (2k + 1)γ, γ0 = γ,

where γ is the constant in Theorem 2.1, k is a nonnegative integer.

Lemma 3.1. Let f(x, t) ∈ L∞(0, T, L2(Ω)), u(x, t) be the generalized solution
in Hm,0(e−γt, QT ) of the second initial boundary value problem for (1.2)− (1.3)
and ut ∈ L2(Qτ ) for all τ ∈ (0, T ). Then for almost all t ∈ (0, T ) we have

(−1)m

∫
Ω

m∑
|p|,|q|=1

(−1)papqD
puDpχdx = i

∫
Ω

[
ut + f

]
χdx,
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where χ is an arbitrary function in H m(Ω).

Proof. We consider the problem in a neighborhood of origin point when Ω
coincides with the cone K, then C∞(Ω) is dense in Hm(Ω) (see [1]). Let

{
χk(x) ∈

C∞(Ω), k = 1, 2...
}

be a basic of Hm(Ω) and θ(s) ∈ C∞(R1) such that θ(0) =

0 for |s| > 1/2,
∫ ∞
−∞ θ(s)ds = 1.

Fix τ ∈ (0, T ) arbitrary. For each k, set η(x, t) = h−1χk(x)θ( |t−t′|
h ), where

0 < t′ < τ , 0 < h < min{t′, τ−t′}. Then we have η(x, τ) = 0 and η ∈ Hm,1(Qτ ).
So from (1.4), one gets

(3.1)

(−1)m

∫
Qτ

[ m∑
|p|,|q|=1

(−1)|p|apqD
quDpχk

]
h−1θ(

|t − t′|
h

)dxdt

−i

∫
Qτ

[
utχk + fχk

]
h−1θ(

|t − t′|
h

)dxdt = 0.

Denote ξ(t) = (−1)m
∫
Ω

[ m∑
|p|,|q|=1

(−1)|p|apqD
quDpχk − i(ut + f)χk

]
dx.

Because u ∈ Hm,0(e−γt, QT ), ut ∈ L2(Qτ ) and f ∈ L∞(0, T, L2(Ω)) so ξ(t) ∈
L2(0, τ) and (3.1) implies ξh(t′) = 0 for almost all t′ ∈ (0, τ). It follows ξ(t) = 0
in (0, τ)\Ek, where Ek is independent of χk and mesEk = 0. Setting E =

∞∪
k=1

Ek,

then ξ(t) = 0 in (0, τ) \ E . Because of the dense property of the system {χk}∞k=1

in Hm(Ω), we have

(−1)m

∫
Ω

m∑
|p|,|q|=1

(−1)papqD
puDpχdx = i

∫
Ω

[
ut + f

]
χdx(3.2)

for all χ ∈ Hm(Ω) and almost everywhere t ∈ (0, τ). Since τ ∈ (0, T ) arbitrary so
(3.2) holds for all χ ∈ Hm(Ω) and almost t ∈ (0, T ). This implies that u(x, t) is
a generalized solution in Hm(Ω) of the second boundary value problem for elliptic
system

(3.3) (−1)mL(x, t, D)u = F (x, t), where F (x, t) = i(ut + f).

The lemma is proved.

Lemma 3.2. Let u(x, t) be a solution in H m,0(e−γt, KT ) of the second ini-
tial boundary value problem for (1.2) − (1.3) such that u(x, t) = 0 when |x| >

R =constant. Moreover, we assume that f, ft, ftt ∈ L∞(0, T, L2(K)), f(x, 0) = 0.
Then for almost all t ∈ [0, T ), we have
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(i) if m <
n

2
then u ∈ H2m

m (K),

(ii) if m =
n

2
then u ∈ H2m

m+ε(K), where ε > 0 arbitrary.

Proof. Because f, ft, ftt ∈ L∞(0, T, L2(K)), f(x, 0) = 0, from Theorem 2.1
we have ut ∈Hm,0(e−γ1t, KT ). That follows for each τ ∈ (0, T ), ut ∈ L2(Kτ ).
Following Lemma 3.1, u(x, t) is a solution of the second boundary value problem
for elliptic system (3.3), where F = i(ut + f) ∈ L2(K) for almost t ∈ (0, τ).

