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ON THE REGULARITY OF SOLUTION OF THE SECOND INITIAL
BOUNDARY VALUE PROBLEM FOR SCHRODINGER SYSTEMS
IN DOMAINS WITH CONICAL POINTS

Nguyen Manh Hung and Nguyen Thi Kim Son

Abstract. Some results on the unique solvability and the regularity of solution
of the second initial boundary value problem for strongly Schrodinger systems
in finite and infinite cylinders with the bases containing conical points are
given.

1. INTRODUCTION AND NOTATIONS

The first initial boundary value problem for Schrodinger systems was considered
in the finite cylinders Q7 = Q x (0,T), T < 4oo (see [3]) and in the infinite
cylinder Qoo = 2 x (0, 400) ( see [4,5]).

The second initial boundary value problems have been dealt with for the class
heat equations (see [2]) and for general second order parabolic equations in [12]
in domains with edges. This problem in domains with conical points has been
investigated for general hyperbolic system in [6]. In this paper, we consider such
problem for general strongly Schrodinger systems in finite and infinite cylinders
Qr = Q2 x (0,T) where 0 < T < 400 and Q is a domain containing conical
points. Our main purpose is to study the regularity of solution of the mentioned
problem.

As we have known, the second initial boundary value problem is absolutely dif-
ferent from and more difficult than the first initial boundary value problem because
we do not have the Garding inequality and general Neumann boundary condition can
not always be written as clearly as general Dirichlet boundary condition. Moreover

the general Hardy’s inequality, that always holds for u € HOW(Q) for all integer
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number m, is not true for v € H™() for m arbitrary. So in oder to receive
our main results we have to prove some auxiliary lemmas (Lemma 1.1, Lemmas
3.1, 3.2, 3.3). In which we give some conditions to have an inequality that plays
a similar role to the Garding inequality. Moreover, by dividing m to 3 cases:
m < g, m= 75, m> %, wheren is the dimension of 2, we manage to apply the
general Hardy’s inequality to serve our purpose. With the help of these lemmas,
we can apply the results for elliptic boundary value problem to deal with the regu-
larity with respect to both of time (Theorems 2.1) and spatial variables of solution
(Theorems 3.1, 3.2).

Suppose that € is a bounded domain in R, Q and 9 denote the closure and
the boundary of € in R™. We suppose that I" = 02\ {0} is a smooth manifold and
€ coincides with the cone K' = {z : (7 € G} in a neighborhood of the origin
point 0, where G is a smooth domain on the unit sphere S™~! in R™. We begin
by introducing some notations and functional spaces which are used fluently in the
rest.

Denote Qr = Q2 x (0,T), S =T x (0,7), for some 0 < T' < +o0; = =
(T1y .y zp) € Q, u(z,t) = (ur(x,t),...,us(x,t)) is a vector complex function;
a = (ag,...,an)(a; € Ny i = 1,..,n) is a multi-index;

al = a1+ -+ ap,

D% =9l /axgt - 9, |Dul? = Y |DWi|?, uy = (09ur /Y, ..., 0, /OF),
/2 2 S Zk:!l
In this paper we will use usual functional spaces: C*°(2), Lo(£2), H™(Q),
HY(Q7) when T < 400 and m, 1, k € N (see [4,5] for the precise definitions).
Denote by Hé(Q) the space of all measurable complex functions u(z, t) that satisfy

1
lull ey = (32 [ r2EH0 D0 2dr)* < oo,
lal<

Moreover, when 0 < T' < +oo we define:

H™ (e Q1) (v > 0)- the space of all measurable complex functions u(z, t)
that have generalized derivatives up to order m with respect to « and up to order [
with respect to ¢ with the norm

1
fullnsieran = ([ [ 3 1070+ 3 s PJe et < 4oc,

Qr la|<m J<d

H*(e ", Qr) (y > 0)- the space of all measurable complex functions u(z, )
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satisfying

1
r—p— /Z DRy P dadt) < 0.
o lel+isk

Hlﬂ’k(e—Wt,QT)- the space of all measurable complex functions w(z,¢) with the
norm

1
Il it ey = | / (er'a' D1 D%ul? +Z\u )e 2 tdrde]* < +oo.
Qr |a|=0

Hj(e ", Qr)-the weighted space with the norm

1
HuHHé(e—’vt,QT) = < Z r2(ﬂ+|a|+j_l)\Do‘utj\Qe_QWtdxdt> < o0,
lel+i<lg),,

Lo(e™, Qr)- the space of all measurable functions u(z, t) that satisfy

1
Jullcae .y = ([ hule dadt)” < +oc,
Qr

Lo(e™ 7, (0,T))- the space of all measurable functions u(t) with the norm

1

Jullzate— 070 / ufPedr)” < oo,

Denote by L>°(0,T; Lo(£2)) the space of all measurable functions « : (0,7) —
L (), t = u(t) with the norm ||ul[cc = ess sup [Ju(t)]|1,() < +oo.
0<t<T

For convenience, in the rest of this paper we say that «(z,t) belongs to some
spaces if all of its components belong to that one.
We now introduce a 2mth-order differential operator:

m

(1.1) L(z,t,D)= Y DP(apy(x,t) DY),
Ipl,lq|=0

where a,, are s x s - matrices of bounded measurable complex functions defined
on Qr, apg = (—1)PI*lda? (a7, denotes the transposed conjugate matric of agy).
Suppose that a,,, are contmuous in = € Q uniformly with respect to ¢ € [0, 7T) if
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Ip| = |g| = m. Moreover, we assume that the operator L satisfies a hypothesis that
given as follow (see for example [6, 9]).

