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DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE
FRACTIONAL PROGRAMS INVOLVING CONES

Do Sang Kim, Yu Jung Lee and Kwan Deok Bae

Abstract. In this paper, we introduce nondifferentiable multiobjective frac-
tional programming problems with cone constraints over arbitrary closed con-
vex cones, where every component of the objective function contains a term
involving the support function of a compact convex set. For this problem,
Wolfe and Mond-Weir type duals are proposed. We establish weak and strong
duality theorems for a weakly efficient solution under suitable (V, ρ)-invexity
assumptions. As special cases of our duality relations, we give some known
duality results.

1. INTRODUCTION

Multiobjective fractional programming duality has been of much interest in the
recent past. Duality and optimality for nondifferentiable multiobjective program-
ming problems in which the objective function contains a support function was
studied by Mond and Schechter [11]. Bector et al. [2], derived Fritz John and
Karush-Kuhn-Tucker necessary and sufficient optimality conditions for a class of
nondifferentiable convex multiobjective fractional programming problems and es-
tablished some duality theorems. Later, Khan and Hanson [5] and Reddy and
Mukherjee [14] have used the ratio invexity concept to characterize optimality and
duality results in fractional programming. Motivated by various concepts of gener-
alized convexity, Liang et al. [9] introduced a unified formulation of the generalized
convexity, which was called (F, α, ρ, d)-convexity, and obtained some corresponding
optimality conditions and duality results for the single-objective fractional problem.
Also, they extended their results to multiobjective fractional programming problems
in [8].
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Very recently, Kim et al. [6] formulated a class of nondifferentiable multi-
objective fractional programs and established necessary and sufficient optimality
conditions and duality results for weakly efficient solutions of nondifferentiable
multiobjective fractional programming problems. Subsequently, Kim et al. [7] con-
sidered two pairs of nondifferentiable multiobjective second order symmetric dual
problems with cone constraints over arbitrary closed convex cones, which are Mond-
Weir type and Wolfe type. And weak, strong, converse and self-duality theorems
were established under the assumptions of second order pseudo-invex functions.

On the other hand, taking motivation from Bazaraa and Goode [1] and Hanson
and Mond [4], Nanda and Das [13] attempted to extend the results of Mond and
Weir [12] to cone domains with appropriate pseudo-invexity and quasi-invexity
assumptions on objective and constraint functions. However, Chandra and Abha
[3] pointed out that there are some deficiencies in the work of Nanda and Das [13].
They suggested appropriate modifications for study of duality under pseudo-invexity
assumptions.

In this paper, we construct nondifferentiable multiobjective fractional program-
ming problems with cone constraints over arbitrary closed convex cones, where every
component of the objective function contains a term involving the support function
of a compact convex set. For this problem, Wolfe and Mond-Weir type duals are
proposed. And we establish weak and strong duality theorems for a weakly efficient
solution by using (V, ρ)-invexity conditions. Moreover, we give some special cases
of our duality results.

2. PRELIMINARIES

Let Rn be the n-dimensional Euclidean space and let Rn
+ be its non-negative

orthant. The following convention for inequalities will be used in this paper.

If x, u ∈ Rn, then
x < u ⇐⇒ u − x ∈ intRn

+ ;
x � u ⇐⇒ u − x ∈ Rn

+ ;
x ≤ u ⇐⇒ u − x ∈ Rn

+ \ {0} ;
x ≮ u is the negation of x < u .

Definition 2.1. A nonempty set C in Rn is said to be a cone with vertex zero,
if x ∈ C implies that λx ∈ C for all λ � 0. If, in addition, C is convex, then C is
called a convex cone.

Definition 2.2. The polar cone C∗ of C is defined by

C∗ = {z ∈ Rn | xT z � 0 for all x ∈ C}.
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Consider the following nondifferentiable multiobjective fractional programming
problem:

(MFP) Minimize
f(x) + s(x|D)

g(x)

=
(f1(x) + s(x|D1)

g1(x)
, · · · ,

fk(x) + s(x|Dk)
gk(x)

)

subject to h(x) ∈ C∗
2 , x ∈ C1,

where X0 is an open set of Rn, f : X0 → Rk, g : X0 → Rk and h : X0 → Rm

are continuously differentiable over X0. C1 and C2 are closed convex cones with
nonempty interiors in Rn and Rm, respectively.
We assume that

f(x) � 0 and g(x) > 0, for all x ∈ X0,

whenever g is not linear.