Denote Ωk = {x ∈ Ω : 2−k � |x| � 2−k+1}, k = 1, 2, .... Let k0 be large
enoungh such that 2−k0+2 < R. From the theory of the regular of solution of the
boundary value problem for elliptic systems in smooth domains and near the piece
smooth boundary of domain (see [11] for reference), we have u ∈ H2m(Ωk0) for
almost t ∈ (0, τ) and the following inequality holds∫
Ωk0

|Dαu(x, t)|2dx�C
[ ∫
Ωk0−1∪Ωk0

∪Ωk0+1

|F (x, t)|2dx +
∫

Ωk0−1∪Ωk0
∪Ωk0+1

|u(x, t)|2dx
]
, |α| � 2m,

where C is a positive constant. By choosing k1 > k0 and setting x = (2k0/2k1)x′,
one has∫

Ωk0

|Dαu(x′, t)|2dx′ � C

∫
Ωk0−1∪Ωk0

∪Ωk0+1

[
|F (x′, t)|2

(
2k0

2k1

)4m

dx′+ |u(x′, t)|2
]
dx′.

Return to the variable x, we get(
2k0

2k1

)2|α|∫
Ωk1

|Dαu(x, t)|2dx � C

∫
Ωk1−1∪Ωk1

∪Ωk1+1

[
|F (x, t)|2

(
2k0

2k1

)4m

+ |u(x, t)|2
]
dx.(3.4)

Case 1. m < n
2 . Then∫
K

r−2m|u|2dx � C

∫
K

r−n|u|2dx < +∞.(3.5)

It follows from (3.4) that∫
Ωk1

r2(|α|−m)|Dαu|2dx � C

∫
Ωk1−1∪Ωk1

∪Ωk1+1

[
|F (x, t)|2r2m + r−2m|u|2

]
dx,
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where C is a constant independent of u, f, k1. Taking sum with respect to k1 > k0,
one has∑

k1>k0

∫
Ωk1

r2(|α|−m)|Dαu|2dx � C
∑

k1�k0

∫
Ωk1

[
|F (x, t)|2r2m + r−2m|u|2

]
dx.

This implies∫
⋃

k>k0

Ωk

r2(|α|−m)|Dαu|2dx � C

∫
⋃

k�k0

Ωk

[|F (x, t)|2r2m + r−2m|u|2]dx.

Because in out of a neighborhood of conical point K is a smooth domain, so we
have ∫

K

r2(|α|−m)|Dαu|2dx � C

∫
K

[|F (x, t)|2+r−2m|u|2]dx(3.6)

for all |α| � 2m, almost all t ∈ (0, τ). From (3.5), (3.6) and F ∈ L2(K) we
receive u ∈ H2m

m (K) for almost all t ∈ (0, T ).

Case 2. m =
n

2
. Since u ∈ Hm,0(e−γt, KT ) so for almost all t ∈ (0, T ) one

has
∫
K

r0|Dβu|2dx < ∞, |β| = m. This implies
∫
K

rδ|Dβu|2dx � Rδ
∫
K

|Dβu|2dx <

+∞, where δ > 0 arbitrary.
For all δ ∈ (0, 2m) we have δ > 0 = m − n

2
, so it follows from Lemma 7.1.1,

page 268 in [9] that∫
K

r2(δ/2−m)|u|2dx�C
∑

|β|=m

∫
K

rδ|Dβu|2dx�C
∑

|β|=m

∫
K

|Dβu|2dx < +∞.(3.7)

From the inequality (3.4), for all |α| � 2m one gets

(3.8)

∫
Ωk1

r2(|α|−m+ δ
2
)|Dαu|2dx

� C

∫
Ωk1−1∪Ωk1

∪Ωk1+1

[
|F (x, t)|2r2m+δ + r−2m+δ|u|2

]
dx,

where C is a constant independent of u, f, k1.
By using analogous arguments used in the proof of case 1), from (3.7), (3.8) we

have
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∫
K

r2(m+ δ
2
−|α|−2m)|Dαu|2dx�C

∫
K

[
|F (x, t)|2+

∑
|β|=m

|Dβu|2
]
dx<+∞(3.9)

for all |α| � 2m, almost all t ∈ (0, T ). That is u ∈ H 2m
m+ δ

2

(K). The lemma is
proved.