Hypothesis (H). For all (z,t) € Q7 and (,) c C*™i \ {0}, we have

[p[=m
Z apq(@, )1g7y 2 Co Z ‘%‘2
|p|=lg|=m [p[=m

where Cy is a positive real number, independent of (1) pj=n; ™7 = > L.
p[=m
Setting n, = {Pnwith& € R™"\{0}, &¥ = &' - - &4 and n € C*\ {0}, it follows

from hypothesis (H) that 3= apy(z, )P0 = Golel*™Inl?, (x,t) € Qr,
Ipl=lgql=m
which is equivalent to the strong ellipticity of the operator L. However, one can see

easily that the condition of strong ellipticity of the operator L does not imply the
hypothesis (H).

In cylinder Q7r, 0 < T < +oo, we consider the second initial boundary value
problem for the Schrodinger system

(1.2) i(—l)m_lL(x,t, D)u—uy = f(z,t), (z,t) € Qr,
with initial condition
(1.3) u(z,0) =0, x € Q,

where L(x,t, D) is the operator in (1.1); u, f are vector functions.

The function u(x, t) is called generalized solution in the space H ™°(e=7*, Q)
of the second initial boundary value problem for the Schrodinger system (1.2) and
initial condition (1.3) if and only if u(x,t) € H™C(e™, Qr), satisfying

m

Z ~1) Ipl/ apg(2,t) Dlu(x, t)DPy(2, t)dxdt—i—/ u(w, t)7g(x, t)dxdt
Ipl,lq|=0 Q- Qr

(1.4) _ / o, )7(w, £)dadt

for each 0 < 7 < T and all test functions n(x,t) € H™Y(Q,), n(x,7) = 0.
For u(z,t) € H™%(e™ ", Qr) set

Bt = 3 (-1 / (2, ) D0z, ) DPu(, ) .
|pl,lq|=0 Q

To consider the problem we need to prove the important following lemma.
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Lemma 1.1. If the hypothesis (H) holds and a,, is bounded in Q1 for all
Ipl, |¢| < m, then there exist two constants uo > 0 and A such that the following
inequality

(—=1)"Blu, u](t) = pollulFmay — Aollull, o
is valid for all w € H™%(e™", Q7), v > 0 and almost all ¢ € (0, 7).

Proof. It follows from the hypothesis (H) that

(1.5) Z apq(z,t) DIuDPudz > Cy Z HDpuH%Q(Q)

Ipl=lgl=m & Ipl=m
for all u(x,t) € H™%(e™7* Qr), almost ¢ € (0, T), with Cy is a constant, inde-
pendent of u. Using Cauchy’s inequality and (1.5) one has

Co Z IDPull? L) < Z apg DIuDPudz

[p[=m [pI=lgl=m ¢
— ()" Bl () - (-1 S (—1)|p|/aququ—DPudm
|p[+|g|<2m Q
Ipl,lgl<m
< (=1)"Blu, u)(t) + C@)ulFm-10y +2 Y 1D"ul], 0,
[p[=m

where 0 < e < Cpy, C(e) > 0. This implies
(1.6) HuH%m(Q) < C1(—=1)"Blu, u)(t) + CQHuH%{m_l(Q), where C1, Cy > 0.

In another way, because 2 coincides with the cone K in a neighborhood of the
origin point 0 and 9Q\{0} is a smooth manifold, it follows from [1] that for all
e > 0, there is a constant C'(¢) such that the following inequality

> ID%ulf e < 3 1Dl @) + CEulo)
p|=F lp|l=m

holds for all w € H™(Q2), k =1,2,...,m—1. This implies that for all 0 < e < 1,
there exists C5 = C3(¢) such that HUH%—["L—l(Q) < 5”“”?{@9) + Csl|ul| 1,( for all
u € H™O(e=7 Q). Hence, from (1.6) we have

[l Frm(qy < CL(=1)"Blu, u](t) + Cole||ullFrmq) + Callullf, o]
for all 0 < ¢ < min{1, Cy, c%}- Therefore we obtain

(=)™ Blu, ul (t) = pollull () = ollullZ ).
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where g > 0, Ag are constants independent of u. This proves the lemma.

From Lemma 1.1, using the transformation u(z, t) = e*o'v(z, t) if necessary,
we can assume that for all u(x,t) € H™%(e, Qr) the operator L(z,t, D) satis-
fies

(L.7) (—1)" Blu.ul(t) > piol[ull 3y ¢ € (0.7).

2. EXISTENCE, UNIQUENESS AND SMOOTHNESS WITH RESPECT TO
TiME VARIABLE OF SOLUTIONS

In this part of the paper, we will show that the second initial boundary value
problem for the Schrodinger system (1.2) — (1.3) is solved uniquely in the space
H™9%(e=7 Q) for some v > 0. Moreover, we will prove that the smoothness with
respect to time variable of solution of this problem only depends on the smoothness
of the coefficients and the right side of the systems, but does not depend on the
smoothness of the boundary of domains. Indeed, denote by m* the number of multi-
indexes which have order not exceeding m. Let y be the constant in (1.7). We
have the following result.

Theorem 2.1. Suppose that

: oa L
(i) sup{] 8? , 0< pl,lgl <m, (z,t) € Qr} = pu < +o0
O ay,
e "ok | S HL ML= X X y
lapg, 5 | < const >0 for2<k<h+1

(i) fu € L>=(0,T; Ly(2)), for k < h +1,
and if A > 1 then fx(z,0) =0, for k <h —1.

Then for every ~ > mu
2M0 - - -

(1.3) has exactly one generalized solution u(z,t) in the space H ™%(e=", Q7).