Definition 2.3. [6]. PA vector function f : X0 → Rk is said to be (V, ρ)-invex
at u ∈ X0 with respect to the functions η and θ : X0 × X0 → Rn if there exists
αi : X0 × X0 → R+ \ {0} and ρi ∈ R, i = 1, 2, · · · , k, such that, for any x ∈ X0

and for i = 1, 2, · · · , k,

αi(x, u)[fi(x)− fi(u)] � ∇fi(u)η(x, u)+ ρi‖θ(x, u)‖2.

The function f is (V, ρ)-invex on X0 if it is (V, ρ)-invex at every point in X0

Lemma 2.1. [6]. Assume that f and g are vector-valued differentiable functions
defined on X0 and that f(x) + xT w � 0, g(x) > 0 for all x ∈ X0. If f(·) + (·)Tw

and −g(·) are (V, ρ)-invex at u ∈ X0, then [f(·) + (·)Tw]/g(·) is (V, ρ)-invex at
u, where

αi(x, u) = [gi(x)/gi(u)]αi(x, u), θ(x, u) = [1/gi(u)]1/2θ(x, u).

Definition 2.4. [11] The support function s(x|B), being convex and everywhere
finite, has a subdifferential, that is, there exists z such that

s(y|B) ≥ s(x|B) + zT (y − x) f(x) y ∈ B.

Equivalently,

zTx = s(x|B).

The subdifferential of s(x|B) is given by

∂s(x|B) := {z ∈ B : zT x = s(x|B)}.
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For any set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) := {y ∈ Rn : yT (z − x) ≤ 0 for all z ∈ S}.

It is readily verified that for a compact convex set B, y is in NB(x) if and only if
s(y|B) = xTy, or equivalently, x is in the subdifferential of s at y.

3. MOND-WEIR TYPE DUALITY

In this section, we propose the following dual problem (MMFD) to (MFP):

(MMFD) Maximize
f(u) + uTw

g(u)

subject to λT∇
[f(u) + uT w

g(u)

]
+ ∇yT h(u) = 0,(1)

−h(u) ∈ C∗
2 , y ∈ C2,(2)

wi ∈ Di, i = 1, · · · , k, λ ≥ 0, λT e = 1,

where

(i) C2 is closed convex cone in Rm with nonempty interiors,
(ii) C∗

2 is polar cone of C2,

(iii) e = (1, · · · , 1)T is vector in Rk,

(iv) wi(i = 1, · · · , k) is vector in Rn and Di(i = 1, · · · , k) is compact
convex set in Rn,

(v) uTw = (uTw1, · · · , uTwk)T .

Now we establish the duality theorems of (MFP) and (MMFD).

Theorem 3.1. (Weak Duality). Let x and (u, y, λ,w) be feasible solutions of
(MFP) and (MMFD), respectively. Assume that fi(·)+ (·)Twi and − gi(·), i =
1, · · · , k, are (V, ρi)-invex at u and yTh(·) is (V, σ)-invex at u with respect to the
same η with ρTλ � 0 and σ � 0. Then

f(x) + s(x|D)
g(x)

≮
f(u) + uT w

g(u)
.
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Proof. Assume to the contrary that

f(x) + s(x|D)
g(x)

<
f(u) + uTw

g(u)
.

Since αi(x, u) > 0, i = 1, 2, · · · , k, and λ ≥ 0, we have

k∑
i=1

α(x, u)λi

[fi(x) + s(x|Di)
gi(x)

]
<

k∑
i=1

α(x, u)λi

[fi(u) + uT wi

gi(u)

]
.(3)

By Lemma 2.1, we get

αi(x, u)
[fi(x) + xT wi

gi(x)
− fi(u) + uT wi

gi(u)

]

� ∇
[fi(u) + uT wi

gi(u)

]
η(x, u) + ρi‖θ(x, u)‖2, i = 1, 2, · · · , k.

Since λ ≥ 0, it implies that

αi(x, u)λi

[fi(x) + xT wi

gi(x)
− fi(u) + uT wi

gi(u)

]

� λi∇
[fi(u) + uT wi

gi(u)

]
η(x, u) + ρiλi‖θ(x, u)‖2, i = 1, 2, · · · , k,

i.e.,(4)
k∑

i=1

αi(x, u)λi

[fi(u) + xTwi

gi(x)
− fi(u) + uTwi

gi(u)

]

�
k∑

i=1

λi∇
[fi(u) + uTwi

gi(u)

]
η(x, u) +

k∑
i=1

ρiλi‖θ(x, u)‖2.