Lemma 3.3. Assume that u(x, t) is a generalized solution in H m,0(e−γt, KT )
of the second initial boundary value problem for (1.2)−(1.3), such that u(x, 0) = 0
for |x| > R = constant. Moreover, assume that f tk ∈ L∞(0, T, L2(K)), k � h+2;
ftk (x, 0) = 0, k � h. Then for almost t ∈ [0, T ) we have:

(i) if m >
n

2
and n is odd, then u =

∑
|α|�[m−n

2
]

cα(t)xα + u0, where u0 ∈

H2m
m (K), djcα(t)/dtj ∈ L2(e−γjt, (0, T )), j � h, |α| � [m − n

2 ],

(ii) if m >
n

2
and n is even, then u =

∑
|α|�[m−n

2
−1]

cα(t)xα + u0, where u0 ∈

H2m
m+ε(K), ε > 0 arbitrary, djcα(t)/dtj ∈ L2(e−γjt, (0, T )), j � h; |α| �

[m − n
2 − 1].

Proof. (i) Let m >
n

2
and n be odd.

Set l = [m − n

2
]. Because u ∈ Hm,0(e−γt, KT ), so for almost t ∈ [0, T ) we

have ∫
K

r0|Dβ1Dβ2u|2dx < +∞, |β1| = m − l − 1, |β2| = l + 1.

It is clear that (m− l − 1)− n
2 < 0, so by applying Lemma 7.1.1 of [9] we obtain∫

K

r−2(m−l−1)|Dβ2u|2dx�C
∑

|β1|=m−l−1

∫
K

|Dβ1Dβ2u|2dx�C
∑

|α|=m

∫
K

|Dαu|2dx<+∞.

Since −2(m − l − 1) < 2 − n, then by setting v =
∂lu

∂xl1
1 ...∂xln

n

, l1 + ... + ln = l

and applying Lemma 4.10, page 244 of [7], we receive v = Cl
l1...ln

(t)+u(l), where
u(l) satisfies∫

K
r−2(m−l−1)−2|u(l)|2dx � C

∑
|α|=m

∫
K

|Dαu|2dx < +∞.(3.10)
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It implies from (3.10) that u(l) ∈ H0
l−m(K) and then C l

l1...ln
(t) ∈ L2(e−γt, (0, T )).

By setting v(l) = u− ∑
l1+...+ln=l

Cl
l1...ln

(t)xl1
1 ...xln

n

l1!...ln!
, then ∂ lv(l)/∂xl1

1 ...∂xl−n
n = u(l).

From (3.10) one has∫
K

r−2(m−l−1)−2| ∂lv(l)

∂xl1
1 ...∂xl−n

n

|2dx � C
∑

|α|=m

∫
K

|Dαu|2dx < +∞.

It can be rewritten in the form
∫
K

r−2(m−l−1)−2
∣∣∣∇(

∂l−1v(l)

∂x
(l−1)1
1 ...∂x

(l−1)n
n

)∣∣∣2dx < +∞,

where (l − 1)1 + ... + (l − 1)n = l − 1. Applying Lemma 4.10 of [7] again, one
gets ∂(l−1)v(l)

∂x
(l−1)1
1 ...∂x

(l−1)n
n

= C
(l−1)
(l−1)1...(l−1)n

(t) + u(l−1), where u(l−1) satisfies

∫
K

r−2(m−l−1)−4|u(l−1)|2dx � C
∑

|α|=m

∫
K

|Dαu|2dx < +∞.(3.11)

It follows that u(l−1) ∈ H0
l−m−1(K) and C

(l−1)
(l−1)1...(l−1)n

(t) ∈ L2(e−γt, (0, T )).

Setting v(l−1) = v(l) − ∑
(l−1)1+...+(l−1)n=l−1

Cl−1
(l−1)1...(l−1)n

(t)x(l−1)1
1 ...x

(l−1)n
n

(l − 1)1!...(l− 1)n!
, we

have ∂l−1v(l−1)/∂x
(l−1)1
1 ...∂x

(l−1)n
n = u(l−1). From (3.11) one has∫

K

r−2(m−l−1)−4
∣∣∣∂l−1v(l−1)/∂x

(l−1)1
1 ...∂x(l−1)n

n

∣∣∣2dx � C
∑

|α|=m

∫
K

|Dαu|2dx < +∞.