Moreover, u(x, t) has generalized derivatives with respect to ¢ up to order h in the

space H™0(e~(2h+17t Q) and the following estimate holds

, the second initial boundary value problem for (1.2) —

h+1
(2.1) [z H?’—["L,O(e—(Qhﬁ-l)’YtVQT) <C Z 1fe 13
k=0

where the constant C' does not depend on u, f.

Proof. The uniqueness of solution of this problem can prove easily by using
the Ladyzhenskaya’s method [see 4, 8].
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Now, we establish the existence of generalized solution of the mentioned problem
by Galerkin’s approximate method. Let {yy(x)}32, be a basic of H ™(£2), which
is orthonormal in Ly(£2). We find an approximate solution u”(x,t) in the form

ulV (2, t) = ]ZV: CN (t)pr(x), where {C ()}, satisfy
k=1

m

@2 -yt Y (e[

Q
Ipl,lq|=0

(2.3) cN0)=0,1=1,...,N.

aququNDpapldx — /

uivﬁdx:/fmdx,
Q Q

It follows from 4), 4) and (2.2) — (2.3) that coefficients C;" (¢) is defined uniquely
and v (z,0) =0 forall N =1,2,...

Multiplying (2.2) by ———= C (t) , taking sum with respect to [ from 1 to IV, we get
(24) (—1)™ Z (—1)|p|/QaququNDpu£de—i/Qut ulNdx —z/ fu,{vdx
Ipl;|q|=0

After adding (2.4) with its complex conjugate, integrating with respect to ¢ from 0
to 7, 0 < 7 < T, and then integrating by parts, we arrive at

B @) =0 YD (0P [ 2 DSy
Ipl,lq|=0 T
—2|m[/Qf((L‘,T)’LLN($,T)d(L‘— QTftuNdxdt}.

This implies by Cauchy’s inequality and (1.7) that for all 0 < & < po
m /H—&?

™ (0, ) [ Fmey <

L G O+ s (BT I

Applying Gronwall-Bellman’s inequality, one gets

m*pute
(25) e (@, 7Yy < Ca[ 1712 + L felZ] e T,
where C; = maX{MO =2 e(uo 5 } > 0.
For each v > 4™ — inf M L% we can choose ¢ € (0, ) such that

2po EE(O,M )2(MO 5)

e ;?Mé‘jf) ie, —2v+ TZO"_’S < 0. Multiplying (2.5) with e=277, then integrating

with respect to — from 0 to 7', we obtain

(2.6) 1™ gm0 et @y < ClIFI + 1fel5]
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where C > 0 is independent of N. Since the sequence {u"'} is uniformly bounded
in H™%(e=7 Qr), we can take a subsequence, denoted also by {u} for conve-
nience, which converges weakly to a vector function u(x,t) in H™%(e=7 Q7).
We will prove that u(x,t) is a generalized solution of the problem. Since M =

o] N
U {3 di(t)ei(x), di(t) € HY0,7), di(t) = 0, I = 1,2,...,N} is dense in
N=1 i=1

the space of test functions ﬁmal(QT) ={n(z,t) e H™Y(Q,),n(z,7)=0} for all
0 <7< T so it suffices to show that u(z,t) satisfies (1.4) for all n(x,t) € M 1.
Taking n(z,t) e M arbitrarily, there exists Ny such that » can be written in the

form n(x,t) = Zdz( You(z), di(t) € HY(0,7), di(7) =0, I = 1,.., No. Multi-
plying (2.3) (W|th N > Ny) by d;(t), taking sum with respect to | from 1 to N,
then integrating with respect to t from 0 to 7, we obtain

m

(—1)™ 1 Z (—1)|p|/Q aququNDPndxdt—/

uNdrdt = / frdzdt.
Ipl,lal=0 @

T

It is easy to check that [ u]¥7dzdt = — [ uN7rdadt, so one has
Qr Qr

ym- 1; Z Ipl unNDPndxdt—i—/ N, drdt= /fndxdt
|pl,lq|=0

. Q-

Passing to the limit for the weakly convergent subsequence, we get

(—=1)m1 Z (1)l / apg DIuDPydadt + / umdzdt = | frdadt.
Ipl.lql=0 @ g @

Hence u(z, t) is a generalized solution of the second initial boundary value problem
for the system (2.3) — (2.4). Moreover, the weak convergence of the subsequence
of {u(x,t)} and (2.6) imply that this solution satisfies the following inequality

27)  Nullfmoqe—t,gp < hmooHu rmo(et.gr < C [IF15 + I fell3],

where C only depends on i, . This completes the proof of the existence of solution.
In the following part of the proof, we shall derive that the solution « has deriva-
tives with respect to ¢ up to order h in H™9(e~ (D7 Qp).
Indeed, from 4),4:), it follows that coefficients CN( ), defined uniquely by
(2.3), have derivatives up to order i + 1.

'The dense of the set M in the space fI"L’l(QT) can be proved easily by using Lemma 1.1 and
arguments analogous used in the first problem (see [4,5]).
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k
Differentiating (2.2) (k—1) times with respect to ¢, multiplying by % (CN @),

then taking sum with respect to [ from 1 to N, we obtain

m

—i/|ui\k[|2dx—|—(—1)m Z (—1)|p|/aququi\£_1Dpui\£dw:
Ipl,lq|=0 Q
m ak s=1, J—
(2.8) 1™ ! Z —1 |p|ZCk ) v fqunﬁDpu%dx—i—i/ftkqu%dx.

Ipl,lq|=0

By using 4:) and induction on &, we obtain
(2.9) Dpui\k[(x, 0)=0, k<h, |p|<m.