Also, by (V, σ)-invexity of yT h(·), we get

β(x, u)[yTh(x) − yTh(u)] � ∇yT h(u)η(x, u)+ σ‖θ(x, u)‖2.(5)

Adding (4) and (5), we obtain

k∑
i=1

αi(x, u)λi

[fi(u) + xT wi

gi(x)
− fi(u) + uT wi

gi(u)

]
+ β(x, u)[yTh(x) − yTh(u)]

�
[ k∑

i=1

λi∇
(fi(u) + uT wi

gi(u)

)
+ ∇yTh(u)

]
η(x, u)

+
k∑

i=1

ρiλi‖θ(x, u)‖2 + σ‖θ(x, u)‖2.
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From the dual constraint (2) and h(x) ∈ C∗
2 , we obtain yT h(x) � yTh(u). So, the

above inequality implies that

k∑
i=1

αi(x, u)λi

[fi(u) + xT wi

gi(x)
− fi(u) + uT wi

gi(u)

]

�
[ k∑

i=1

λi∇
(fi(u) + uT wi

gi(u)

)
+ ∇yT h(u)

]
η(x, u)

+
k∑

i=1

ρiλi‖θ(x, u)‖2 + σ‖θ(x, u)‖2.

By the dual constraint (1), it yields

k∑
i=1

αi(x, u)λi

[fi(u) + xT wi

gi(x)
− fi(u) + uT wi

gi(u)

]

�
k∑

i=1

ρiλi‖θ(x, u)‖2 + σ‖θ(x, u)‖2

� 0.

Using the fact that s(x|Di) � xT wi, i = 1, 2, · · · , k, it follows that

k∑
i=1

αi(x, u)λi

[fi(u) + s(x|Di)
gi(x)

− fi(u) + uTwi

gi(u)

]
� 0,

which contradicts (3). Thus,

f(x) + s(x|D)
g(x)

≮
f(u) + uT w

g(u)
.

We obtain the following lemma from [1] and [6] in order to prove strong duality
theorem.

Lemma 3.1. If x is a weakly efficient solution of (MFP) at which constraint
qualification [10] be satisfied. Then there exist w i ∈ Di(i = 1, · · · , k), λ ≥ 0 and
y ∈ C2 with (λ, y) 
= 0 such that

[
λ

T∇
(f(x) + xTw

g(x)

)
+ ∇yT h(x)

]T
(x− x) � 0, for all x ∈ C1,

yT h(x) = 0,

wi ∈ Di, s(x|Di) = xT wi, i = 1, · · · , k.
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Theorem 3.2. (Strong Duality). If x is a weakly efficient solution of (MFP)
at which constraint qualification [10] be satisfied. Then there exist λ ≥ 0, y ∈ C 2

and wi ∈ Di(i = 1, · · · , k) such that (x, y, λ, w) is feasible for (MMFD) and
the objective values of (MFP) and (MMFD) are equal. If the assumption of
Theorem 3.1 are satisfied, then (x, y, λ, w) is weakly efficient for (MMFD).

Proof. Since x is a weakly efficient solution of (MFP), by Lemma 3.1, then
there exist wi ∈ Di, i = 1, · · · , k, λ ≥ 0 and y ∈ C2 with (λ, y) 
= 0 such that

[
λ

T∇
(f(x) + xTw

g(x)

)
+ ∇yT h(x)

]T
(x − x) � 0, for all x ∈ C1,(6)

yT h(x) = 0,(7)

wi ∈ Di, s(x|Di) = xT wi, i = 1, · · · , k.(8)

Since x ∈ C1, x ∈ C1 and C1 is a closed convex cone, we have x + x ∈ C1 and
thus the inequality (6) implies

[
λ

T∇
(f(x) + xT w

g(x)

)
+ ∇yTh(x)

]T
x � 0, for all x ∈ C1,

i.e.,

λ
T∇

[f(x) + xTw

g(x)

]
+ ∇yT h(x) = 0.

And (7) implies yTh(x) � 0, then −h(x) ∈ C∗
2 . Clearly, using (8), (x, y, λ, w) is

feasible for (MMFD) and corresponding values of (MFP) and (MMFD) are
equal. If the assumptions of Theorem 3.1 are satisfied, then (x, y, λ, w) is a weakly
efficient solution of (MMFD).

Remark 3.1. In the dual problem (MMFD), if we replace the condition of
λ ≥ 0 by λ > 0, then Theorems 3.1 and 3.2 hold in the sense of efficient solutions.

4. WOLFE TYPE DUALITY

In this section, we propose the following dual problem (MWFD) to (MFP):

(MWFD) Maximize
f(u) + uTw

g(u)
+ yT h(u)e

subject to λT∇
[f(u) + uTw

g(u)

]
+ ∇yT h(u) = 0,(9)

y ∈ C2, wi ∈ Di, i = 1, · · · , k,

λ ≥ 0, λT e = 1,
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where
(i) C2 is closed convex cone in Rm with nonempty interiors,
(ii) C∗

2 is polar cone of C2,

(iii) e = (1, · · · , 1)T is vector in Rk,

(iv) wi(i = 1, · · · , k) is vector in Rn and Di(i = 1, · · · , k) is compact
convex set in Rn,

(v) uT w = (uTw1, · · · , uTwk)T .