Repeating that arguments we receive a functions sequence {v(j)} with

v(j) = v(j+1) −
∑

j1+...+jn=j

Cj
j1...jn

(t)xj1
1 ...xjn

n

j1!...jn!
, j = 1, ..., l; v(l+1) = u.

It follows that

(3.12) u =
∑

|α|�[m−
n

2
]

cα(t)xα + u(0),

where u(0) satisfies

(3.13)
∫
K

r−2m|u(0)|2dx � C
∑

|α|=m

∫
K

|Dαu|2dx < +∞,
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and cα(t) ∈ L2(e−γt, (0, T )) for all |α| � l.

It is easy to see from (3.12) that u(0) is a generalized solution of the second
boundary value problem for the following system

(−1)mL(x, t, D)u(0) = F1,

where F1 = F + (−1)m−1
∑

|α|�[m−n
2
]

cα(t)L(x, t, D)xα ∈ L2(K) for almost all

t ∈ (0, T ) and u(0)(x, 0) = 0. From the inequality (3.4) and (3.13), repeating
arguments that used to prove the inequality (3.6), we obtain∫

K

r2(|α|−m)|Dαu(0)|2dx � C

∫
K

[|F1(x, t)|2r2m + r−2m|u(0)|2]dx

� C

∫
K

[|F1(x, t)|2 +
∑

|α|=m

|Dαu(x, t)|2]dx < +∞.

This implies u(0) ∈ H2m
m (K) for almost all t ∈ [0, T ).

Now we prove djcα(t)/dtj ∈ L2(e−γj t, (0, T )), j � h. We consider some
following cases.

Case 1. |α| = l = [m − n

2
]. From (3.12) we have

(3.14) Dαu = dαcα(t) + Dαu(0), |α| = l, dα = constant �= 0.

In another way, from Theorem 2.1, Lemma 3.1 and the assumptions of this lemma,
there exist ut ∈ Hm,0(e−γ1t, QT ), utt ∈ Hm,0(e−γ2t, QT ) and ut is a solution of
elliptic problem for the system

(−1)mLut = Ft + (−1)m−1Ltu,

where Lt =
∑

|p|,|q|�m

Dp(
∂apq

∂t
Dq). It is easy to see that Ft+(−1)m−1Ltu ∈ L2(K)

for almost t ∈ (0, T ). Repeating arguments used above for function u we get

Dαut = dαc̃α(t) + Dαũ(0), where ũ(0) ∈ H2m
m (K), c̃α(t) ∈ L2(e−γ1t, (0, T )).

Since u(x, 0) = 0, then

(3.15) Dαu = dα

∫ t

0
c̃α(t)dt +

∫ t

0
Dαũ(0)dt.

Comparing (3.14), (3.15) one gets

I(t) = dα

[∫ t

0
c̃α(t)dt − cα(t)

]
= Dαu(0) −

∫ t

0
Dαũ(0)dt.
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Because u(0), ũ(0) are in H2m
m (K), so

∫
K

r2(m+|α|−2m)|I(t)|2dx < +∞. It implies

that |I(t)|2 ∫
K

r−ndx <
∫
K

r2(m+|α|−2m)|I(t)|2dx < +∞ because of |α|−m < −n

2
.

Thus, I(t) = 0 or
t∫
0

c̃α(t)dt = cα(t) for almost t ∈ (0, T ). Therefore dcα(t)/dt =

c̃α(t) ∈ L2(e−γ1t, (0, T )).
Assume that there exist djcα(t)/dtj ∈ L2(e−γj t, (0, T )), j � h − 1. We will

prove that dj+1cα(t)/dtj+1 ∈ L2(e−γj+1t, (0, T )). Indeed, because of results of
Theorem 2.1 we have utj+1 ∈ Hm,0(e−γj+1t, KT ), j � h − 1. By using similar
arguments used in the proof of (3.12), one gets Dαutj+1 = dαĉα(t) + Dαû(0),

where û(0) ∈ H2m
m (K), ĉα(t) ∈ L2(e−γj+1t, (0, T )). From the induction hypothe-

ses, we have Dαutj = dα
djcα(t)

dtj
+ Dαu

(0)
tj

. This implies
dj+1cα(t)

dtj+1
= ĉα(t) ∈

L2(e−γj+1t, (0, T )).