Now we shall prove the following inequalities

h+1
(2.10) Hu%(m,T)Hzm(Q) < CM Y lfulls, 0<T<T, N=1,2,...,
k.f

h+1
(2.11) Hui\}{HiIm,O(e—(Qh-&-l)'yt’QT) <C Z Hftk Hio
k=0

_ (2s+1)m* ;H—e

are valid with 0 < € < pg, A\s = PP

on N, f.

It implies from (2.5) — (2.6) that (2.10) — (2.11) hold for i = 0.

Now let (2.10) — (2.11) be true for h — 1, h > 1. We prove these also hold for
h. Integrating (2.8), for kK = h + 1, with respect to ¢ from 0 to 7, we get

s < h, where C' does not depend

m

—¢/|u%+1|2dxdt+(—1)m > (—1)|p|/aququ%Dpu%dedt

O- Ipl,lq|=0 0-

= (—1)™! Z (_1)IPIZCI§/ - haquq NDputh+1dxdt +i/fth,ui\,§+1dxdt.

Adding this equation with its complex conjugate, then integrating by parts with
respect to ¢, using i) and (2.9), we obtain
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m
da —
("Bl () = (~1m > (-0 [ Y Drufdsds
Ipl,lq|=0 Q-
@ da —
1)"2Re Y (—1)PIn / —rt DT, DPu dadt
Ipl,lq|=0 QT
- | | " 8+1apq N o N
m
2Re > (-1)P Zch St Dl Dhu dudt
Ipl,lq|=0 s=0
m a -
+(-1)7"2Re Y (- |P|Zch 8th 1 pay N Deu dadt
Ipl,lq|=0
m a -
—1)™ 2Re |p|ZCh - fq(x,T)unf\!(x,T)Dpu%(x,T)dx
Ipl,lq|=0 875
PL1q1=
—2Im/fth x, T)ul) (, T)dx+2lm/fth+1uthdxdt
Q-

For all e; > 0, using Cauchy’s inequality and (1.7), we have
[0 — (2" = D™ + Ver] uph (2, 7) | Frm(e)
< [(Qh + 1)m*u + ((2h+1 —2— h)ulm* 4 1)51] / H’U,%((L‘, t)H?’—[m(Q)dt

h—1

h—1
CLY N mocgny + 2 udl @ )y + M fun e + 7l for 12|
k=0 k=0

where C'is a constant independent of N, £. Setting e = (2! —2—h)uam* +1)e;
where po = max{u, p1}, one has for all 0 < & < o

i o ) ey < M [ o Oyt + €[l + 7
0

h—1 h—1
+ 3 o, + 2 i@ Dy |
k=0 k=0

Using the induction assumption, we get

h+1

o ) By < M / o )yt + O 71+ )3
k=0
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And then, by applying Gronwall-Bellman’s inequality and noting that A\p,_1 < A,
we obtain

h+1
2.12) s (2, )3y < CEMT S || |12
k=0

We can choose 0 < & < pg such that (2h+ 1)y > % for all v > % (because

. (2h+1)m*u+e _ (2h+1)m*u . . .
0<1§1<fuO SGio—s) 50 < (2h + 1)7). After multiplying (2.12) with

e 2@+ 7 then integrating with respect to 7 from 0 to T, we arrive at

h+1
@13 e e @y < € 3 It
k=0

where C'is a constant independent of N, f. Hence (2.10) — (2.11) hold for A
and {ul)} is bounded in FH™0(e~ 2"+t Q7). So we can choose a subsequence
which converges weakly to a vector function (") in H™0(e=(h+1t Q).

On the other hand, it is easy to see that [ ul\vdazdt = —(1)"[ uNvndxdt,

Qr Qr
for all v € C5°(Qr). Passing N —oo, it follows [ uMvdzdt = —(1)" [uv,dadt,
Qr Qr

i.e., u has generalized derivatives up to order ~ with respect to ¢ and w. = uh)
in the space H™0(e~(2h+17t Qr). Furthermore, by passing (2.13) to the limit
for the weakly convergent subsequence, we receive inequality (2.1). The theorem
is proved completely.

3. THE SMOOTHNESS WITH RESPECT TO SPATIAL VARIABLE OF SOLUTIONS

In this part of our paper, for simplicity we assume that the coefficients a,q(z, t)
of the operator L(x,t, D) are infinitely differentiable in Q7. Moreover, we also
assume that a,,(z, t) and all its derivatives are bounded in Q7.

At first, we consider some base lemmas. Denote v, = (2k + 1)y, v = 7,
where ~ is the constant in Theorem 2.1, k is a nonnegative integer.

Lemma3.1. Let f(z,t) € L>(0,T, Lyo(R2)), u(z, t) be the generalized solution
in H™9(e=7 Q) of the second initial boundary value problem for (1.2) — (1.3)
and u; € Lo(Q,) for all 7 € (0,7). Then for almost all ¢ € (0,7) we have

(—1)m/ i (—1)PaquPuD—m<dx:i/[ut+f]ydx,

Q Ipllal=1 Q
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where x is an arbitrary function in H ™(£2).

Proof. We consider the problem in a neighborhood of origin point when Q
coincides with the cone K, then C°° () is dense in H™ () (see [1]). Let {Xk(x) €
C>®(Q), k=1,2. } be a basic of H™(2) and 0(s) € C°°(R!) such that §(0) =
0 for |s| > 1/2, [*° 0(s)ds = 1.