Now we establish the duality theorems of (MFP) and (MWFD).

Theorem 4.1. (Weak Duality). Let x and (u, y, λ, w) be feasible solutions
of (MFP) and (MWFD), respectively. Assume that f i(·) + (·)Twi,−gi(·), i =
1, · · · , k and yTh(·) are (V, ρi)-invex at u with ρTλ � 0. Then

f(x) + s(x|D)
g(x)

≮
f(u) + uT w

g(u)
+ yT h(u)e.

Proof. Assume to the contrary that

f(x) + s(x|D)
g(x)

<
f(u) + uT w

g(u)
+ yT h(u)e.

Since αi(x, u) > 0, i = 1, 2, · · · , k and λ ≥ 0, we obtain

(10)

k∑
i=1

αi(x, u)λi

[fi(x) + s(x|Di)
gi(x)

− fi(u) + uT wi

gi(u)

]

<

k∑
i=1

αi(x, u)λiy
T h(u).

By Lemma 2.1 and λ ≥ 0, it yields
k∑

i=1

αi(x, u)λi

[fi(x) + xT wi

gi(x)
+ yTh(x) − fi(u) + uTwi

gi(u)
− yT h(u)

]

�
k∑

i=1

λi∇
[fi(u) + uT wi

gi(u)
+ yTh(u)

]
η(x, u) +

k∑
i=1

ρiλi‖θ(x, u)‖2.

Also, by yT h(x) � 0 and the dual constraint (9), it follows that

k∑
i=1

αi(x, u)λi

[fi(x) + xT wi

gi(x)
− fi(u) + uT wi

gi(u)
− yT h(u)

]
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�
k∑

i=1

ρiλi‖θ(x, u)‖2

� 0.

Using the fact that s(x|Di) � xTwi, i = 1, 2, · · · , k, the above inequality becomes

k∑
i=1

αi(x, u)λi

[fi(x) + s(x|Di)
gi(x)

− fi(u) + uTwi

gi(u)
− yT h(u)

]
� 0,

which contradicts (10).

Theorem 4.2. (Strong Duality). If x is a weakly efficient solution of (MFP)
at which constraint qualification [10] be satisfied. Then there exist λ ≥ 0, y ∈ C 2

and wi ∈ Di(i = 1, · · · , k) such that (x, y, λ, w) is feasible for (MWFD) and
the objective values of (MFP) and (MWFD) are equal. If the assumption of
Theorem 4.1 are satisfied, then (x, y, λ, w) is weakly efficient for (MWFD).

Proof. Since x is a weakly efficient solution of (MFP), by Lemma 3.1, then
there exist wi ∈ Di, i = 1, · · · , k, λ ≥ 0 and y ∈ C2 with (λ, y) 
= 0 such that

[
λ

T∇
(f(x) + xTw

g(x)

)
+ ∇yT h(x)

]T
(x − x) � 0, for all x ∈ C1,(11)

yT h(x) = 0,(12)

wi ∈ Di, s(x|Di) = xT wi, i = 1, · · · , k.(13)

Since x ∈ C1, x ∈ C1 and C1 is a closed convex cone, we have x + x ∈ C1 and
thus the inequality (11) implies

[
λ

T∇
(f(x) + xT w

g(x)

)
+ ∇yTh(x)

]T
x � 0, for all x ∈ C1,

i.e.,

λ
T∇

[f(x) + xTw

g(x)

]
+ ∇yT h(x) = 0.

Clearly, using (12) and (13), (x, y, λ, w) is feasible for (MWFD) and correspond-
ing values of (MFP) and (MWFD) are equal. If the assumptions of Theorem
4.1 are satisfied, then (x, y, λ, w) is a weakly efficient solution of (MWFD).

Remark 4.2. In the dual problem (MWFD), if we replace the condition of
λ ≥ 0 by λ > 0, then Theorems 4.1 and 4.2 hold in the sense of efficient solutions.
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5. SPECIAL CASES

We give some special cases of our dual programming. Let C1 =Rn
+, C2 =Rm

+ .

(i) If Di = {0}, i = 1, · · · , k, and k = 1, then (MFP) and (MMFD) reduced
to the problems considered in [5], [9] and [14].

(ii) If Di = {0}, i = 1, · · · , k, then our primal and dual models become dual
programs considered in [2] and [8].

(iii) If C1 = Rn
+, C2 = Rm

+ , then our dual programs become the nondifferentiable
programming problems studied by [6].
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