Case 2. |α| = l − 1 = [m − n

2
] − 1. From (3.12) we have

(3.16) Dαu = dαcα(t)x + dα+1cα+1(t) + Dαu(0),

where dα, dα+1 = constant �= 0. Using similar method that applied to prove
(3.12), one gets

Dαut = dαc̃α(t)x + dα+1c̃α+1(t) + Dαũ(0),

where ũ(0) ∈ H2m
m (K), c̃α(t) ∈ L2(e−γ1t, (0, T )). So we have

Dαu = dα

∫ t

0

c̃α(t)xdt + dα+1

∫ t

0

c̃α+1(t)dt +
∫ t

0

Dαũ(0)dt.(3.17)

From case 1 one has dα+1

∫ t
0 c̃α+1(t)dt = dα+1cα+1(t). Combining (3.16) and

(3.17) we obtain

J1(x, t) = dα

[∫ t

0

c̃α(t)dt − cα(t)

]
x = Dαu(0) −

∫ t

0

Dαũ(0)dt.

Because u(0), ũ(0) are in H2m
m (K), so

∫
K

r2(m+|α|−2m)|J1(x, t)|2dx < +∞. Setting

J(t) = dα

[ ∫ t
0 c̃α(t)dt−cα(t)

]
, we have

∫
K

r2(|α|−m)|J(t)|2|x|2dx < +∞. This im-

plies
∫
K

r2(|α|−m+1)|J(t)|2dx < +∞. Since |α|−m+1 < −n
2 so |J(t)|2 ∫

K

r−ndx <

+∞. Hence J(t) = 0 or dcα(t)/dt = c̃α(t) ∈ L2(e−γ1t, (0, T )).
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The same results about djcα(t)/dtj ∈ L2(e−γj t, (0, T )) can be received by
using induction method on j, j � h.

When |α| < [m − n

2
] − 1, by induction on |α| we obtain djcα(t)/dtj ∈

L2(e−γj t, (0, T )) for all j � h, |α| � [m − n

2
].

(ii) Let m >
n

2
and n be even.

Then m =
n

2
+k+1, k is a nonnegative integer. Because u ∈ Hm,0(e−γt, KT ),

so for almost all t ∈ [0, T ) we have∫
K

r0|Dβ1Dβ2u|2dx < +∞, |β1| = m − k − 1, |β2| = k + 1.

It follows∫
K

rδ|Dβ1Dβ2u|2dx �
∑

|α|=m

∫
K

|Dαu|2dx < +∞, where δ > 0 arbitrary.

Using similar method used in the part (i), we achieve u =
∑

|α|�[m−n
2
−1]

cα(t)xα +

u(0), where u(0) ∈ H2m
m+δ/2(K), djcα(t)/dtj ∈ L2(e−γj t, (0, T )), j � h, |α| �

[m − n

2
− 1]. The lemma is proved completely.

Let ω be a local coordinate system on Sn−1. The principal part of the operator
L(x, t, D) at origin point 0 can be rewritten in the form:

(3.18) L0(0, t, D) = r−2mQ(ω, t, rDr, Dω), (Dr = i∂/∂r),

where Q is a linear operator with smooth coefficients.
Denote by λ(t) an eigenvalue of Neumann problem for the system

(3.19) Q(ω, t, λ(t), Dω)v(ω) = 0, ω ∈ G.

It is well known in [9] that for every t ∈ (0, T ), the spectrum of this problem is on
enumerable set of eigenvalue.

Theorem 3.1. Let u(x, t) be a generalized solution in H m,0(e−γt, KT ) of the
second initial boundary value problem for (1.2) − (1.3) such that u ≡ 0 when
|x| > R = constant. In addition, suppose that the strip

m − n

2
� Imλ � 2m− n

2

does not contain any point of the spectrum of Neumann problem for system (3.19)
for all t ∈ [0, T ). Then
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(i) if ftk ∈ L∞(0, T, L2(K)), k � 2m + 1, and ftk(x, 0) = 0, k � 2m− 1, then
u ∈ H2m

0 (e−γ2mt, KT ) for m � n

2
.