Fix 7 € (0,7) arbltrary For each k, set n(x,t) = h™! ( )0( =), where

0<t <7,0<h<min{t/,7—#'}. Then we have n(z,7) =0andn € Hm=1(QT).
So from (1.4), one gets

m oy
(-)™ [ > (=1)Pla,,DIuDPy; h‘%(%)dxdt
Jgl=1
(3.1) Q, Iplldl 0
—i/ [uixe + x| O(——— ; Ydzdt = 0.
Q-

Denote £(t) = (—1)™ [ [ i (=1)Pla,, DIuDPxy — i(ug + )Xk | d.
Ipl,lql=1
Because u € Hm’o(e—ﬁ,cg;;, up € Lo(Qr) and f € L*(0,T, Lo(2)) so &(t )

Lo(0,7) and (3.1) implies &,(¢") = 0 for almost all ¢ € (0, 7). It follows (¢ ) =
in (0, 7)\ E), where Ej is independent of x; and mesE}), = 0. Setting E = kglEk,

then £(t) = 0in (0,7) \ E. Because of the dense property of the system {xx}72,
in H™(), we have

(3.2) (—l)m/ i (—1)paqupuD—dex:i/[ut—i—f]fdx

Q Ipllgl=1 Q

for all x € H™(2) and almost everywhere ¢ € (0, 7). Since 7 € (0, T) arbitrary so
(3.2) holds for all x € H™(2) and almost ¢ € (0,7). This implies that u(z,t) is
a generalized solution in H™(2) of the second boundary value problem for elliptic
system

(3.3) (=1)"L(z,t,D)u = F(z,t), where F(x,t)=1i(us+ f).
The lemma is proved.

Lemma 3.2. Let u(x,t) be a solution in H™%(e~7 Kr) of the second ini-
tial boundary value problem for (1.2) — (1.3) such that u(z,t) = 0 when |z| >
R =constant. Moreover, we assume that f, f;, fiu € L*(0,T, Lo(K)), f(x,0) = 0.
Then for almost all ¢ € [0,T"), we have
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(i) if m < g then u € H2™(K),

(i) if m = g then u € H2" _(K), where ¢ > 0 arbitrary.

Proof. Because f, fi, fir € L>°(0,T, Lo(K)), f(x,0) = 0, from Theorem 2.1
we have u; € H™%(e=t K7). That follows for each 7 € (0,7), w, € La(K,).
Following Lemma 3.1, u(z, ¢) is a solution of the second boundary value problem
for elliptic system (3.3), where F' = i(u; + f) € Lo(K) for almost ¢ € (0, 7).

Denote OF = {x € Q : 27%F < || < 27%1}, kK = 1,2,.... Let ky be large
enoungh such that 2~%+2 < R. From the theory of the regular of solution of the
boundary value problem for elliptic systems in smooth domains and near the piece
smooth boundary of domain (see [11] for reference), we have u € H*™(Qy,) for
almost ¢ € (0, ) and the following inequality holds

/\Do‘u(x,t)\degC[ /\F(m,t)\de—i— /\u(x,t)ﬁdx},\a\ < 2m,

Qg Qg —1 Uk U 41 Qg —1UQEo U 41

where C'is a positive constant. By choosing k; > ko and setting = = (2% /2k1)2/,
one has

2k‘0 4m
/ D!, 1)[2da’ < C / [\F(m’,t)\2<271> o'+ (', 1)) e’
Qko

Qg —1Uq Uk 11

Return to the variable z, we get
Qko 2| ) ) 2k0 4m )
(3.4)(271) |D%u(a, 1) 2dz < C / [\F(x,t)\ (27) +Ju(z, t)] }dx.
Q4 Qg —1UQg Uk, 41

Case 1. m < . Then

(3.5) /r‘Qm\u\de < C/r_”\u\de < +o00.
K K

It follows from (3.4) that

/T2(|a|_m)‘Dau‘2d(L‘ <C / [\F(m,t)\2r2m+r_2m\u\2 dz,

Qiy Qpq —1Uq UQ; 41
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where C' is a constant independent of w, f, k1. Taking sum with respect to k1 > ko,
one has

S [ eEpuar <o Y [ [IF@ P
k1 >/<:0le k1 }k‘Qle

This implies

[ e <o [ (R s
U % U %

k>kg k>kg

Because in out of a neighborhood of conical point K is a smooth domain, so we
have
(3.6) /r2(|a|_m)\D°‘u\2dx < c/[\F(x, ) 242" u| ] dx

K
for all |a| < 2m, almost all ¢ € (0,7). From (3.5),(3.6) and F' € Lo(K) we
receive u € anm( ) for almost all ¢ € (0,7).

Case2. m = g Since u € H™Y(e™, Kr) so for almost all t € (0,T) one
has [ 70| DPu|?dz < oo, || = m. This implies fr‘s\Dﬂu\de R‘Sf\Dﬂu\de <

K
+o0, Where § > 0 arbitrary.

For all 6 € (0,2m) we have 6 > 0=m — g so it follows from Lemma 7.1.1,
page 268 in [9] that

(3.7) / 20/2=m) |y 2da < C Z/ | DPufPdz<C ) /\Dﬂu\ dr < +o0.
|B|l=mp |B|l=m f

From the inequality (3.4), for all |a| < 2m one gets

/r2(|a|—m+g)‘Docu‘2dx
(3.8) 2, .2m+6 2m+5|, (2
<c [ [P
Qg —1UQg UL, 11
where C' is a constant independent of w, f, k1.

By using analogous arguments used in the proof of case 1), from (3.7), (3.8) we
have
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(3.9) /r2(m+%—|a|—2m>\D%degc/ [\F(m,t)\Z—i— - \Dﬂuﬂ d < +p0
K

K |B]=m

for all |a| < 2m, almost all t € (0,7). That is u € anrié(K). The lemma is

2

proved.

Lemma 3.3. Assume that u(z, t) is a generalized solution in H ™9 (e~ Kr)
of the second initial boundary value problem for (1.2)—(1.3), such that u(z,0) = 0
for |x| > R = constant. Moreover, assume that f,x € L>°(0,T, Lo(K)), k < h+2;
fx(2,0) =0, k < h. Then for almost ¢ € [0,T") we have:

(i) if m > g and n is odd, then v = Yoo calt)z® + up, where ug €

laf<[m—%]

HEME), dea(t)/dt € Lay(e™",(0,T)),j < b, |of < [m— 3],

(i) if m > g and n is even, then v = > calt)x™ 4 ug, Where uy €

laf<[m—5-1]

H2m _(K), e > 0 arbitrary, dc,(t)/dt! € La(e™%(0,T)),j < h; |a| <

m-+e
[m—5 —1].

Proof. (i) Let m > g and n be odd.
Setl =[m— g]. Because u € H™ (e~ K7), so for almost ¢ € [0,7) we
have
/rO\DﬂlDﬁQu\de <400, | =m —1—1,|0 =1+ 1.
K

It is clear that (m — 1 — 1) — 5 < 0, so by applying Lemma 7.1.1 of [9] we obtain

/r_Q(m_l_l)\DﬂQu\2dx<C Z /\DﬁlDﬂQu\2dx<CZ /\Do‘u\2dx<—|—oo.
K

|B1]=m—1-1f |a|l=m

o

oxlt..oxly
and applying Lemma 4.10, page 244 of [7], we receive v = C/, , (t)+u(), where
u satisfies

Since —2(m — 1 — 1) < 2 — n, then by setting v = h+.+l,=1

(3.10) / pm2m=l=0=21, (01200 < © Z /\Do‘u\2dx < +o00.
K

|a|=m f
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It implies from (3.10) that u) € HY  (K) and then C!, , (t) € La(e™*, (0,T)).

C! )zl e
By setting v/ =u— 3 ll"'l"(, ) LT then 9t /0. ok = ul,
I+t =l I11...0,!

From (3.10) one has

ol
—2(m—1-1)-2 2 / a, (2
r de < C E D%u|*dxr < +oo.
/ | ﬁxlf...ﬁxﬁ" | o= | |

_ 2
It can be rewritten in the form [r=2(m=i=1)=2|y 90 dx < 400
i Bmgl 1)1...81‘% Dn ’

where (I — 1)1+ ...+ (I — 1), =l — 1. Applying Lemma 4.10 of [7] again, one

(=D ) -1 i YR
gets — Iy = ((1—1))1...(1—1)n(t) + = where w1 satisfies
1 <. 0Znp

(3.11) /r_Q(m_l_l)_4\u(l_1)\2dx < CZ /\Do‘u\2dx < +o00.
K lal=m g

_ - _
It follows that ("1 € H?  (K) and C((z_11))1...(1_1)n(t) € Lo(e77,(0,T)).

o (-1 (I=Dn
C(l_l)l--.(l—l)n(t)wj Loy

(1)1 o (1=l —1 (I=11l(l=1)n!
have 8!~ 1v(=D) /92" 9z~ — 4 (=D From (3.11) one has

Setting v(=1) = o) —

, We

/r_Q(m_l_l)_A"ﬁl_lv(l_l)/ﬁx(ll_l)l...836%_1)" 2dw < CZ /\Do‘u\2dx < +o0.

K |a|=m g

Repeating that arguments we receive a functions sequence {v()} with

cl (. aly

vV = - - ,i=1,..0; v = U.
. Z . jl!...jn! J
J1+eFIn=J
It follows that
(3.12) u= Y cat)z®+u,
n
el <[m—7]

where +(?) satisfies

(3.13) /r_Qm\u(O)\2dx <C Z /\Do‘u\2dx < 400,

K loel=m f¢
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and ¢, (t) € La(e™ %, (0, 7)) for all |o| < 1.
It is easy to see from (3.12) that u(?) is a generalized solution of the second
boundary value problem for the following system

(-1 Lz, t, Dyu'” = R,
where Fy = F+ (=1)™ 1t Y ¢, (t)L(x,t, D)z € Ly(K) for almost all

laf<[m—%]
t € (0,7) and u(®(z,0) = 0. From the inequality (3.4) and (3.13), repeating
arguments that used to prove the inequality (3.6), we obtain
/ p2(lal=m)| Do, O)2 4z < © / [Py (, )™ + =2 a0 2]de

K K

< C/[\Fl(x,t)\Q—i— S |D%u(a, 1) Fdz < +oo.
K

la]=m

This implies «(®) ¢ H?™(K) for almost all t € [0, T).
Now we prove dic,(t)/dt! € La(e 7t (0,T)),5 < h. We consider some
following cases.

Casel. |o|=1=[m— g]. From (3.12) we have

(3.14) D = dyco(t) + D*u?, |a| =1, dq = constant # 0.