(ii) if ftk ∈ L∞(0, T, L2(K)), k � 2m + 2, and ftk(x, 0) = 0, k � 2m, then
u ∈ H2m(e−γ2mt, KT ) for m >

n

2
.

Proof. We rewrite (1.2) in the form

(3.20) (−1)mL0(0, t, D)u = F̂ (x, t), where

(3.21) F̂ (x, t) = i(ut + f) + (−1)m[L0(0, t, D)− L(x, t, D)]u.

(i) m � n

2
. We need to prove

(3.22)
∑

|α|+k�2m

∫
KT

r2(|α|+k−2m)|Dαutk |2e−2γ2mtdxdt < +∞.

Case 1. k = 2m. From Theorem 2.1 we have
∫

KT

|ut2m|2e−2γ2mtdxdt < +∞,

so (3.22) is valid for k = 2m.

Case 2. k � 2m − 1.
• If m < n

2 then by following the Lemma 3.2 we have u ∈ H2m
m (K) for almost

t ∈ (0, T ). In another way, because apq are continuous in x ∈ Ω uniformly with
respect to t ∈ (0, T ) if |p| = |q| = m then |apq(x, t) − apq(0, t)| � C|x|, for all
t ∈ [0, T ) and C is a constant. Therefore, from (3.21) and the hypotheses of this
theorem, one gets F̂ ∈ H0

m−1(K). Since in the strip m − n

2
� Imλ � m + 1 − n

2
there is no spectral point of Neumann problem for (3.19) for all t ∈ [0, T ), then
following Theorem 3.2 page 37 in paper [10], one gets u ∈ H2m

m−1(K) and satisfies

‖u‖2
H2m

m−1(K) � C
[
‖F‖2

H0
m−1(K) + ‖u‖2

H2m
m (K)

]
,

for almost t ∈ (0, T ), where C is a positive constant.
From u ∈ H2m

m−1(K), by using similar arguments as giving above, we have
F ∈ H0

m−2(K). In another way, there is no spectral point of Neumann problem for
(3.19) for all t ∈ [0, T ) in the strip m+1− n

2
� Imλ � m+2−n

2
. Hence following

the results of elliptic problem (see Theorem 3.2 in [10]) one gets u ∈ H 2m
m−2(K)

satisfying
‖u‖2

H2m
m−1(K) � C

[
‖F‖2

H0
m−2(K) + ‖u‖2

H2m
m (K)

]
.
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Repeating the arguments above we receive u ∈ H2m
0 (K) and the inequality

(3.23) ‖u‖2
H2m

0 (K) � C
[
‖F‖2

L2(K) + ‖u‖2
H2m

m (K)

]
holds for almost t ∈ (0, T ). It follows that

‖u‖2
H2m,0

0 (e−γ2mt,KT )
� C

 T∫
0

‖F‖2
L2(K)e

−2γ2mtdt +

T∫
0

‖u‖2
H2m

m (K)e
−2γ2mtdt


� C

2∑
k=0

‖ftk‖2
∞.

Then (3.22) is valid for k = 0.

We assume that utk ∈ H2m,0
0 (e−γ2mt, KT ) for all k � s − 1, s � 2m− 1.

Denote Lts =
∑

|p|,|q|�m

Dp(apq)tsD
q, v = uts. Differentiating (1.2) k times

with respect to t, we have

(−1)mLv = i(uts+1 + fts) + (−1)m−1
s∑

k=1

Ck
s Ltkuts−k = Fs.

Repeating the arguments used for function u and the induction assumption we
receive Fs ∈ L2(K) for almost t ∈ (0, T ) and v ∈ H2m,0

0 (e−γ2mt, KT ). This
implies uts ∈ H2m,0

0 (eγ2mt, KT ) for all s � 2m − 1. Therefore, if m < n
2 then

from case 1 and case 2 we have u ∈ H2m
0 (e−γ2mt, KT ).