In another way, from Theorem 2.1, Lemma 3.1 and the assumptions of this lemma,
there exist u; € H™C(e= "t Qr), uy € H™(e= 2!, Qr) and u, is a solution of
elliptic problem for the system

(=1)"Lus = Fy + (=1)™ ' Lyu,

0 .
where L; = > DP(%DQ). It is easy to see that F; +(—1)""! Lyu € Ly(K)
Ipl,lgl<m
for almost ¢ € (0, T"). Repeating arguments used above for function v we get

D%y = dolo(t) + DU, where 20 € H2™(K), ¢,(t) € La(e™ ", (0,T)).
Since u(z,0) = 0, then

t t
(3.15) Do‘u:da/ Ea(t)dt—i—/ DuO gy,
0 0

Comparing (3.14), (3.15) one gets

t t
0 0
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Because (%), (®) are in H2™(K), so [ r2(m+el=2m)|1(1)|2dz < +oc. It implies
K

that |1(¢)|? [ r~"da < [ r20mFled=2m) [ (#)|2d2 < 400 because of |a| —m < —g.
K K
t
Thus, I(t) =0 or [¢,(t)dt = co(t) for almost ¢ € (0, 7). Therefore de,(t)/dt =
0

Za(t) € Lo(e™ ", (0, T)).
Assume that there exist dic,(t)/dt/ € Lao(e™%,(0,T)),7 < h — 1. We will
prove that d/*lc,(t)/dt’ !t € Lo(e=+1% (0,T)). Indeed, because of results of
Theorem 2.1 we have w1 € H™%(e %+ Kr),5 < h — 1. By using similar
arguments used in the proof of (3.12), one gets D%u 41 = daéa(t) + DT,
where @0 ¢ H2™(K), é,(t) € Ly(e i+t (0,T)). From the induction hypothe-
dealt) Pell) _ e e
dti dtit1

ses, we have D%u; = dq + Daug.)). This implies

Ly(e77+1%,(0,T)).
Case2. |o|=1—-1=[m— g] — 1. From (3.12) we have

(3.16) D = dyco(t)x 4 day1cayi(t) + Du®),

where d,d,+1 = constant # 0. Using similar method that applied to prove
(3.12), one gets

Daut = daga(t)x + da+15a+1(t) 4 l)oc,l'jj(o)7

where 40 € H2™(K), ¢,(t) € La(e~"*,(0,T)). So we have
t t t

317  Du=d, / Ealt)2dt + dasr / Zos (D)t + / Do) gy
0 0 0

From case 1 one has d,1 fOtEaH(t)dt = da+1¢a+1(t). Combining (3.16) and
(3.17) we obtain

¢ ¢
Jl(xv t) = da [/ Ea(t)dt — Ca(t)] €T = Docu(O) _ / Da’lj(o)dt.
0 0
Because u(”), (") are in H2™(K), so [ r2(mFlel=2m)|.J (g, t)|*dz < +o0. Setting
K

J(t) = dq fOtEa(t)dt—ca(t)] , e haveI{r2(|°‘|‘m)\J(t)\2\x\2dx < 400. This im-
plies [ r2(al=m+1)| J(1)|2dz < +oc. Since |a|—m+1 < =2 s0 [J(¢)|? [ r"dz <
K K

+o00. Hence J(t) = 0 or dey(t)/dt = o (t) € La(e™ "t (0,T)).
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The same results about d’c,(t)/dt! € La(e™7t (0,T)) can be received by
using induction method on j, j < A.

When |a| < [m — g] — 1, by induction on |a| we obtain dic,(t)/dt} €
La(e~t,(0,T)) for all j < h, o] < [m — g].
(ii) Let m > g and n be even.

Thenm = = +k+1, k is a nonnegative integer. Because u € H™%(e ", K1),
so for almost all ¢t € [0,7) we have

/rO\DﬂlDﬂQu\de < 400, |B| =m—k 1,18 = k + 1.
K

It follows

/ | DA DPufPdz < Y /\Do‘u\de < 400, where § > 0 arbitrary.
K lal=m i
Using similar method used in the part (i), we achieve u = > Col(t)z™ +
la|<[m—5-1]

ul®, where u©) € HX™ o (K),dca(t)/dt € Ly(e ", (0,T)), j < hlal <

[m — g — 1]. The lemma is proved completely.

Let w be a local coordinate system on S»~!. The principal part of the operator
L(z,t, D) at origin point 0 can be rewritten in the form:

(3.18) Lo(0,t, D) = r?"Q(w, t,rD,, D,,), (D, = id/dr),

where @ is a linear operator with smooth coefficients.
Denote by A(¢) an eigenvalue of Neumann problem for the system

(3.19) Q(w,t,\(t), Dy)v(w) =0, w € G.

It is well known in [9] that for every ¢ € (0, T), the spectrum of this problem is on
enumerable set of eigenvalue.

Theorem 3.1. Let u(x,t) be a generalized solution in H™%(e=" Kr) of the
second initial boundary value problem for (1.2) — (1.3) such that « = 0 when
|z| > R = constant. In addition, suppose that the strip

n n
——<ImA<2m— —
Ty T
does not contain any point of the spectrum of Neumann problem for system (3.19)

for all ¢ € [0,7"). Then
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(i) if fir € L®(0,T, Lo(K)), k < 2m+1, and fix(x,0) =0,k < 2m — 1, then
u € H¥m (e~ 2mt K7p) for m

Proof. We rewrite (1.2) in the form

(3.20) (=1)™Lo(0, t, D)u = F(z,t), where

(3.21) F(z,t) = i(us + f) + (=1)"[Lo(0, ¢, D) — L(z, t, D)]u.

(i)ym < g We need to prove

(3.22) Z / p2alrh=2m)| poy,  |2e=22mt drdt < +oo.
K

Case 1. k= 2m. From Theorem 2.1 we have [ |ugm|?e™22mtdzdt < +oo0,
Kr
S0 (3.22) is valid for k = 2m.

Case 2. k< 2m—1.

e If m < Z then by following the Lemma 3.2 we have u € H2"(K) for almost
t € (0,7). In another way, because a,, are continuous in = € €2 uniformly with
respect to ¢ € (0,7) if [p| = |g| = m then |ayy(z,t) — ape(0,t)| < Clz|, for all
t €[0,7) and C is a constant. Therefore, from (3.21) and the hypotheses of this
theorem, one gets F' € HY | (K). Since in the strip m — g <ImA<m+1- g
there is no spectral point of Neumann problem for (3.19) for all ¢ € [0,T), then
following Theorem 3.2 page 37 in paper [10], one gets u € H>™, (K ) and satisfies

lalam sy < CLIFIR0 iy + Il3izmeac |

for almost t € (0,T"), where C' is a positive constant.
From v € H>™ (K), by using similar arguments as giving above, we have
F € HY _,(K). In another way, there is no spectral point of Neumann problem for

(3.19) forall t € [0, T') in the strip m—i—l—g < ImX < m+2—g. Hence following
the results of elliptic problem (see Theorem 3.2 in [10]) one gets u € H2™,(K)
satisfying

ullFrzm (1) < C[HFH?{&_Q(K) + {[ul Fzm i) |-
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Repeating the arguments above we receive u € H3™(K) and the inequality

(3.23) a2z ey < CIFIZ 00y + Nl i)
holds for almost ¢ € (0, 7). It follows that

A T
- -2
Hu”ilogm’o(e_'mmt,KT) < C /”F”%Q(K)e 272mtdt +/ ”uH?;[TQRm(K)e ’ngtdt
0

2
<OY I furllZe
k=0

Then (3.22) is valid for k£ = 0.
We assume that ux € HY"™0(e=2mt Kp) forall k <s—1, s < 2m— 1.
Denote Lys = Y.  DP(apq)sD?, v = ws. Differentiating (1.2) k times
) Ipl;lg|<m
with respect to ¢, we have

S
(=)™ Lv = i(uper + foo) + (1) 1> CELyttys—r = F.
k=1
Repeating the arguments used for function « and the induction assumption we
receive F, € Lo(K) for almost ¢ € (0,7) and v € Hg™"(e~2mt, K7). This
implies w,s € Hy™"(e2m!, Kr) for all s < 2m — 1. Therefore, if m < 2 then
from case 1 and case 2 we have u € HZ™ (e 2nt K7).

e If m = % then it follows from the Lemma 3.2 that u € H2™ _(K) for all

m-+te

e € (0,1), almost all t € (0,T). Because the straight line Im\ = m — % does not
contain any point from the spectrum of Neumann problem for (3.19) forall ¢ € (0, 7))

then for each ¢ € (0,T') there exists e(¢) > 0 such that the strip m — e(t) — g <
Im\ < m—g does not contain any spectral point of Neumann problem for (3.19). In
another way, we also have Fe HY (K). This implies from Theorem 3.2 of [10] that
u € H"(K) satisfying the inequality ||ul|3;2p. ;) < C[HFH%&(K) + Hu”?fﬁl’is .
Repeating the proof for the case m < 2 we achieve w;: € Hy™ (e~ "2nt, Kr) for
all s <2m —1. So for m =%, u € HZ™(e 72t Kr) too.

.. n
ii —.
@ii) m > 5
Case 1. If n is odd then there exists a nonnegative integer [ such that g +l<
m < g + 1+ 1. From Lemma 3.3 we get
(3.25) u= Z Ca(t)z® 4 ug, ug € H™(K).

laf<[m—3]
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We rewrite (1.2) in the form (—=1)™ "' Lug=F+(=1)™ Y cu(t)L(x,t, D)z By
lal<t

using analogous arguments in the proof of the part (i), we get ug € HZ™ (e~ 72mt, K7).
Because d’c(t)/dt? € Lay(e 3t (0,T)),7 < 2m, we have u € H*™ (e~ 2mt Kr).

Case 2. If niseventhenm = g+l+1, [ is a nonegative integer. From Lemma
3.3 one has u = 3 pm—n_1] Cal(t)z® + uo, uo € H?m (K),e > 0. Because
the straight line ImA = m — " does not contain any point from the spectrum of
Neumann problem for the system (3.19) for all ¢ € [0,T), so for each t € [0,T)
there exists an (t) such that in the strip m —e(t) — § < ImA <m — 5 there is no
eigenvalue of Neumann problem for system (3.19). In other hand, v is a solution
of the second boundary value problem for system (—1)Y"L(0, t, D)ug = Fy, where
Fo = i[us + f] + (=1)™Y[L(0,t, D) — L(x,t, D)Jug € HY (K). Hence from the
results of elliptic problem (see [10]) and above arguments, one gets ug € H2™(K)
for all most ¢ € [0,7). And then, by using similar arguments as used in the case
1, we receive that ug € H3™ (e 72mt, Kr) and dic,(t)/dt) € La(e=72mt (0,T)).
This implies u € H2™(e 2t Kr).

The theorem is proved completely.

From Lemma 3.1 and similar method used in Theorem 3.1 we achieve the regular

of the solution of the second initial boundary value problem for (1.2) — (1.3). It is
given as follow.

Theorem 3.2.  Let u(z,t) be a generalized solution of the second initial
boundary value problem for the system (1.2) — (1.3) in the space H ™%(e™"*, Q)
and assume that in the strip

n n

m—— < Im\<2m— —
2 2

there is no point from the spectrum of Neumann problem for system (3.19) for all
t €[0,T). Then

(i) if fie € L°(0,T,Lo(Q)), k < 2m + 1, and fx(x,0) =0,k < 2m — 1, then
e B3 (e, Q) for m < 1.
(i) if fa € L®°(0,T, La(R2)),k < 2m + 2, and fu(x,0) = 0,k < 2m, then
u € H¥™ (e~ 2mt Qr) for m > g
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