• If m = n
2 then it follows from the Lemma 3.2 that u ∈ H2m

m+ε(K) for all
ε ∈ (0, 1), almost all t ∈ (0, T ). Because the straight line Imλ = m − n

2 does not
contain any point from the spectrum of Neumann problem for (3.19) for all t ∈ (0, T )
then for each t ∈ (0, T ) there exists ε(t) > 0 such that the strip m − ε(t) − n

2
�

Imλ � m−n

2
does not contain any spectral point of Neumann problem for (3.19). In

another way, we also have F̂ ∈ H0
m(K). This implies from Theorem 3.2 of [10] that

u ∈ H2m
m (K) satisfying the inequality ‖u‖2

H2m
m (K) � C

[
‖F‖2

H0
m(K) + ‖u‖2

H2m
m+ε

]
.

Repeating the proof for the case m < n
2 we achieve uts ∈ H2m,0

0 (e−γ2mt, KT ) for
all s � 2m − 1. So for m = n

2 , u ∈ H2m
0 (e−γ2mt, KT ) too.

(ii) m >
n

2
.

Case 1. If n is odd then there exists a nonnegative integer l such that
n

2
+ l <

m <
n

2
+ l + 1. From Lemma 3.3 we get

(3.25) u =
∑

|α|�[m−n
2
]

cα(t)xα + u0, u0 ∈ H2m
m (K).
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We rewrite (1.2) in the form (−1)m−1Lu0 =F+(−1)m
∑
|α|�l

cα(t)L(x, t, D)xα. By

using analogous arguments in the proof of the part (i), we get u0 ∈ H2m
0 (e−γ2mt, KT ).

Because djcα(t)/dtj ∈ L2(e−γj t, (0, T )), j � 2m, we have u ∈ H2m(e−γ2mt, KT ).

Case 2. If n is even then m =
n

2
+l+1, l is a nonegative integer. From Lemma

3.3 one has u =
∑

|α|�[m−n
2
−1] cα(t)xα + u0, u0 ∈ H2m

m+ε(K), ε > 0. Because

the straight line Imλ = m − n

2
does not contain any point from the spectrum of

Neumann problem for the system (3.19) for all t ∈ [0, T ), so for each t ∈ [0, T )
there exists an ε(t) such that in the strip m− ε(t)− n

2 � Imλ � m− n

2
there is no

eigenvalue of Neumann problem for system (3.19). In other hand, u0 is a solution
of the second boundary value problem for system (−1)mL(0, t, D)u0 = F0, where
F0 = i[ut + f ] + (−1)m−1[L(0, t, D)− L(x, t, D)]u0 ∈ H0

m(K). Hence from the
results of elliptic problem (see [10]) and above arguments, one gets u0 ∈ H2m

m (K)
for all most t ∈ [0, T ). And then, by using similar arguments as used in the case
1, we receive that u0 ∈ H2m

0 (e−γ2mt, KT ) and djcα(t)/dtj ∈ L2(e−γ2mt, (0, T )).
This implies u ∈ H 2m(e−γ2mt, KT ).

The theorem is proved completely.

From Lemma 3.1 and similar method used in Theorem 3.1 we achieve the regular
of the solution of the second initial boundary value problem for (1.2)− (1.3). It is
given as follow.

Theorem 3.2. Let u(x, t) be a generalized solution of the second initial
boundary value problem for the system (1.2)− (1.3) in the space H m,0(e−γt, QT )
and assume that in the strip

m − n

2
� Imλ � 2m − n

2

there is no point from the spectrum of Neumann problem for system (3.19) for all
t ∈ [0, T ). Then

(i) if ftk ∈ L∞(0, T, L2(Ω)), k � 2m + 1, and ftk (x, 0) = 0, k � 2m− 1, then
u ∈ H2m

0 (e−γ2mt, QT ) for m � n

2
.

(ii) if ftk ∈ L∞(0, T, L2(Ω)), k � 2m + 2, and ftk (x, 0) = 0, k � 2m, then
u ∈ H2m(e−γ2mt, QT ) for m >

n

2
.
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9. V. G. Mazýa, V. A. Kozlov and J. Rossmann, Elliptic boundary value problems in
domains with point singularities, Mathematical Surveys and Monographs 52, Amer.
Math. Soc., Provodence, Rhode Island, 1997.
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